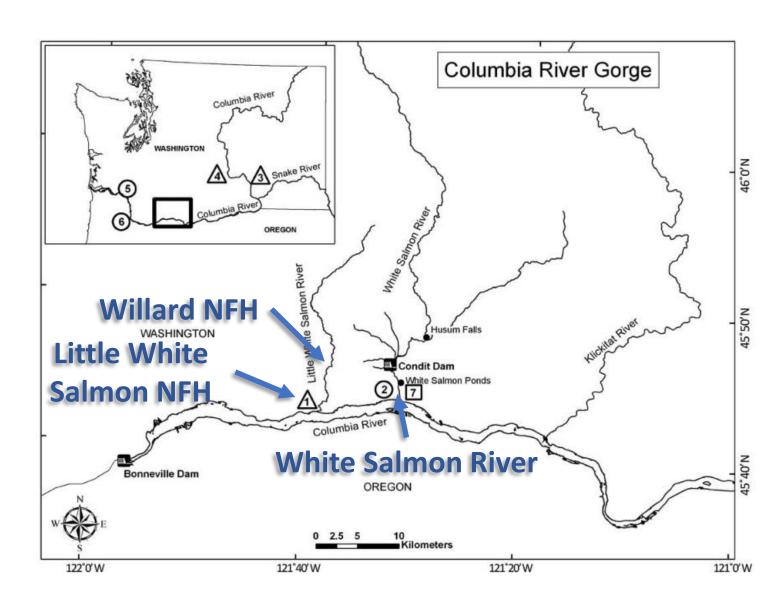
Genetic Evaluation of Fall Chinook Salmon Carcasses from the White Salmon River, 2013-2021

Abernathy Fish Technology Center

Steve Mussmann

Melissa Nehmens

Christian Smith


Columbia River Fish and Wildlife Conservation Office

Justin Baker

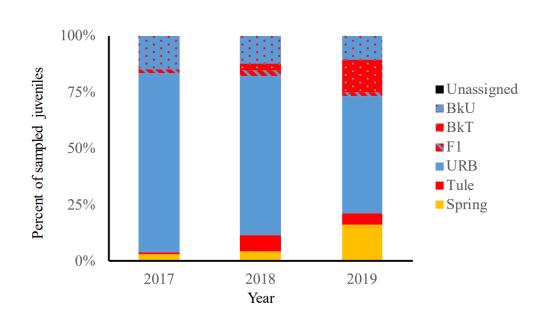
Background

- ESA-listed tule fall Chinook salmon population in the White Salmon River
- Upriver bright (URB)
 Chinook salmon straying
 into White Salmon River
- Spawn timing
 - Tule = Sept-Oct
 - URB = late Oct-Nov

Background

- URB production began at Little White Salmon National Fish Hatchery (LWS NFH) in 1982
 - Production goals increased in 2009
- 4.4 million URB juveniles released annually 2012 to 2021 from LWS and Willard (WI) NFHs
- Past genetic studies have quantified hybridization with ESAlisted tule population

Background: Previous Studies


Mostly focused on outmigrating juveniles

Smith & Engle 2011

• 4.3%-15% = Tule *x* URB hybrids in 2006-2008

• Smith et al. 2021

- 17%-32% fall run juveniles = hybrids in 2017-2019
- 8.4% of broodstock at LWS NFH = hybrids in 2015-2018

Study Goals

- Evaluate the potential impact of hybrids used as broodstock at LWS and WI NFHs on the incidence of hatchery-origin strays.
- Estimate the proportion of hybrids among spawners for the URB and native tule fall Chinook populations in the White Salmon River.
- Use parentage-based tagging to determine the percent of carcasses that are misclassified as wild-origin spawners due to the non-detection of hatchery markings.
- Quantify proportion of misidentified fish used as broodstock at LWS and Spring Creek (SC) NFHs.

Sampling: Carcasses

- 967 individuals
 - Surveys by WDFW

- GTseq Panel
 - 340 loci after filtering

- Sample size variable by year
 - URB not targeted 2014-2017

Year	Tule	URB
2013	140	141
2014	190	1
2015	127	-
2016	23	-
2017	40	-
2018	13	70
2019	24	52
2020	24	31
2021	41	50
Total	622	345

Sampling: Broodstock

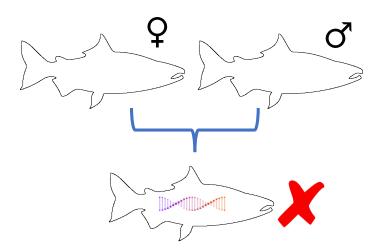
Little White Salmon NFH

Spring Creek NFH

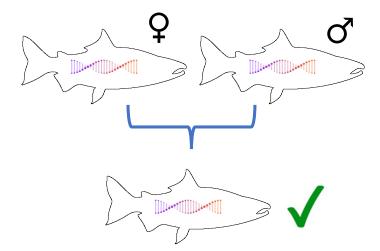
Year	N	Year	N
2015	8,048	2015	5,553
2016	7,313	2016	4,651
2017	5,364	2017	4,063
2018	1,730	2018	6,252
2019	6,209	2019	4,927
2020	4,310	2020	5,450
2021	8,262	2021	6,048

Genotyped by CRITFC - 257 GTseq loci

Genetic Methods

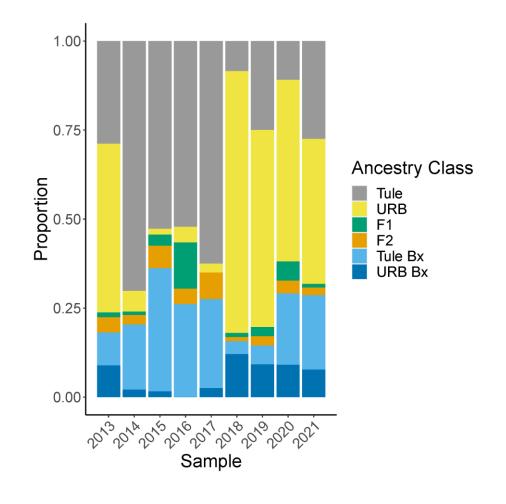

- Identify hybrids in NewHybrids (carcasses) or Snapclust (broodstock)
 - All sample years
 - Hybrid classes:
 - F1
 - F2
 - Tule backcross
 - URB backcross
- Parental assignment for carcasses using SNPPIT
 - Sample years 2018 to 2021
 - Identify hatchery-origin spawners

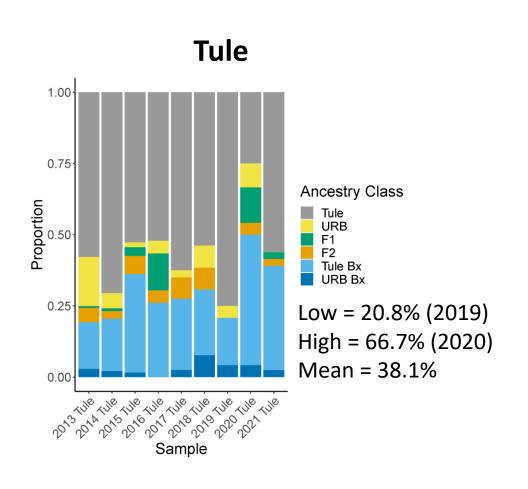
Parentage-based Tagging

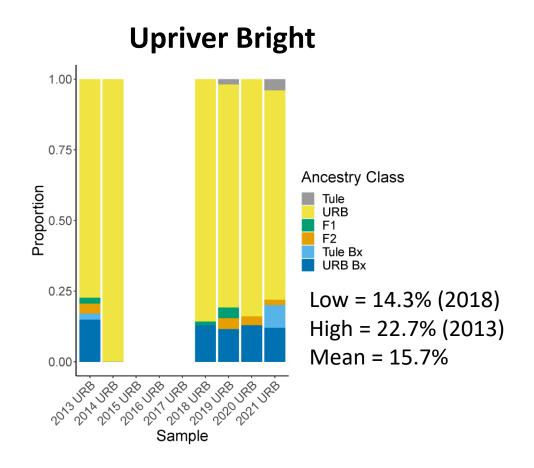

 Genotype all hatchery broodstock

 Genotype returning fish (carcasses)

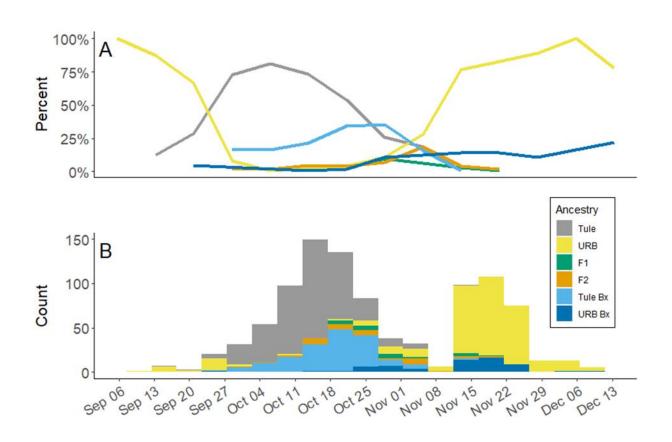
 Compare genotypes to identify hatcheryorigin individuals Wild


Hatchery

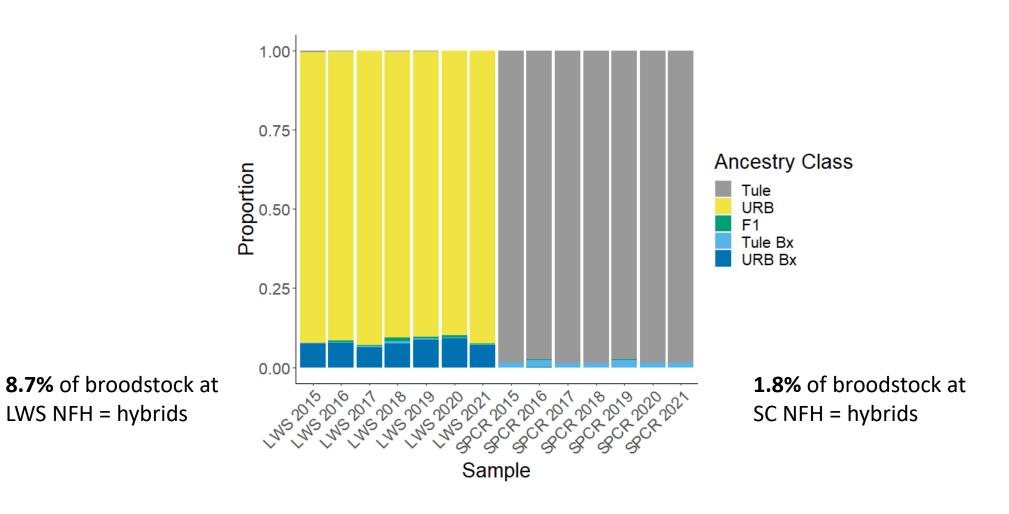

Results: Hybrid Proportion by Year (Carcasses)


- Lowest proportion of hybrids:
 - 18.1% in 2018
- Highest proportion of hybrids:
 - 45.7% in 2015

• Overall: 31.1% per year



Results: Hybrid Proportion by Year (Carcasses)



Results: Ancestry Class by Collection Date

Results: Ancestry of Hatchery Broodstock

Results: Hatchery Parental Assignment

- 64 total hatchery-origin fish
 - 25 marked (39.1%)
 - 39 unmarked (60.9%)
- Hatchery markings
 - Adipose clip
 - Coded wire tag (CWT)
- 'Hatchery' or 'Wild' assignment
 - = current generation only

Genetic ID

	Hatchery Assigned	Unassigned
Hatchery Origin	20	5
Wild Origin	39	241

Field ID

Results: Hatchery Parental Assignment for LWS NFH

Year	Samples	%Marked	%Unmarked	%Hatchery	
2018	70	11.4%	11.4%	22.9%	
2019	52	5.8%	30.8%	36.5%	
2020	31	3.2%	19.4%	22.6%	
2021	50	24.0%	14.0%	38.0%	
Overall	203	11.8%	18.2%	30.1%	

- Most hatchery strays were unmarked
 - Implications for URB spawner estimates in the White Salmon River?

Results: Ancestry of Hatchery-origin Carcasses

Genetic ID

		Tule	URB	F1	F2	Tule Bx	URB Bx	Total
Field ID	Tule	1	-	-	-	1	1	3
	URB	-	56	1	-	-	4	61
	Total	1	56	1	0	1	5	64

• 10.9% of all returning hatchery fish were hybrids

 Seven total F1 hybrids detected 2018-2021; just one originated from a hatchery

Results: Hatchery vs. Wild-origin Hybrids

Run	Wild Origin			Hatchery Origin		
	Samples	Hybrids	%Hybrid	Samples	Hybrids	%Hybrid
Tule	99	42	42.4%	3	2	66.7%
URB	142	31	21.8%	61	5	8.2%

More wild-origin hybrids than hatchery-origin

- Hatchery-origin hybrids not showing elevated stray rate
 - URB Strays = 8.2% hybrids
 - URB Broodstock = 8.4% hybrids (Smith et al. 2021)

Conclusions

• Hatchery-origin hybrids are not straying to the White Salmon River at a greater rate than non-hybrids.

- More wild-origin hybrid spawners than hatchery-origin.
 - Expected to yield continued reproduction of wild-origin hybrids.

 More hatchery fish are straying to the White Salmon River than previously detected.

Acknowledgements

- CRITFC
 - Shawn Narum
 - Jon Hess
 - Jeff Stephenson
- WDFW
 - Elise Olk
 - Kari Dammerman

- AFTC
 - Jennifer Von Bargen

 Army Corps of Engineers under John Day Mitigation

The findings and conclusions in this presentation are those of the authors and do not necessarily represent the views of the U.S. Fish and Wildlife Service.

Questions?

Scan QR code to access our report

• Email: steven_mussmann@fws.gov

qr.codes/XVoMWD