Expanding research and conservation efforts for freshwater mussels of the Pacific Northwest

> Columbia Gorge Fisheries and Watershed Science Conference April 16, 2024

Emilie Blevins Sr. Conservation Biologist, Freshwater Mussel Lead Xerces Society for Invertebrate Conservation Emilie.Blevins@xerces.org

Credit: MKWC/Will Harling

Outline

- Freshwater mussels of the PNW
- Status, distribution, and state of resear
- Current efforts (Xerces and partners)
- Needs and future work

Pacific Northwest Mussels

Western Ridged (Gonidea angulata) Western Pearlshell (*Margaritifera falcata*)

Floaters Genus: *Anodonta*

A Complex Life Cycle

Ecosystem Benefits

Fig. 1 Mussel tissue and activities that mussels perform can be translated into ecosystem services that are beneficial to humans Image credit: Vaughn 2017

State of Knowledge

- Freshwater mussel location data (historic and recent) is available but limited
- Conservation and management of mussels is limited due to a lack of knowledge and population-level data
- Many unknowns: diet, temperature tolerances, reproductive biology and ecology, recruitment and mortality rates, etc.
- Western ridged mussel data especially important during ESA consideration

CTUIR Freshwater Mussel Research and Restoration Project

- Dr. Alexa Maine, <u>alexamaine@ctuir.org</u>
- Project initiated in 2002
- Continued field monitoring annually
- Research on:
 - Distribution
 - Population Status
 - Reproductive Biology
 - Genetics/Taxonomy
 - Artificial Propagation
 - Population Restoration
- Master Plan: Freshwater Mussel Conservation, Supplementation, Aquaculture, Restoration, and Research (2022)

Western Freshwater Mussel Database

- Collaboration between CTUIR and Xerces, with crowd-sourced data
- Observations spanning traditional knowledge and cultural sites to recent observations or research efforts
- More than 475 HUC8 watersheds with occurrence records
- Used for research and conservation efforts in collaboration with agencies, tribes, universities, and NGOs
- Blevins, E., Jepsen, S., Box, J. B., Nez, D., Howard, J., Maine, A., & O'Brien, C. (2017). Extinction risk of western North American freshwater mussels: Anodonta nuttalliana, the Anodonta oregonensis/kennerlyi clade, Gonidea angulata, and Margaritifera falcata. *Freshwater Mollusk Biology and Conservation*, 20, 71–88.
- Scully-Engelmeyer, K., Blevins, E., Granek, E. F., & Constable, R. (2023). Freshwater mussel populations in Pacific Coast Watersheds (Oregon, USA): occurrence, condition, habitat, and fish species overlap. *Hydrobiologia*.

Western North American Freshwater Mussel Visual Survey Protocol Framework (2024)

Visual Survey Protocol Framework for Western North American Freshwater Mussels

Draft Version 1.3

6/20/2023

Next revision date: 2024

This project is a collaborative effort of the following individuals and organizations. Please direct your questions regarding this document to Emilie.Blevins@xerces.org or one of the following project team members

Xerces Society for Invertebrate Conservation (Xerces): Emilie Blevins Bureau of Land Management (BLM): Bryce Frank, Emily Johnson, Scott Miller, Anna Smith, Cody Payne Confederated Tribes of the Umatilla Indian Reservation (CTUIR): Alexa Maine, Zach Seilo United States Fish and Wildlife Service (USEWS): John Erhardt, Doug Nemeth, Courtney Newlon United States Forest Service (USFS): Barbara Adams, Jeff Moss

Suggested citation: Bureau of Land Management, 2023. Draft Visual Survey Protocol Framework for Western North American Freshwater Mussels, Version 1.3

	1.2	Hov	v to Use This Protocol Framework
	1.2	1	Overview
	1.2.2		Requirements
	Sun	Survey Methods	
2.1 Overview		rview	
2.2 F		Pro	ject Design
	2.2.	1	Objectives
2.2.2		2	Sampling Design, Target Universe, and Sampling Unit Considerations
	2.2.3		Project Length and Survey Frequency
2.2.4 2.2.5		4	Methods Selection
		5	Providing Incidental Observation Data
2.3 Reporting Sun		Rep	orting Surveys Resulting in No Observations
2.4 Pre-		Pre	Survey Implementation Steps
2.5 Core Methods		Con	e Methods
	2.5	1	Visual Survey Core Method: Exploratory
	2.5.2		Visual Survey Core Method: Reach
	2.5.	3	Visual Survey Core Method: Transect
	2.6	Con	tingent Methods
	2.6.	1	Survey Contingent Method: Plot
	2.7	Cov	ariates
	2.7.1		Environmental Covariates
2.8 Sur		Sun	plemental Information

Existing Distribution Data

2.9.3 Freshwater Mussel Salvage, Translocation, and Restoration

2.9 Other Sampling Methods

eDNA Samples 2.9.2 Tactile Searches

2.9.4 Lentic Habitat Surveys 3 Data Documentation, Submission, and Analysis 3.1 Required Project Metadata

11

1 Contents 1 Introduction

2.8.1

2.9.1

2 Survey

1.1 Background

Standardization of Methods

- Encourage collection of comparable data
- Develop minimum quality standards and basic methods
- Provide detailed description of methods for novice surveyors
- Facilitate surveys at a variety of scales (single site, river, watershed, state, etc.)

Credits: USFWS/Courtney Newlon; Xerces Society.

Improving Distribution Data Sets for Management: Central Oregon Mussel Survey Project

- Multi-year effort of the Prineville BLM District: 2020-2025
- GRTS design on BLM lands
- Perennial, stream order of 5th or greater (bankfull width 7m+), fish-bearing
- 125 sites sampled for presence/absence
- Further estimates of density at select sites
- Trend analysis at 22 sites (so far), random and purposive

SGCN Mussel Project

ODFW, WDFW, and Xerces

- Improve distribution information (eDNA and visual surveys)
- Establish locations for long-term monitoring
- Develop standardized viability categories and criteria for multiple species
- Improve data sharing and collaboration

Mitigation and Research: Western Ridged Mussels and th Klamath Hydroelectric Project

- Four dams in the hydro project:
 - JC Boyle (1958)
 - Copco 1 (1918)
 - Copco 2 (1925)
 - Iron Gate (1962)

KLAMATH RIVER RENEWAL COPROPARITON WWW.klamathrenewal.org

Project Vicinity Map Klamath River Renewal Project

Collection, PIT tagging, and Translocation

- Accessed 4 known WRM beds
- 6,684 mussels were collected from the 8-mile reach
- 2,349 mussels were PIT tagged and left in their bed or origin to assess impacts of sedimentation postdam removal
- 4,335 mussels were relocated downstream
- Long-term monitoring to continue through 2034

Mass Mortality Events

Image credit: USFWS/Teal Waterstrat; Xerces Society/Emilie Blevins.

© 2021 The Xerces Society, Inc. All rights reserved.

Disease Studies

- Goldberg, T. L., Blevins, E., Leis, E. M., Standish, I. F., Richard, J. C., Lueder, M. R., Cer, R. Z., & Bishop-Lilly, K. A. (2023). Plasticity, Paralogy, and Pseudogenization: Rhabdoviruses of Freshwater Mussels Elucidate Mechanisms of Viral Genome Diversification and the Evolution of the Finfish-Infecting Rhabdoviral Genera. *Journal of Virology*.
- Richard, J. C., Blevins, E., Dunn, C. D., Leis, E. M., & Goldberg, T. L. (2023). Viruses of Freshwater Mussels during Mass Mortality Events in Oregon and Washington, USA. *Viruses*, 15.

Credit: Xerces Society; Anna Smith.

Needs and Future Work

- Need many more biologists engaged and informed – PNW mussel workgroup and USFWS-led conservation effort
- Expansion of long-term monitoring efforts
- Increased disease/mass mortality research
- Basic biology, life history, and habitat studies
- Applied research into effects of contaminants, river management, invasives, wildfires, etc.

Credit: USFWS/Roger Tab