Evaluating the effectiveness of managed gene flow to reduce adaptation to captivity in supportive breeding programs

Mary I at Avan

Charlie Waters¹, Marine Brieuc¹, Curtis Knudsen², Dave Fast³, Jeff Hard⁴, Ken Warheit⁵, and Kerry Naish¹

¹School of Aquatic and Fishery Sciences, University of Washington ²Oncorh Consulting ³Yakama Nation ⁴NOAA Northwest Fisheries Science Center ⁵Washington Department of Fish and Wildlife

Risk: Domestication

- Captive conditions are different from the natural environment
- Selection imposed by captive environment
- Relaxation of natural selective pressures
- Reduce fitness in wild and thus entire population through interbreeding

Has managed gene flow reduced divergence from founder population?

Aim and Objectives

Aim: To evaluate the degree of genetic change in integrated and segregated hatchery lines when compared to the wild population

Objectives:

 Compare multiple generations of segregated and integrated hatchery lines to the wild founders at thousands of molecular markers and identify differences between the lines
 Quantify the rate at which divergence can occur
 Determine if integration is an effective management practice

Cle Elum Supplementation and Research Facility

- Model system Started Chinook salmon hatchery line in 1997; segregated and integrated hatchery lines diverged in 2002
- Collect DNA and phenotypic data from every fish
- Ideal for tracking genetic changes over time

Photo: www.nwcouncil.org

Experimental Approach

• Collected tissue samples

Segregated Line

1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
P ₁ -wild founders				F ₀ adults-1 st gen hatchery				F_1 adults-2 nd gen hatchery				F_2 adults-3 rd gen hatchery
N=74				N=58				N=65				N=75

Integrated Line

2002	2003	2004	2005	2006	2007	2008	2009	2010
F ₀ adults-wild				F ₁ adults-natural				F_2 adults-natural
founders (no				origin (possible				origin (possible
hatchery				hatchery				hatchery
influence)				influence)				influence)
N=71				N=89				N=92

Experimental Approach

• Sequenced hundreds of thousands DNA fragments per individual using restriction site-associated (RAD) sequencing

Experimental Approach

• Identified loci with single nucleotide polymorphisms (SNPs) for comparisons

Individuals with more than 2 million sequences

Population	N	Avg. Proportion of Loci Scored per Individual
1998 founders (P_1)	20	0.90
2002 wild adults (F_0 INT)	13	0.90
2002 marked adults (F_0 SEG)	12	0.94
2006 natural adults (F_1 INT)	41	0.92
2006 marked adults (F_1 SEG)	27	0.91
2010 natural adults (F_2 INT)	57	0.92
2010 marked adults (F_2 SEG)	43	0.91

Level of Inbreeding

Fis per Population

F_{IS} is a common measure of inbreeding

• Higher values indicate reduced heterozygosity

Increased level of inbreeding over time for both hatchery lines

Genetic Differentiation

F_{st} is a common measure of genetic differentiation

- Higher F_{st} means more differentiation
- F_{st} of 0.05-0.1 common among salmon populations

DAPC 1 (48.4%)

DAPC 2 (17.4%)

Pairwise Fst Comparison of F2 Hatchery Lines with 1998 Founders

Sliding Window Analysis

F₂ SEG

Sliding Window Analysis

Summary

- Analyzed three generations of integrated and segregated hatchery lines and compared to founding wild population
- Increased level of inbreeding in both hatchery lines over time
- Segregated line is slowly diverging over time
- Low differentiation (F_{st}) in all population pairwise comparisons
- Identified candidate loci and regions for further tests of selection
- Managed gene flow seems to be effective at reducing divergence

Next Steps

Sequence more individuals from each population

- Identify regions of genome responding to selection
- Estimate effective population size and level of inbreeding within each hatchery line
- Link molecular markers to fitness-related traits

 Washington Sea Grant proposal submitted
 Analyze traits measured at CESRF using GWAS
 Measure early development and disease resistance; link to markers using QTL mapping
 Determine which traits have responded to selection

Acknowledgments

Curt Knudsen, Oncorh Consulting Bill Bosch, Yakama Nation Dave Fast, Yakama Nation Charlie Strom, Yakama Nation All CESRF staff Steve Schroder, WDFW (ret.) Ken Warheit, WDFW Todd Kassler, WDFW Sewall Young, WDFW Kerry Naish, UW Jeff Hard, NOAA MERlab: Marine Brieuc, Dan Drinan, Miyako Kodama, Isadora Jimenez-Hidalgo, Katrina van Raay Funded by Federal Biop funds "Hatchery reform"