Effects of supportive breeding on loci underlying fitness traits in Chinook salmon

Charles D. Waters Yakima Basin Science and Management Conference

Evolutionary Applications

Evolutionary Applications ISSN 1752-4571

ORIGINAL ARTICLE

Effectiveness of managed gene flow in reducing genetic divergence associated with captive breeding

Charles D. Waters,^{1,*} Jeffrey J. Hard,² Marine S. O. Brieuc,¹ David E. Fast,³ Kenneth I. Warheit,⁴ Robin S. Waples,² Curtis M. Knudsen,⁵ William J. Bosch³ and Kerry A. Naish^{1,*}

1 School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USA

2 Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA

3 Yakama Nation Fisheries, Toppenish, WA, USA

4 Washington Department of Fish and Wildlife, Olympia, WA, USA

5 Oncorh Consulting, Olympia, WA, USA

Patterns: Fitness Studies

Fish born in hatcheries do not produce as many offspring in the wild as wild-born fish

- Mechanisms underlying reduced fitness? Which fitness traits are most affected by the hatchery?
- Relative importance of domestication vs. genetic drift and inbreeding?
- Effects on genetic variation?
- Long-term impacts of hatchery fish on wild populations?
- Effectiveness of possible solutions?

Applications of Genomics

Cle Elum Supplementation and Research Facility Spring Chinook salmon

Temporal Change in Genetic Variation

Waters et al. 2015

Aim: Determine traits that may reduce the fitness of captive-born individuals in the wild

Objectives:

- 1. Link key fitness traits to loci using two methods.
- 2. Compare trait-linked loci to regions of divergence to determine which traits respond to genetic adaptation to captivity.

Products:

- 1. Genetic tools for monitoring populations
- 2. Adjusted hatchery management practices(?)
- 3. Information for risk assessment

Aim: Determine traits that may reduce the fitness of captive-born individuals in the wild

Objectives:

 Link key fitness traits to loci using two methods.
Compare trait-linked loci to regions of divergence to determine which traits respond to genetic adaptation to captivity.

Products:

Genetic tools for monitoring populations
Adjusted hatchery management practices(?)
Information for risk assessment

Multi-Trait Mapping Reveals Candidate Regions

Aim: Determine traits that may reduce the fitness of captive-born individuals in the wild

Objectives:

1. Link key fitness traits to loci using two methods.

2. Compare trait-linked loci to regions of divergence to determine which traits respond to genetic adaptation to captivity.

Products:

- . Genetic tools for monitoring populations
- 2. Adjusted hatchery management practices(?)
- 3. Information for risk assessment

Possible Signs of Domestication

Loci and regions of the genome consistently divergent in the SEG line when compared to the P_1 founders

Bayes

Bayes

Bayes

Temporal

Bayes and temporal

Sliding window

Bayes and temporal

Temporal

Bayes

Sliding window

- > Do trait-linked loci separate INT and SEG lines?
- ► Look for overlap between loci associated with traits and outlier loci
- > Null results \neq no domestication

Has Domestication Selection Affected Return Time?

PC 1 (9.9%)

Has Domestication Selection Affected Return Time?

Bayes 🔺

Temporal

Bayes and temporal

Moving forward: Bridging the gap between science and policy

- Share data early and often, even if components of research are not mature
- Iterative process with managers and policy makers
- Translation of science to policy assisted by solutions-driven research

Acknowledgments

Experimental lines:

Levi George, Melvin Sampson, Steve Schroder, Craig Busack, past and present members of the Independent Scientific Review Panel, and the Yakama Tribal Nation

Interesting scientific discussions:

Michael Ford, Lorenz Hauser, Steve Schroder, two anonymous reviewers and Louis Bernatchez

Lab work:

Yakama Nation and Washington Department of Fish and Wildlife personnel at Roza Dam Adult and CESRF Isadora Jimenez-Hidalgo, Katrina van Raay, and Daniel Drinan

 Funding: Federal Biop funds "Hatchery reform," Washington Sea Grant, and the UW Hall Conservation Genetics Award

Questions: cwaters8@uw.edu

COLLEGE OF THE ENVIRONMENT

Questions?

cwaters8@uw.edu

The Genetic Basis of Fitness-Related Traits in Chinook Salmon

- Return time
- Maturation time
- Age at maturity
- Weight
- Forklength
- Daily growth rate

Exploring adaptive evolution in the hatchery environment: Return time

Has Domestication Selection Affected Return Time?

