Managed gene flow reduces adaptation to captivity in supportive breeding programs: A multigenerational analysis of a Chinook salmon hatchery

Charles D. Waters¹, Marine S.O. Brieuc¹, Curtis M. Knudsen², David E. Fast³, Jeff Hard⁴, Kenneth I. Warheit⁵, and Kerry Naish¹

¹School of Aquatic and Fishery Sciences, University of Washington ²Oncorh Consulting ³Yakama Nation Fisheries ⁴NOAA Northwest Fisheries Science Center ⁵Washington Department of Fish and Wildlife

Risk: Domestication

- Captive conditions are different from the natural environment
- Selection imposed by captive environment
- Relaxation of natural selective pressures
- Reduce fitness in wild and thus entire population through interbreeding

Has managed gene flow reduced divergence from founder population?

Cle Elum Supplementation and Research Facility

- Model system Started Chinook salmon hatchery line in 1997; segregated and integrated hatchery lines diverged in 2002
- Collect DNA and phenotypic data from every fish
- Ideal for tracking genetic changes over time

Photo: www.nwcouncil.org

Aim and Objectives

Aim: To evaluate the degree of genetic change in integrated and segregated hatchery lines when compared to the wild population

Objectives:

- Compare multiple generations of both hatchery lines to wild founders at thousands of molecular markers
- 2. Identify differences between the lines, including signatures of domestication selection, using multiple methods
- 3. Determine if integration is an effective management practice

Experimental Approach

• Collected tissue samples (N=642)

Segregated Line

1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
P ₁ -wild				F ₀ adults-	1 st gen			F_1 adults-2 nd				F ₂ adults-3 rd
founders				hatchery				gen hatchery				gen hatchery
N=116				N=87				N=68				N=76

Integrated Line

2002	2003	2004	2005	2006	2007	2008	2009	2010
F ₀ adults-wild				F ₁ adults-natural				F ₂ adults-natural
founders (no				origin (possible				origin (possible
hatchery				hatchery				hatchery
influence)				influence)				influence)
N=113				N=89				N=93

Experimental Approach

Chinook Map (Brieuc et al. 2014), 7146 markers

Number of loci = 9,479 RAD loci (4,405 are mapped)

Population	Ν	Avg. Proportion of Loci Scored per Individual
1998 founders (P_1)	60	0.85
2002 wild adults (F $_0$ INT)	60	0.82
2002 marked adults (F $_0$ SEG)	55	0.81
2006 natural adults (F ₁ INT)	57	0.84
2006 marked adults (F $_1$ SEG)	53	0.80
2010 natural adults (F ₂ INT)	69	0.86
2010 marked adults (F $_2$ SEG)	59	0.85

Pairwise F_{ST} Compared to Founders

*Highly significant, test for genotypic differentiation

Discriminant Analysis of Principal Components

DAPC 2 (10.9 %)

DAPC of All Individuals

Effective Population Size

- Influences the long-term viability and adaptive potential of populations
 - Genetic drift is the dominant evolutionary process in small populations (loss of genetic variation; inbreeding)
 - Selection has a greater effect in larger populations
- Estimated effective population size using the linkage disequilibrium and temporal methods

N_E Per Population

 P_1 Founders F_0 INT F₀SEG **F**₁INT F₁SEG F₂INT F₂SEG Tp: INT

Good agreement between LD and temporal methods

Pairwise Relatedness Within Groups

Levels of Inbreeding Within Groups

Ots12 2010SEG

Ots12 2010SEG

Ots12 2010SEG

Summary of Results

- F_{ST} is low in all pairwise population comparisons
- Segregated line is slowly diverging over time
- Genetic drift could be a driving force in divergence of SEG line
- Signatures of selection were identified using 3 methods with good agreement; more abundant and consistent in segregated line
- Integrated management is effective at reducing adaptation to captivity

Next Steps

- 1) Estimate levels of inbreeding and relatedness
- 2) Add the 5th generation of fish to the study
- 3) GWAS and QTL analyses to link fitness related traits to genomic regions

Acknowledgments

UW MERlab: Dan Drinan, Miyako Kodama, Isadora Jimenez-Hidalgo, Katrina van Raay, Lorenz Hauser

Bill Bosch and Charlie Strom – Yakama Nation

All Cle Elum Facility staff

Steve Schroder (ret.) and Todd Kassler – WDFW

Mike Ford, NOAA

Daniel Goodman, MSU & Brian Riddell, PSF

Funded by Federal Biop funds "Hatchery reform"

cwaters8@uw.edu