DNA-based stock-of-origin assignment of Chinook salmon smolts outmigrating past Chandler trap for years 2004-2008:

Computational error, methodological concerns, and outmigration trends

> Kenneth I. Warheit Todd W. Kassler

WDFW, Molecular Genetics Lab

## **Project Summary**

- Five populations (baseline)
  - ▶ Upper Yakima River Spring
  - Naches River Spring
  - ► American River Spring
  - ▶ Lower Yakima river Fall
  - ▶ Marion Drain Fall
- DNA samples from outmigrating smolts collected at Chandler Trap
- Data from eight brood years (2000-2008)
- Standardized (GAPS) markers and proportional sampling since 2004 (5 years)



### **Previous Reports & Talks**

- Separately for each year and season (Jan-Feb, Mar, Apr, May, Jun-Jul) assign smolts to populations
  - ▶ 20 independent assignments (5 years x 5 seasons)
  - ► Conditional likelihood / partial Bayesian Procedure (e.g., GMA, ONCOR)
- "Power" analysis of baseline
  - ▶ e.g., Jackknife assignments

## New Stuff - presented here

- Power analysis of baseline
  - ▶ Model-based
  - ► Calculates probability of correct assignment
- Population assignment of smolts
  - ▶ Hierarchical conditional-likelihood
    - Considers all samples from all years and seasons simultaneously
    - Bi-weekly population assignment
  - ▶ Outmigration trends

### **Power Analysis**

- How good is the baseline for assigning smolts to populations?
- Many methods
  - ▶ Jackknife ("leave-one-out")
  - ▶ 100% simulations
  - ► Cross-validation method (Anderson et al., 2008)
  - ▶ Prob (assignment | population)
- Model used here:
  - ► Building on Anderson et al.
  - Prob (population | assignment)
  - ► Probability of the correct assignment

### Assigned

incorrect correct SOURCE incorrect correct



**Population** 



### **Population Assignment**

- No details of methods
  - ► Hierarchical approach
  - ► Informed priors at each level in the hierarchy
  - ► Sufficient power to assign bi-weekly, rather than monthly
- Population trends of outmigrating smolts
  - Within a year
  - ▶ Differences among years
- For each population:
  - Year-to-year variability of migration timing
  - Within a year compare timing among populations

#### **POPULATION TRENDS**

- 5 populations
- 5 years (2004-2008)
- 14 time periods (early and late, Jan July)
- 25 trends with 14 data points for each trend









#### Population Proportions of Smolts at Chandler

By Year and Bi-week



#### TIMING OF OUTMIGRATION

- New method no details
- Independent trends for each stock
- Sampling effects are removed
- Trends expressed as deviations from total outmigration of all pops











### Conclusions

- Baseline sufficient power to assign smolts to populations
- Spring stocks dominate outmigration January
  - late May or early June
- Lower Yakima fall dominant population June and July
- Among spring pops: upYakima > Naches > American

### Conclusions

- Timing of outmigration variable among years, but some patterns:
  - ▶ Outmigration not necessarily synchronous
  - upYakima earlier than Naches and American
  - ► Some years with two "waves" of spring outmigration: late Jan-early Feb and then late April/early May
  - ▶ March either no sampling or few fish

# Acknowledgements

- Funding: BPA and Washington State General Fund
- Yakima Nation: Mark Johnston and crew (sampling),
  Dave Lind, Bill Bosch, Doug Neeley, Dave Fast (data and coordination)
- WDFW Laboratory: Jennifer von Bargen, Norm Switzler
- WDFW YKFP Coordination: Todd Pearsons (now Grant Co. PUD), Andrew Murdock, Molly Kelly, John Easterbrooks, Anthony Fritts, Scott Blankenship