Status of the Yakima River Decision Support System, June 2007

By Ken D. Bovee U.S. Geological Survey and Jeff Thomas U.S. Fish and Wildlife Service

Purposes of the YRDSS

• To quantify changes to selected decision variables related to changes in water management in the upper Yakima basin.

 To summarize and display the changes in a concise and easily understood format.

Organization of the YRDSS

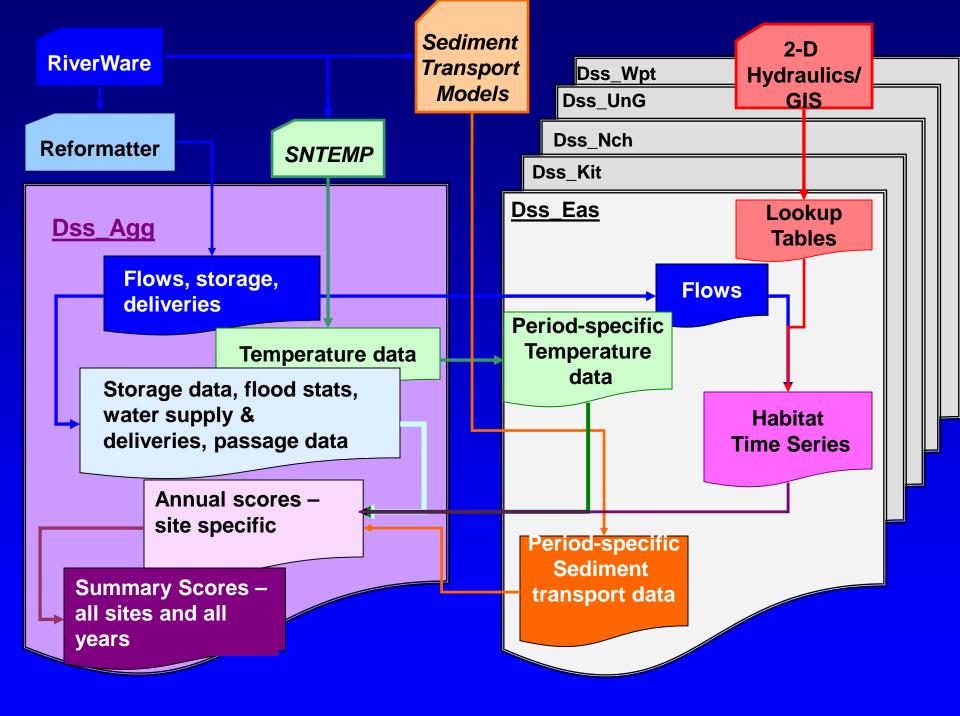
- Principal driver is Bureau of Reclamation systems operation model, RiverWare.
- Output from RiverWare used as input to linked models for other components, or exported directly to YRDSS.
- YRDSS consists of multiple, linked Excel workbooks, automated by Visual Basic macros.

Decision Variables in the YRDSS

- Habitat responses for selected target (fish) species.
- Temperature changes during important biological time windows.
- Water availability and proration rates.
- Reservoir storage and passage for bull trout and smolts from selected reservoirs.
- Overbank flows and potential flood damages.
- Sediment transport.

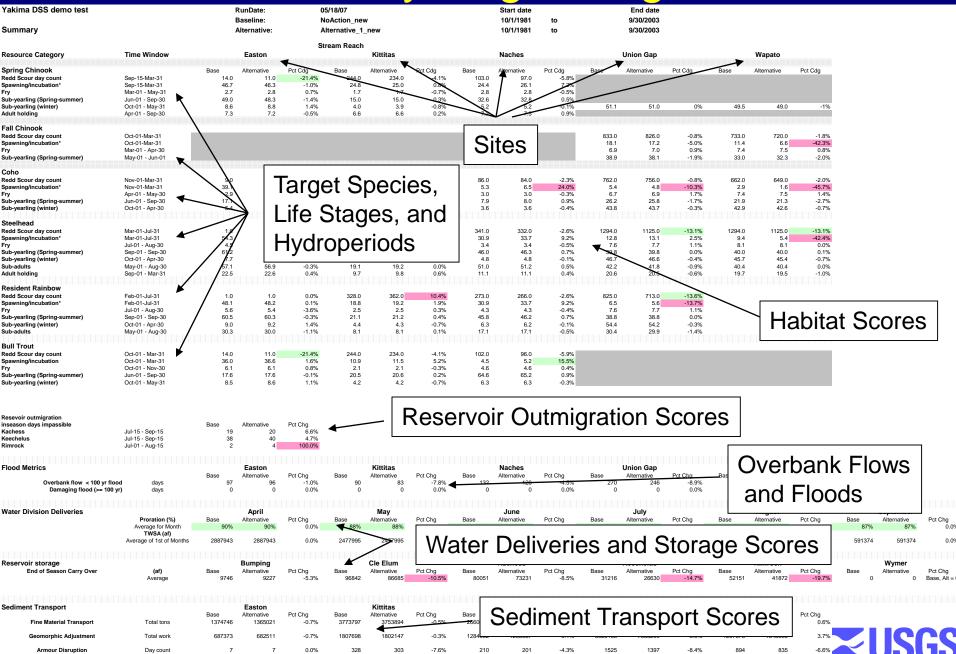
Time series analysis

- All decision variables quantified over a 22 year period of record: WY 1982 – WY 2003.
- Results displayed for each year and summarized for period of record.
- Some variables (e.g., proration rates) displayed monthly.



Information Flow for YRDSS Decision Variables

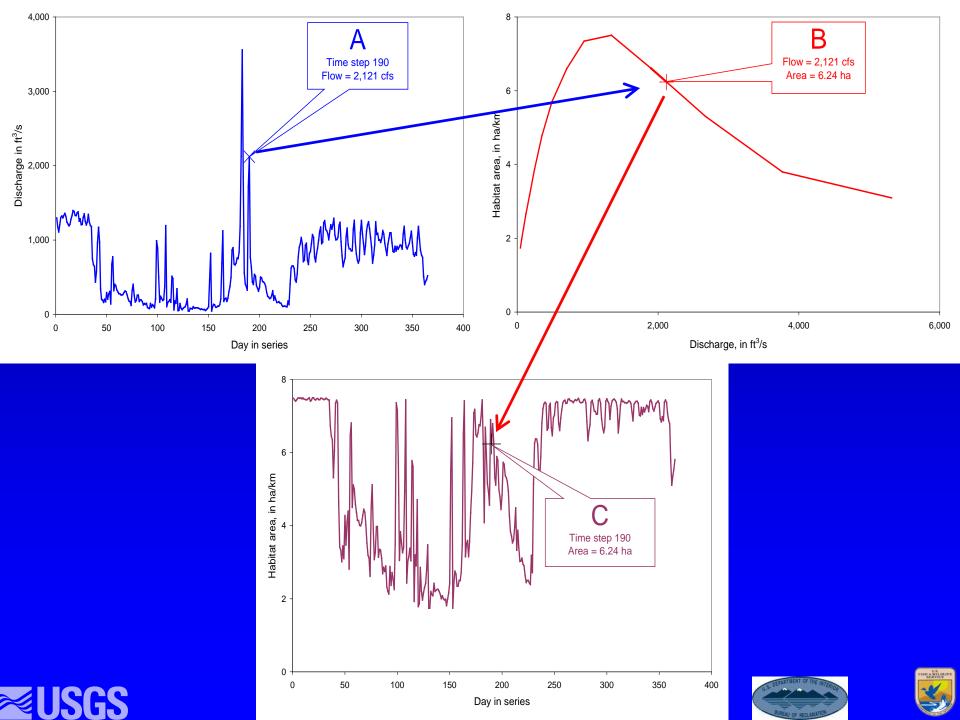
DSS OUTPUTS


- Summary scores pages
- Annual scores pages
- Duration series plots
- Flow and temperature duration curves
- Flow and storage time series plots

YRDSS Summary Page, Illegible Version

Habitat Time Series

- Floodplain reaches Easton, Kittitas, Naches, Union Gap, and Wapato.
- Target species Spring Chinook, Fall Chinook, Coho, Steelhead, Rainbow Trout, Bull Trout.
- Life Stages (variable by species) Spawning and Incubation, Fry, Subyearling (winter and summer), Yearling, Adult.



Derivation of a Habitat Time Series

Derivation of a Habitat Versus Flow Functions

• Hydraulics Simulated Using 2-D Hydrodynamic Models: Range of Discharges = Central 98 Percent of Historic Flows.

• Classifications of Suitable Habitat for Each Life Stage Determined by Delphi Method.

 Hydraulic Characteristics Reclassified as Suitable Habitat by Geographic Information System (ArcGis).

• Areas of Suitable Habitat Determined for Each Flow and Compiled into Lookup Tables.

Example Output from 2-D Hydrodynamic Model – Depth Distribution at Easton with Q = 300 cfs.

Example Output from GIS Reclassification Model – Steelhead Subyearling Habitat Distribution at Easton with Q = 300 cfs.

Habitat type
Steelhead subyear summer
Steelhead subyear winter

Special Case for Spawning and Incubation Habitat

- Habitat Suitability Determined by Suitable Incubation Conditions Persisting in Locations Where Spawning Could Have Occurred.
- Quantified as the Intersection of Suitable Spawning Areas at Q1 and Suitable Incubation Areas at Q2: For All Combinations of Q1 and Q2.
 USGS

Special Case for Spawning and Incubation Habitat

Spawning/Incubation Intersection Map

Persistent habitat

Suitable spawning @ 1100
 Suitable incubation @ 150
 Suitable at both flows

Portion of YRDSS Annual Scores Page For Spring Chinook Habitat at Easton

Spring Chinook	Red	dd Scour	Spawning/incubation			·,	Fry			Sub-yearling (Spring-summer)			Sub-yearling (winter	
Water Year		ernative Pct Chg		Alternative	Pct Chg			Pct Chg				-		
1982	0	0 ise, Alt = 0	52.15	47.80	-8.34%	2.40		7.40%	51.28		1.03%	6.62		
1983	0	0 ise, Alt = 0			-2.02%			1.91%			0.00%			
1984	0	0 ase, Alt = 0	47.48		-4.01%			-1.11%			4.71%			
1985	0	0 ase, Alt = 0	53.26	53.14	-0.23%			0.18%	41.58	42.68	2.66%	11.71	11.77	0.48%
1986	0	0 ase, Alt = 0		56.08	0.26%	2.53		1.29%			-7.81%	8.91	9.09	2.02%
1987	0	0 ase, Alt = 0		53.36	-2.38%			0.08%	42.52		-5.78%	9.71	9.81	1.04%
1988	0	0 ase, Alt = 0			-8.36%			0.06%		_	-2.55%			
1989	0	0 ase, Alt = 0		52.56	-0.72%		3.19	0.25%	58.06		-10.50%	8.00	8.02	0.32%
1990	0	0 ase, Alt = 0			-2.26%			-2.14%			-2.50%			
1991	5	4 -20.00%	15.45		-1.46%			0.31%			-1.45%			
1992	0	0 ase, Alt = 0			-5.28%			8.39%			-3.73%			
1993	0	0 ase, Alt = 0			-3.43%			0.08%			3.45%			
1994	0	0 ase, Alt = 0			0.00%			0.37%			-1.49%			
1995	0	0 ase, Alt = 0			-0.76%			0.05%			0.00%			
1996	2	3 50.00%	15.59		-1.46%			-1.29%		59.57	0.43%			
1997	5	4 -20.00%	20.48		44.63%			2.04%			2.87%			
1998	0	0 ase, Alt = 0			5.02%			-1.34%			2.04%			
1999	0	0 ise, Alt = 0			-0.25%			1.12%			3.15%			
2000	2	0 -100.00%	42.35		-1.78%			0.17%			-2.81%			
2001	0	0 ase, Alt = 0			-0.89%			-1.98%			-2.07%			
2002	0	0 ase, Alt = 0			0.00%			0.59%			1.78%			
2003	0	0 ise, Alt = 0	49.50	49.57	0.14%	2.77	2.77	0.13%	55.06	49.77	-9.61%	10.05	5 10.07	0.23%

Derivation of Temperature Data

- Stream Network Temperature Model (SNTEMP) Designed and Calibrated for Upper Yakima Basin by USGS Washington Water Science Center.
- Daily Flows and Reservoir Releases Input from RiverWare for Baseline and Alternative Operations.
- Scoring Based on Changes in Max/Min During the Hydroperiod Defined for Each Life Stage.

Portion of YRDSS Annual Scores Page For Water Temperatures at Easton

Maximum Temp

Spawning			Incubation			Fry				Sub-yearling (Spring-summer)			Sub-yearling (winter)		
Base	Alternative	Alt - Base	Base	Alternative	Alt - Base	Base	Alternative	Alt - Base	Base	Alternative	Alt - Base	Base	Alternative	Alt - Base	
15	_	-0.24	13	13	-0.21	17	17	-0.28			-0.30				
13		0.96	12	13	0.85	15	17	1.11		-	1.20				
14		0.60	12	13	0.53	16	17	0.70			0.75				
15	_	0.12	13	14	0.11	18	18	0.14			0.15				
13		0.96	12	13	0.84	15	17	1.11	17	-	1.20	15			
14		-1.08	13	12	-0.96	17	15	-1.25			-1.35				
11	12	0.36	10	10	0.32	13	14	0.42			0.45				
12	_	0.12	11	11	0.11	14		0.14			0.15				
14		0.72	12	13	0.64	16	17	0.83		-					
14	_	0.24	12	12	0.21	16	16	0.28			0.30				
13		0.96	11	12	0.85	15	16	1.11	16			15			
12		0.24	10	11	0.21	14	14	0.28			0.30				
13		0.60	12	12	0.53	15	16	0.70							
13		0.96	12	13	0.85	15	17	1.11		-	1.20				
12		0.48	11	11	0.42	14		0.56			0.60				
12		-0.36	10	10	-0.32	14	13	-0.42			-0.45				
11	10	-0.84	10		-0.74	13	12	-0.97							
13		-1.19	12	11	-1.06		14	-1.39		-	-1.50				
14		0.00	13	13	0.00		17	0.00			0.00				
12		0.12	10	10	0.11	14		0.14			0.15				
15		0.24	13	13	0.21	17	18	0.28			0.30				
12	11	-1.08	11	10	-0.96	14	13	-1.25	15	14	-1.35	14	. 13	-1.25	

Overbank Flow and Floods

- Overbank flows considered beneficial, but damaging floods detrimental.
- Overbank flow defined as maximum daily flow with 1.67 year recurrence interval (Default).
- Damaging flood defined as maximum daily flow with 25 year recurrence interval (Default).
- Scoring based on frequency of either under baseline and alternative.

Deliveries and Exports

- Total Water Supply Available (TWSA) and Proration Rates derived directly from RiverWare.
- Scoring based on percentage differences in TWSA and Proration for baseline and alternative, monthly, from April through September.

Sediment Transport (under construction)

- Four aspects considered:
 - Redd Scour
 - Fine Sediment Transport
 - Armour Disruption and
 - Geomorphic Processes.

- Redd Scour Scored as Frequency of Flows During Spawning/Incubation Window, Capable of Moving Redd Substrates.
- Fine Sediment Transport Scored as Difference in Total Mass Transport of Sand and Smaller Sized Sediment.
- Armour Disruption Scored as Frequency of Flows Capable of Mobilizing the Armour Layer.
- Geomorphic Adjustment Scored as Annual Sum of Geomorphic Work Done.

Portion of YRDSS Summary Scores Page For Remaining Decision Variables

Keechelus	Jul-15 - Sep-15 Jul-15 - Sep-15 Jul-01 - Aug-15	Base 19 38 2	Alternative 20 40 4	Pct Chg 6.6% 4.7% 100.0%
Flood Metrics Overbank flow < 100 yr flood Damaging flood (>= 100 yr)	days days	Base 97 0	Easton Alternative 96 0	Pct Chg -1.0% 0.0%
Water Division Deliveries	Proration (%) Average for Month TWSA (af) Average of 1st of Months	Base 90% 2887943	April Alternative 90% 2887943	Pct Chg 0.0% 0.0%
Reservoir storage End of Season Carry Over	(af) Average	Base 9746	Bumping Alternative 9227	Pct Chg -5.3%
Sediment Transport			Easton	
Fine Material Transport	Total tons	Base 1374746	Alternative 1365021	Pct Chg -0.7%
Geomorphic Adjustment	Total work	687373	682511	-0.7%
Armour Disruption	U.S. DEPARTMENT OF THE INTERIOR	7	7	0.0%

BUREAU OF RECLAMAT

Current Status of the YRDSS

 Habitat Maps and Lookup Tables Completed for Easton, Kittitas, Naches, and Union Gap. Wapato Nearly Done.

• Sediment Transport Algorithms Under Development by Reclamation's Denver Technical Center.

• Temperature Model Calibrated and Awaiting RiverWare Results.

• RiverWare Baseline (No Action Case) Completed. Alternatives Including Current Operations, Wymer + Exchange, Wymer only (Two Versions), and Black Rock Under Development.

Future Status of the YRDSS

- Prototype Software and Draft User Documentation to be Completed by September 30, 2007.
- USGS Open-File Report to be Completed in Early FY 2008.
- Expansion of YRDSS to Include Lower River Proposed, but not Currently Funded.

Collaborators and Contributors

• USGS

- -- Fort Collins Science Center
- -- Columbia River Research Laboratory
- -- Washington Water Science Center
- U.S. Fish and Wildlife Service
- Bureau of Reclamation
 - -- Yakima Field Office
 - -- Denver Technical Center

• Special Thanks to Andy Dittman and Darran May, Northwest Fisheries Science Center, NOAA Fisheries, for Providing Information Used to Refine our Spawning Criteria!

