Investigating Factors Influencing CESRF Spring Chinook SAR's

Gabriel M. Temple, Bill Bosch, Curt Knudsen

Yakima Science and Management Conference Central Washington University June 15, 2017

CESRF Smolt-to-Adult Returns

Factors that may influence survival from release to return:

- 1. Proportion of fish that fail to migrate following release
- 2. River discharge during outmigration (\overline{X} and SD-Kiona, March-June)
- 3. McNary Pool Inflow (\overline{X} and SD during May and June)
- 4. John Day Pool Temperatures (\overline{X} and SD, May July)
- 5. Bonneville Dam Temperatures (\overline{X} and SD, May July)
- 6. Travel time (X and SD of days from release to Bonneville)
- 7. Ocean Index (PDO May through September for year of entry from NOAA)
- 8. NOAA's ocean indicator principal component 1 and 2 scores
- 9. River environment upon return (\overline{X} May-June below Bonn. & Kiona)
- 10. Response variable is SAR (ASIN v transformed)
 - a) Verified the SAR time series was not autocorrelated

Step 1:

 Construct simple correlation matrix to see if any individual factor explains significant amounts of variation in SAR's

Factor	r and p	Factor	r and p
HSPC night runs	3950 p=.145	Travel Time Days (ACC Site detection to Bonneville)	6231 p=.013
Kiona X March-June	.3199 p=.245	SDev Travel Time	1998 p=.475
Kiona Flow variation (SDev) March-June	.1466 p=.602	PDO (Sum May-Sept)	3592 p=.189
MCNary inflow X May-June	.1801 p=.521	NOAA PC1 (1st year ocean)	3897 p=.151
McNary SDev of May-June inflow	.1561 p=.579	NOAA PC2 (1st year ocean)	2124 p=.447
Jday \overline{X} pool temp May, June, July	3208 p=.244	NOAA PC1 (2 nd year ocean)	2647 p=.340
Jday pool SDev temps May, Jun, Jul	0082 p=.977	NOAA PC2 (2 nd year ocean)	0224 p=.937
Bonn \overline{X} temp May, Jun, July	381 9 p=.160	$Bonn\overline{X}$ Discharge for adults	3462 p=.206
Bonn SDev temps May, Jun,		NOAA PC2 (1 st year ocean)	1607 p=.567

Travel Time vs. SAR (no Jacks)

Step 2 Partial Least Squares Multiple Regression

Component Number	Increase in R ² of Y						
Component 1	0.335776						
Component 2	0.272947						
Component 3	0.278582						
Component 4	0.039971						
Component 5	0.022071						
Component 6	0.019203						
Component 7	0.011922						
Component 8	0.003957						
Component 9	0.003256						
Component 10	0.009894						
Component 11	0.001509						
Component 12	0.000228						
Component 13	0.000326						
Component 14	0.000359						

Component	HSPC Abundance	Kiona mean March- June	kiona Flow variation(SD) March- June	MCNary inflow avg mayjune	McNarySDof may june inflow	Jday AVG pool temp may jun july	Jday pool SDev temps May Jun Jul	Bonn AVG temp may jun july	Bonn SD temps may jun jul	Travel Time Days	SD Days Travel	PDO (Sum May-Sept)	noaa pc1 (First Year in Ocean)	noaa pc2 (first year in ocean)	noaa pc1 (Second Year in Ocean)	noaa pc2 (Second year in ocean)	Bonn. Discharge during Adult Return	Kiona Discharge during adult return
1	-0.32	0.26	0.12	0.14	0.13	-0.26	-0.01	-0.31	0.00	-0.50	0.16	-0.29	-0.31	-0.17	-0.21	-0.02	-0.28	-0.13
2	-0.36	-0.09	-0.31	-0.31	-0.16	0.12	0.17	0.03	0.12	-0.64	-0.10	0.00	-0.05	-0.18	-0.10	-0.17	-0.28	-0.12
3	-0.47	-0.05	-0.33	-0.27	0.02	-0.03	-0.06	-0.11	-0.13	0.54	-0.18	0.00	0.24	0.19	-0.20	-0.21	0.05	0.25
4	-0.53	-0.13	-0.25	-0.18	0.44	-0.09	0.05	-0.18	-0.02	0.02	-0.08	0.22	0.34	0.17	-0.09	-0.06	-0.38	-0.10
5	0.15	-0.12	-0.16	-0.40	0.42	0.04	0.03	-0.13	-0.13	0.06	-0.31	-0.01	0.00	0.34	-0.25	-0.25	-0.48	-0.03
6	0.16	-0.05	0.00	-0.28	0.54	0.07	0.34	-0.07	0.16	-0.11	-0.21	0.03	-0.01	0.46	-0.11	-0.13	-0.35	0.18
7	0.20	-0.09	-0.13	-0.21	0.44	0.06	0.19	-0.07	0.02	-0.14	0.43	-0.13	-0.02	0.33	-0.23	0.00	-0.43	0.30
8	0.19	0.23	-0.08	-0.20	-0.01	0.01	0.06	-0.10	-0.07	-0.20	0.30	-0.01	0.09	0.60	0.03	0.27	-0.53	0.08
9	0.09	0.40	0.08	-0.40	-0.24	-0.17	0.12	-0.33	0.12	0.09	0.29	0.20	0.05	0.21	-0.05	-0.09	-0.40	0.31
10	0.18	0.29	-0.07	-0.49	-0.14	-0.27	0.09	-0.44	0.11	0.06	0.19	0.15	0.02	0.05	0.15	0.11	-0.33	0.35
11	-0.22	0.38	-0.21	-0.26	0.08	0.19	-0.09	-0.13	-0.05	0.18	0.16	0.08	-0.51	0.14	0.42	-0.09	-0.13	0.29
12	-0.17	0.56	-0.21	-0.28	0.13	0.43	-0.04	0.00	0.04	0.23	-0.04	0.04	-0.23	-0.10	-0.16	0.36	0.00	0.22
13	0.19	0.56	-0.34	0.06	0.24	0.47	-0.17	-0.32	0.21	-0.04	0.07	0.05	0.15	-0.12	0.03	-0.12	0.10	-0.10
14	-0.08	-0.01	0.17	-0.08	-0.01	0.56	-0.37	-0.36	0.40	0.06	-0.02	-0.37	0.21	-0.02	0.13	0.00	-0.09	0.07

Similar Observations

- Weight of evidence suggests getting fish to migrate, and their travel time through the hydro system is important
- Scheuerell et al. 2009 Earlier juvenile outmigrants produce better adult returns
 - Suggest possible management objective-speeding estuary arrival by increasing spring river flow
- Beckman et al. 2017 Smolt quality (e.g. size) and migration rate are influential on SARs
- Larsen et al. 2004 Notes that high incidence of precocious male maturation may result in reduced anadromous adult returns
- Meeting with Jennifer Gosselin and Brian Burke
 - Hydro passage-barging vs run of the river fish survival
 - Take home for me was travel time is important

Some Considerations of Travel Time

Juvenile survival, travel time and the in-river environment

Presenter: Steve Haeseker

Question: Do smolts generally face upstream or downstream as they migrate to sea?

How do reservoirs affect the currents that fish rely on?

Current velocity = 7 miles/hour

How do reservoirs affect the currents that fish rely on?

Current velocity = 0.7 miles/hour

How do reservoirs affect the currents that fish rely on?

Current velocity = 0.7 miles/hour

Looking Forward

- Minimize the number of fish that fail to migrate
 - Which is kind of what is done already e.g., Don/Charlie
- Target water releases (pulsed flows) during periods when lots of smolts are ready
 - Also which is kind of what is done already e.g., MJ/JE
- Many other (apparently less influential) factors are probably out of our control
 - e.g., Columbia River temperature and flow, ocean environment

Food for Thought

- Admit these results not very satisfying
- May be some opportunity to speed migration out of the Yakima via water releases that mimic natural runoff during the outmigration, particularly during drought years
- Power analysis suggests we would have to make pretty some pretty big improvements in SAR's to detect them within a few years
- Continue to investigate things we can manipulate that could lead to increased survival