Comparing The Breeding Success Of First- and Second-Generation Hatchery Spring Chinook

T. W. Kassler

C. Stockton

Cle Elum Supplementation Research Facility

Established in 1997

Built For Two Purposes:

Supplement Upper Yakima
River Spring Chinook

Serve As A Salmon
Supplementation Research
Facility

Spring Chinook Research Questions

Test AlternativeRearing Treatments

Track InadvertentDomestication

(Quantify **Behavioral**, **Physiological & Morphological** Effects Of Hatchery Exposure On Juveniles & Adults)

One Of The Domestication Questions Was:

Does Artificial Culture Cause Genetic Change That Reduces The Breeding Success Of Hatchery Origin Fish?

> If It Does, How Much Occurs Per Generation Of Hatchery Exposure?

Artificial Stream At Cle Elum

Dimensions and Water Flow 127 long x 7.9 m wide Water Velocity 0.1 – 2.0 m/s Discharge 0.37m³/s Mean Depth 0.4 m

Why An Artificial Stream?

Confounding Factors Can Be Controlled

- Physical Environment (Gravel, Water Velocity & Depth)
- Fish (No., Type, Maturation, Condition, Entrance Timing)
- DNA (All Adults & Subsample Of Fry)
- **Behavior** (Correlate Individual Behavior with Fish Origin & Breeding Success)

Types of Fish Used

 Hatchery: First-Generation, Derived From Native Upper Yakima River Spring Chinook (Local Stock)

 Hatchery: Second-Generation ,
Derived From The Hatchery Control Line Established At The CESRF

Prior To Placement, Each Fish Was:

And, A Small Bit Of Fin Material Was Removed For Later DNA Extraction

They Were Then Released Into The Stream & Spawned Under Quasi-Natural Conditions

Behavioral Observations

Four-Minute Focused Observations

Population Date Time Fish Location Agonistic Behavior Courting Behavior Color Pattern

• Each Fish Was Watched One Or More Times Per Day By Multiple Observers

Experimental Approach

Create Homogenous
Populations Of First- &
Second Generation Hatchery
Fish In The Artificial Stream

Allow The Fish To Spawn
Naturally

Compare Their Behavior
& Offspring Production

Traits Examined

- Spawning Ground Longevity
- Size At Maturation
- Fecundity
 - Behavior Agonistic Courting
- Egg-to-Fry Survival Rate
- Fry Production

Spawning Ground Longevity Spring Chinook

Spawning Ground Longevity (hrs)

Female Wt vs. Fry Production In Naturally Spawning Upper Yakima River Spring Chinook

Attack Frequency vs. Breeding Success Male Spring Chinook Salmon

Courting Frequency vs. Breeding Success Spring Chinook

Mean Courting Activities Per Min

Spawning Ground Longevity

Size At Maturation

Mean Fecundity Of Females Placed Into The Artificial Stream

2006

2008

2009

Statistical Approach **3-Factor Mixed Nested ANOVA** Fixed: Fish Type; 1st & 2nd Generation Hatchery Adults

Random: Year, Location Of Population In The Artificial Stream

Response Variables: • Attack Frequency

- Courting & Digging Frequencies
- % Egg Deposition
- Egg-to-Fry Survival
- Fry Production

(In This Design Hatchery Environmental Effects Are Held Constant)

Analytical Goals

Determine The % Of Variation Associated With Each Trait That Can Be Explained By:

> **Fish Type**: 1ST & 2nd Generation Hatchery Fish

Year: 2006, 08, & 09

Artificial Stream Location

				We kee us	ABE			in	soft of
	Year	rs N	0.	Type Of Population			A. S. S.	1. 1.	
	3	1	4 1 ⁸	1 st - Generation Hatchery Fish		1 100	Pro A		
		1	4 2	2 nd - Generation Hatchery Fish					
	Year	Females	Males	No. Pops	Nui	nber In Each			Ser La
	2006	36	36	6 1 0 ps	6 Fen	nales & 6 Males			
*****	2008	40	40	10	4 Fen	nales & 4 Males		Contraction of the second	
	2009	48	48	12	4 Fen	nales & 4 Males			
	Totals	124	124	28				S.	
		N	linute Obser	s Of Fish vations	1717 171 14 14 4000. L	25,424			
		EL A					and the second second		
	Yr	No.	Of	Fry Assi	gned	% Of	the state of the	ST PAR	
		Fry	1	To Par	ents	Population	5 M	VIII CAL	
AND IN STORE	2006	74,3	33	2,79	1	3.8%			
	2008	16,1	61	2,45	9	15.2%			10
A Star	2009	66,92	35	2,87	4	4.3%	and the second	Carlos and	
							n r	ALC N	Re min

Attack Frequency Males

MALE ATTACKS/MIN			
	Hatchery Generation		
Year	First	Second	
2006	1.1	1.2	
2008	0.5	0.6	
2009	0.4	0.3	

		% Of
Source	P value	Variation
Male Type	0.902	0.0
Year	< 0.001	17.7
Location	1.000	0.0
Within		82.3

Attack Frequency Females

FEMALE ATTACKS/MIN			
	Hatchery Generation		
Year	First	Second	
2006	0.51	0.50	
2008	0.25	0.27	
2009	0.20	0.14	

Source	P value	% Of Variation
Female Type	0.887	0.0
Year	< 0.001	27.4
Location	0.675	0.0
Within		72.6

Male Courting Frequency

MALE COURTING FREQUENCY			
	Hatchery Generation		
Year	First	Second	
2006	0.19	0.10	
2008	0.19	0.13	
2009	0.16	0.11	

Source	P value	% Of Variation
Male Type	0.070	2.6
Year	0.492	0.0
Location	0.994	0.0
Within		97.4

Digging Frequency

FEMALE DIGGING FREQUENCY			
	Hatchery Generation		
Year	First Second		
2006	0.63	0.45	
2008	0.58	0.38	
2009	0.41	0.39	

Source	P value	% Of Variation
Female Type	0.192	2.3
Year	0.394	0.4
Location	0.623	
Within		

% Spawned

% SPAWNED			
	Hatchery Generation		
Year	First	Second	
2006	86.8	84.8	
2008	60.6	64.6	
2009	73.5	77.6	

Source	P value	% Of Variation
Female Type	0.880	0.0
Year	0.168	3.3
Location	0.710	0.0
Within		96.7

Fecundity To Fry

FECUNDITI IUFKI			
	Hatchery Generation		
Year	First	Second	
2006	77 7	87.2	
2000	//./	07.2	
2008	6.3	9.7	
2009	49.1	47.7	

EECIMDITY TO EDV

Source	P value	% Of Variation
Female Type	0.917	0.0
Year	< 0.001	53.3
Location	0.868	0.0
Within		46.7

Fry Per Female

FRY PER FEMALE			
	Hatchery Generation		
Year	First	Second	
2006	1835	2582	
2008	346	462	
2009	1709	1553	

Source	P value	% Of Variation
Female Type	0.901	0.0
Year	< 0.001	48.3
Location	0.664	0.0
Within		51.7

Conclusions

When Time and Breeding Location Were
Controlled No Significant Genetic Differences
Were Detected Between 1st & 2nd Generation
Hatchery Spring Chinook

Currently Comparing Similar Traits Between
1st & 3rd Generation Hatchery Spring Chinook