"Genetic monitoring of sockeye salmon reintroduction in Cle Elum Lake: evaluating relative productivity among two donor stocks"

Andrew P. Matala, Peter Galbreath
Columbia River Inter-Tribal Fish Commission
Brian Saluskin, Mark Johnston
The Confederated Tribes and Bands of the Yakama Nation

Background: reintroduction

Cle Elum Lake:

Reintroduction site
> Donor stocks: Upper Columbia River from The Wenatchee River \& Okanogan River systems
> Collected at Tumwater Dam and Wells Dam for baseline
> Outplants collected at Priest Rapids dam, downstream of both locations of origin
> Proportions among outplants for reintroduction are unknown

Sampling \& Analysis to date

$>$ An O. nerka reference baseline: - includes Wenatchee River stock and Okanogan River stock
$>$ PRD outplant random sample: - 2011 ($n=275$), and 2012 ($n=849$)
> Outmigrating juvenile collections: - 2012 Chandler trap ($n=196$), and Roza ($n=7$)
> Carcass collections: - $1^{\text {st }}$ spawn run $2011(n=38)$

- $2^{\text {nd }}$ spawn run 2011 ($n=23$)
- $1^{\text {st }}$ spawn run $2012(n=29)$
$>$ Putative adult "strays" sampled at Roza: - sampled 2009, 2010 \& $2012(\mathrm{n}=207)$

Genetic structure: Columbia-wide perspective

Three dimensional scatter plot of PCA Eigen Vectors - (Kamakura@duke.edu)

Background: factors of distinction

Two Methods To Estimate Stock Proportions

1. Bayesian cluster analysis: STRUCTURE v.2.3.4
$>$ For each individual, determine "membership" in two inferred populations

Example: Individual \#10
~70\% (population \#1)
~30\% (population \#2)
2. Genetic Stock Identification (GSI): ONCOR
$>$ test assignment accuracy for reference baseline using simulation.....then,
$>$ assign origin of "unknown" sample using maximum likelihood

Testing Reference Populations: Baseline

Wells Dam (Okanogan); n=212

baseline analysis: Method Concordance

	structure mean			ONCOR	
collection	(n)	WE	OK	100% sim.	STD
					$1.00(\mathrm{WE})$
Wenatchee_2012	92	0.98	0.02		0.0004
Tumwater Dam 2004	97	0.98	0.02	$1.00(\mathrm{WE})$	0.0000
Tumwater Dam 2005	155	0.98	0.02	$1.00(\mathrm{WE})$	0.0000
Wells Dam 2004	91	0.02	0.98	$1.00(\mathrm{OK})$	0.0003
Wells Dam 2005	121	0.03	0.97		$1.00(\mathrm{OK})$
					0.0000

basically the rate of self-assignment

Estimates for Sockeye Reintroduction

\square Wenatchee-"like"
\square Okanogan-"like"

PRD outplants 2011 ($\mathrm{n}=275$)

PRD outplants 2012 ($\mathrm{n}=849$)

Estimates for Sockeye Reintroduction

\square Wenatchee-"like"
\square Okanogan-"like"

Carcass: only 31 of 90 recovered

Estimates for Sockeye Reintroduction

Roza adults (stray)

> Some of these may be jacks (?), OR fish that left the lake through the dam (?) Wenatchee population exhibits low frequency of 3 -year old fish (Gustafson et al. 1997)

In Summary

GSI (ONCOR)

collection	(n)	stock proportions		mean Prob.	
		WE	OK	WE	OK
Cle Elum Reintroduction					
Priest outplants 2011	275	0.25	0.75	1.00	1.00
Priest outplants 2012	849	0.16	0.84	1.00	1.00
Carcass (early)	20	0.00	1.00	---	1.00
Carcass (late)	11	1.00	0.00	1.00	---
Chandler Trap juveniles	196	0.84	0.16	1.00	0.99
strays					
Roza adults (2009)	18	0.06	0.94	1.00	1.00
Roza adults (2010)	41	0.00	1.00	---	1.00
Roza adults (2012)	155	0.06	0.94	1.00	1.00

> Stock proportions observed among juveniles seem to complement carcass results: very few hybrids (OK x WE) = temporally differentiated spawning times (?)
> Need to validate potential temporal differentiation in spawning time: timing contrary to populations of origin (i.e., Wenatchee-type later spawning)

In Summary: Questions to explore

> Outplants predominantly of Okanogan (OK) origin
> Outmigrating smolts predominantly of Wenatchee (WE) origin, sampled in only a few days (?) Is this representative of total outmigration (?), and indicative of higher productivity (?)
> Wenatchee stock essentially not present among sampled strays (?) Outplants didn't volitionally enter the Yakima, how will their progeny behave (?)

Okanogan

Goals for future genetic monitoring......

\Rightarrow MORE $ص$

> Continued carcass sampling: focus on fresher morts, spatial distributions, sample dates
> Continued juvenile sampling: focus on temporal distributions (protracted sampling)
> Continued outplant sampling: stock proportions

And the meat \& potatoes

$>$ Evaluate returning adult progeny arising from reintroduction efforts - stock proportions and/or hybrids

- second generation productivity

Acknowledgements

Mark Johnston, YN field technical staff,

Yakama Nation Fisheries Roza and Chandler technical staff

Supplementation ACCORDS project

- (Peter calbreath)

Nick Hoffman: Laboratory Iechnician Shawn Narum: Lead Geneticist

