Physiology and precocious male maturation of Yakima River spring Chinook salmon

Don Larsen
Paul Parkins
Brian Beckman
Kathy Cooper
Walt Dickhoff

NOAA Fisheries

Charles Strom Mark Johnston Dave Fast

Yakama Nation Fisheries

In Cooperation With

Charles Strom + staff

Cle Elum Supplementation and Research Facility (Yakama Nation)

Dave Fast Mark Johnston + staff Yakama Nation

Craig Busack Steve Schroder Todd Pearsons + staff Washington Department of Fish and Wildlife

Curt Knudsen

Oncorh Consulting

Ray Brunson Joy Evered Chris Paterson Sonia Mumford US Fish and Wildlife Service

Contract #2002-032

Bonneville Power Administration

Variation in Age of Male Maturity

Mature male salmon

Factors Affecting Age of Maturation

- ✓ Genetics
- ✓ Environment
 - temperature
 - food availability_
 - food quality

Annual Critical Periods When Growth Affects Puberty Onset

Silverstein et al. 1998, CAFS Shearer and Swanson 2000, Aqua. Campbell et al. 2000, Biol. Repr. Shearer et al. submitted, TAFS

On average 25% of all fish (50% of males) are minijacks in Yakima hatchery spring Chinook

Brood Year	Release #	% of all fish	<u># Minijacks</u>
97	386,048	22%	84,931
98	589,683	36%	211,107
99	758,789	25%	189,697
00	834,285	18%	153,508
01	370,236	<u>26%</u>	95,520
		Avg. 25%	

Larsen et al.(2004) Trans. Am. Fish. Soc.

Identification of precocious males by gross morphology

Laboratory based studies have clearly established that both GSI and 11-ketotestosterone (11-KT) are significantly elevated in precocious males approximately 9 months prior to maturation

11-ketotestosterone vs. GSI (Brood Yr. 00)

1+ Age Spring Chinook Salmon: April Non Maturing Maturing

Plasma 11-KT = 0.2 ng/ml GSI = 0.02%

Plasma 11-KT = 7.0 ng/ml GSI = 0.2%

Consequences of high levels of precocious maturation

- Ecological impacts
- Genetic impacts leakage of HH Control genes in to supplemented stock (?)
- Increased straying (?)
- Skewed sex ratio (?)
- Loss of adult production

Objectives

- Design and conduct experiments aimed at controlling precocious male maturation and improving smolt quality
- Assist Yakima Program in conducting production scale experiments to control precocious male maturation rates and improve smolt quality
- Monitor the precocious maturation rate of the Cle Elum Hatchery spring Chinook population
- 4. Estimate the precocious maturation rate of wild Yakima Spring Chinook

1. Design and conduct experiments aimed at controlling precocious male maturation

Minijack Reduction Experiment I (BY 2001)

Monitor

- Size
- Growth rate
- Gill Na+/K+-ATPase (index of smolting)
- Plasma IGF-I (growth regulating hormone)
- Condition Factor
- Whole body lipid

Experimental, production, and wild fish grew and 30_ precociously matured at different rates

2. Assist Yakima Program in conducting production scale experiments to control precocious male maturation rates and improve smolt quality

BY 2002 Cle Elum Production Experiment

BY 2002 Cle Elum Production Experiment

- Alter ration to produce High (30 fish/lb.) and Low (45 fish/lb.) growth groups by mid-October start of tagging.
- Differentially tag treatment groups to monitor juvenile and adult survival
- In spring feed both groups equivalent ration as % of body weight
- Volitional emigration from acclimation sites starting mid-March

Minijack Rate Cle Elum Stock BY 2002 (sampled '04)

Minijack Rate Cle Elum Stock BY 2003 (sampled '05)

Release size of BY '02 and '03 Cle Elum Spring Chinook

	<u>High Growth</u> Growth	<u>Low</u>
BY '02	<u> </u>	
BY '03	15.6 g	11.7 g
	19.1 g	13.6 g

Potential Explanations:

Sampling error Year-to-year population variation Genetic influence 4. Estimate the precocious maturation rate of wild Yakima Spring Chinook

The Yakima River

Wild minijack rates at Roza in 2004 ranged from 11-22% of males

Wild Minijack estimates at Roza Dam BY 2003 (sampled in '05)

Wild Minijack Estimates BY 01-03

BY 01

3-13%

BY 02

11-22%

BY 03

19%

The Yakima River

BY 03 Hatchery and Wild Fish - Prosser Dam 2005

Objectives

 Design and conduct experiments aimed at controlling precocious male maturation and improving smolt quality

3. Assist Ya g production scale exp ious male maturatio

5. Monitor the Cle Elum Hat

7. Estimate the precocious maturation rate of wild Yakima Spring Chinook

Variation in Age of Male Maturity

Mature male salmon

Factors Affecting Age of Maturity

- ✓ Genetics
- ✓ Environment
 - temperature
 - food availability_
 - food quality

Minijack Reduction Experiment II (BY 2003)

Monitor

- Size
- Gill Na+/K+-ATPase (index of smolting)
- Plasma IGF-I (growth regulating hormone)
- Condition Factor
- Whole body lipid

Brood Year 2003 Minijack Reduction Experiment Preliminary results

Annual Critical Periods When Growth Affects Puberty Onset

Precocious Parr age-1

Future Investigations

How prevalent is precocious male maturation in other Columbia Basin spring Chinook salmon populations?

Thanks to Joy Evered-USFWS, Olympia
Dan Davies-Leavenworth National Fish Hatchery
Bill Edwards-Entiat National Fish Hatchery
Chris Pasley-Winthrop National Fish Hatchery

Preliminary Data 2005

<u>BY</u> Cle Elum Hatchery 97-01		"High growth"	<u>%minijacks</u> 37-53%	
	02	High growth Low growth	43% 27%	15.6g 11.7g
	03	High growth Low growth	27% 13%	18.3g 11.5g
Carson Stock	03	Leavenworth Entiat Winthrop	9% 13% 17%	26.4g 27.1g 25.3g

Conclusions

- Rates of precocious male maturation vary annually in both wild and hatchery stocks
- Growth modulation clearly alters maturation rates and life-history composition of populations
- Emergence time and initial growth significantly influences prevalence of precocious parr
- Minijacks are ubiquitous even in stocks cultured for decades
- Localized broodstocks (i.e. wild) may be particularly susceptible to high rates of precocious maturation under optimal growing conditions of the hatchery environment

GSI and 11-KT levels indicate maturity onset at least 8 mos. Prior to spawning

