Nutrient Limitation in Swauk Creek River Basin

Swauk Creek

West Fork Iron Creek

Purpose

Identify if Creeks are nutrient limited

- If limited, identify the limiting nutrients
- Changing nutrient limitation patterns
 - Summer vs. Fall

Management implications for salmon restoration

Previous research knowledge

- Nutrient concentrations control stream food web productivity
 - Nitrogen
 - Phosphorus

Primary production = organic matter produced
Photosynthesis by autotrophs (algae and plants)
Respiration = total consumption of organic matter
Autotrophs and heterotrophs (bacteria and fungi)

Goals and Objectives

- Determine whether Nitrogen and/or Phosphorus limits autotrophic and/or heterotrophic biofilms
- Compare nutrient limitation status among streams to determine the relative importance of regional and local influence

Design and Data collection

Design and Data collection

Study Area

Characterize the Streams

Discharge

Canopy Coverage

• Leaf Litter

• Temperature

Chemistry of the streams

Discharge

Canopy coverage

Leaf Litter

Results

 Streams had more algal biomass in the summer compared to the fall (2-way ANOVA, p=0.031)

Iron Creek

Iron Creek (Summer)Chl a

Iron Creek (Summer) CR

Hovey Creek

Hovey Creek (Fall) CR

Hovey Creek (Summer) CR

Conclusion

- Limitation is co-limited by nitrogen and phosphorous
- Influence the management of Swauk Creek Basin for salmon habitat restoration and improved watershed conditions
- Future sampling and testing needed
- Larger samples

Acknowledgments Many thanks to CWU Undergraduate Research Grant and Mid Columbia Fisheries Enhancement Group who made this research possible.

Sources

- Ambrose H.E., Wilzbach M.A. & Cummins K.W. 2004. Periphyton response to increased light and salmon carcass introduction in northern California streams. Journal of the North American Benthological Society 23:701–712.
- Elwood, J. W., J. D. Newbold, R. V. O'Neil, R. W. Stark, and P. T. Singley. 1981. The role of microbes associated with organic and inorganic substrates in phosphorus spiraling in a woodland stream. Int. Ver. Theor. Angew. Limnol. Verh. 21:850-856.
- Gresh T., Lichatowich J. & Schoonmaker P. 2000. An estimation of historic and current levels of salmon production in the Northeast Pacific Ecosystem: evidence of a nutrient deficit in the freshwater systems of the Pacific Northwest. Fisheries 25:15–21.
- Grimm, N.B. and S.G. Fisher. 1986. Nitrogen limitation in a Sonoram Desert stream. Journal of the North American Benthological Society 5:2-15.
- Haring, Donald. 2001. Habitat Limiting Factors: Yakima River Watershed, Water Resource Inventory Areas 37-39. Final Report. Washington State Conservation Commission.
- Hicks B.J., Wipfli M.S., Lang D.W. & Lang M.E. (2005) Marine-derived nitrogen and carbon in fresh water riparian food webs of the Copper River Delta, south central Alaska. Oecologia 144:558–569.
- Kline T.C., Goering J.J., Mathisen O.A., Poe P.H. & Parker P.L. 1990. Recycling of elements transported upstream by runs of Pacific salmon: I. d¹⁵N and d¹³C evidence in Sashin Creek, southeastern Alaska. Canadian Journal of Fisheries and Aquatic Sciences 47:136–144.
- Larkin G.A. & Slaney P.A. 1997. Implications of trends in marine-derived nutrient flux to south coastal British Columbia salmonid Phase I Assessment Report, Storage Dam Fish Passage Study, Yakima Project, Washington. 2005. Technical Series No. PN-YDFP-001. Bureau of Reclamation. Boise, ID.
- Suberkropp, K., and E. Chauvet 1995. Regulation of leaf breakdown by fungi in streams—Influences of water chemistry. Ecology 76:1433– 1445.
- Tank, J.L. and W.K. Dodds. 2003. Nutrient limitation of epilithic and epixylic biofilms in then North American streams. Freshwater Biology 48:1031-1049.
- Webster, J.R., and T.P. Ehrman. 1996. Solute dynamics, p. 145-160. In F.R. Hauer and G.A. Lamberti [eds.], Methods in stream ecology. Wipfli M.S., Hudson J.P., Caouette J.P. & Chaloner D.T. 2003. Marine subsidies in freshwater
- ecosystems: salmon carcasses increase the growth rates of stream resident salmonids. Transactions of the American Fisheries Society 132:371–381.
- Zar, J.H. 1999. Biostatistical Analysis. 4th ed. Prentice Hall, New Jersey.

Questions?