Trends in Demographic and Phenotypic Traits of Hatchery- and Natural-Origin Upper Yakima River Spring Chinook Salmon

C. M. Knudsen ${ }^{1}$, W. J. Bosch ${ }^{2}$, S. L. Schroder ${ }^{3}$, A. Fritts ${ }^{3}$, M. V. Johnston ${ }^{2}$, and D. E. Fast²
${ }^{1}$ Oncorh Consulting
${ }^{2}$ Yakama Nation
${ }^{3}$ Washington Department of Fish and Wildlife

Objectives

- How has the mean size-at-maturity of UY natural and hatchery populations changed over time relative to Naches wild control?
- Has the proportion of natural or hatchery origin jacks changed over time?
- Does the proportion of jacks naturally spawning or used as broodstock influence future jack production?
- Does the sex composition of natural and hatchery populations differ?
- Has mean natural and hatchery origin egg size changed over time?
- Do PIT and non-PIT SARs still differ?

Definitions

- Natural Origin (NO)- progeny of naturally spawning parents. Parents could be natural or hatchery origin.
- Hatchery Origin
- Supplementation Hatchery (SH) Origin - Parental broodstock of natural origin only, one generation of domestication. Supplement naturally spawning population, integrated population.
- Hatchery Control (HC) Origin - Parental broodstock of hatchery origin only. Multiple generations of domestication. Are not allowed to naturally spawn, segregated hatchery population.
- Wild Control - Naches population

The YKFP spring chinook hatchery program was designed to minimize domestication effects

- use only natural-origin broodstock
- take no more than 50% of the NO returns into the hatchery
- utilize factorial crosses during artificial matings
- limit the proportion of NO jacks in the broodstock Mean $=12.7 \%$ (range 6.0 - 29.2)
- randomly mate individuals
- use "best culture practices" such as low rearing densities
- volitionally release juveniles at sizes larger than, but comparable to, wild-origin smolts

Yearling Smolt Fork Length at Chandler 2006 (BY2004)
 (LOWESS trend lines shown)

Yearling Smolt Fork Length at Chandler 2007 (BY2005)

Roza Dam Adult Monitoring Facility

Trends In Traits Over Broodyears

Age 3 Jacks

Linear Trends in Length - Age 3

Regression (SH and NO) $\mathbf{r}^{2}>0.48, \mathbf{p}<0.02$ ANCOVA
Equal slopes $\mathbf{p}=0.565$

Jack Size-at-Age

- Age 3 jacks have significantly increased in size over time in both hatchery and natural origin UY populations at the same rate (cm/yr)
- NO jacks are significantly larger than SH jacks and have been since the first generation of hatchery jack production
- Yet, SH smolts are equal to or larger than NO smolts, typically leading to larger size-at-age but younger age-at-maturation

Trends in Length - NO, Naches Age 4

Linear Trends in Length - Age 4

Age 4 Size-at-Age

- While differing in mean size, Naches (a true wild control population) and U Yakima NO age 4 fish exhibited the same lack of trend in size over time
- SH origin population also showed no significant trend over time, but is converging on the NO population
- No apparent negative effect (decrease in mean size) on NO fish despite 56% of naturally spawning fish are hatchery origin on average

Gender Identification

- From 1997 to 2009 we estimated gender ratios from fish collected at RAMF and then taken to CESRF and held to maturity
- All adipose fin clipped fish were inspected and gender identified visually, but errors were approximately 20-30\% for males and 10\% for females
- Beginning in 2010, an ultrasound device (Honda HS-101V) was used on all fish passing RAMF increasing genderspecific data by more than an order of magnitude

Sampling At Roza Adult Trap

Sampling At Roza Adult Trap

28 seconds total time, ~1 second gender ID

Checked for ad clip, elastomer and CWT tags Weighed and measured POHP and FL Identified gender
PIT tagged
DNA sampled

Gender Identification 2010

- There were a total of 624 fish classified to gender using ultrasound and then held to maturity at CESRF
- 621 (99.5\%) were corrected classified
- All 9,749 fish passing RAMF were classified to gender in 2010

Gender Comparison BY2006 (Ages 3 and 4)

Gender Comparison BY2006 (Age 4 only)

Female
\square HC ($\mathrm{n}=743$)
$\mathbb{V} \mathbf{S H}(\mathbf{n}=5774)$

- NO (n=2734)

Pearson $X^{2}=5.21, \mathrm{df}=2, \mathrm{p}=0.074$

Male

Gender

Why aren't the F:M ratios of age 4

hatchery fish skewed toward females

more than Natural Origin fish?

- BY 2006 had 40-54\% minijack production in SH and HC males
- BY2006 SH and HC jack production was $\sim 50 \%$ greater than NO fish (36\% vs 22\%)
- Yet, there was $<3 \%$ difference in the proportion of adult age 4 females and males and no significant difference even with very large sample sizes
- More work is needed to understand this issue
- What are wild precocious male production rates?
- Compare Female recruits/Female spawner rates

Trends In Jack BY Proportions

UpYak NO Δ Hat Control o Supp. Hatch \square

Broodyear 2006 (RY 2009) was significantly higher for both NO and SH populations.

UpYak NO Δ Hat Control o Supp. Hatch \square

Broodyear 2006 (RY 2009) was significantly higher for both NO and SH populations.

Proportion Age 3 Jacks Over Time

Proportion Age 3 Jacks Over Time

Proportion Age 3 Jacks Over Time

Proportion Jacks Spawned vs Proportion Jacks Produced

Proportion Naturally Spawning Jacks (Return Year)

Proportion Jacks Spawned vs Proportion Jacks Produced

Prop. jacks produced (Brood year)

Hatchery Origin Jacks (Δ) BY = 0.253-(0.415(RY))
$R^{2}=0.302, p=0.100, n=10$
0.1
0.2
0.3
0.4
0.5

Proportion Jacks Broodstock (Return Year)

Linear Trends in Spawn Timing

Linear Trends in Spawn Timing

Regression $\mathbf{R}^{2}<0.16, \mathrm{p}>0.17$

ANCOVA
Equal slopes $\mathbf{p}=\mathbf{0 . 8 7 2}$
Nach<NO Hat=NO R

Linear Trends in Spawn Timing

Trends In Egg Size (Mass)

Trends In Egg Size (Mass)

Estimated Fry Mass 2010

400
Due to combination of larger HC eggs and Greater "Fry body mass/mg egg mass"

Comparison of PIT vs Non-PIT SARs

- 1997-2001 broods mean PIT tag loss = 18.4 \% (17.2\% -19.5\%)
- Mean PIT tag induced mortality = 10\%
- What's happened since then (2002-2006 broods)?

Comparison of PIT vs Non-PIT SARs

Brood Year	PIT SAR	PIT SAR corrected	Non-PIT SAR	Ratio corrected PIT/Non-PIT SAR
1997	1.50%	1.84%	1.81%	1.015
1998	1.06%	1.30%	1.31%	0.994
1999	0.06%	0.07%	0.11%	0.694
2000	0.40%	0.49%	0.48%	1.027
2001	0.22%	0.27%	0.32%	0.839
2002	0.25%	0.31%	0.28%	1.103
2003	0.08%	0.10%	0.21%	0.456
2004	0.34%	0.42%	0.61%	0.687
2005	0.35%	0.43%	0.79%	0.544
2006	1.16%	1.42%	1.42%	1.001

Conclusions - Size-at-age Jacks

- Age 3 SH and HC jacks were significantly smaller than NO fish, but all populations were increasing in size over time at the same rate.
- SH and HC jacks NS difference in size most years.
- Unable to use age 3 Naches to compare to UY fish to show and compare trends over time due to low sample sizes.

Conclusions - Size-at-age Age 4

- Age 4 Naches and UY NO fish show the same trends over time indicating that naturally spawning SH fish have not impacted NO size-at-age.
- Age 4 populations did not increase significantly in size over time, but SH and HC fish are now closer in size to NO fish, though still significantly smaller.

Conclusions - Jack Production Trends

- Hatchery jack production is significantly greater than NO jack production (11\% vs 23\% before BY2006)
- Jack production increased significantly in BY2006 in both SH and NO fish
- Perhaps due to the increasing size-at-age of jacks which is likely driven by marine environmental conditions

Conclusions - Gender Differences

- When all ages are analyzed, hatchery origin fish have a significantly higher proportion of males than NO fish
- If just age 4 fish are examined (which make up 70-95\% of a cohort on average) there is no significant difference between NO, SH and HC gender proportions
- More work needed here

Conclusions - Effects of Spawning Jacks

- The proportion of SH males maturing as jacks was not significantly effected by the proportion of jacks naturally spawning (range 3\% to 50\%)
- The proportion of NO males maturing as jacks was not significantly effected by the proportion of NO jacks used as broodstock (range 3\% to 29\%)
- Managing the proportion of jacks naturally spawning or in broodstock is not likely to have significant effects on subsequent jack production in UY spring Chinook salmon
- These results do not necessarily hold for other spring or fall Chinook populations

Conclusions - Other

- In recent years HC and SH egg mass has been larger than NO egg mass
- In 2010 HC fry were 15% larger than NO fry due to larger eggs and higher Egg Mass-to-Fry Mass conversion rate
- Spawn timing of hatchery fish at CESRF was significantly earlier than NO fish, but no population showed significant temporal trends
- PIT tagged SARs were significantly lower than NonPIT tagged SARs in 5 of 10 brood years

Acknowledgements

- Yakama Nation Roza Adult Monitoring Facility Crew
- Cle Elum Supplementation Research Facility Crew
- WDFW Ecological Interactions Crew
- Bonneville Power Administration for providing funding through the Yakima/Klickitat Fishery Project Monitoring and Evaluation Program

