The Breeding Success of First- and Third-Generation Hatchery Spring Chinook Salmon Spawning in an Artificial Stream

S.L. Schroder C.M. Knudsen

T.W. Kassler

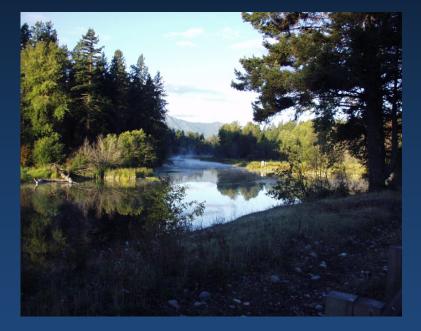
E.P. Beall

C.A. Stockton

• Does continued exposure to artificial culture lead to genetic changes that decrease the ability of hatchery origin salmonids to spawn and produce offspring under natural conditions?

Operational Definition Of Supplementation

Wild Fish To Hatchery 1st Generation Hatchery Adults To The Wild NORs From 1st Generation Hatchery Parents



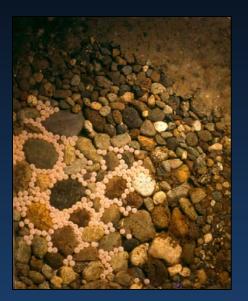
Is A > B?

Key Assumption Of Supplementation: Hatchery-Origin Fish Are Reproductively Competent When Allowed To Spawn Under Natural Conditions

Photo: Oceanmdx www.skyscrapercity.com

Wild and Hatchery Salmon Experience Profound Environmental Differences

Reproduction



Artificial Reproduction

Incubation

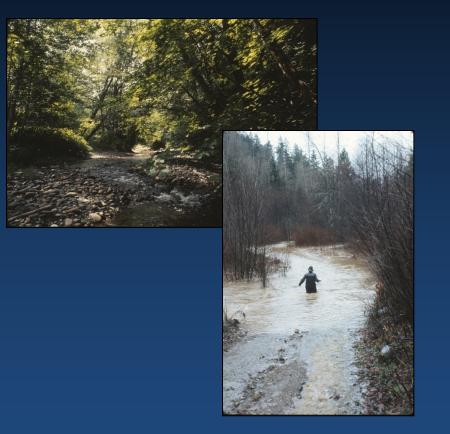
FACTOR Density Substrate Water Flow Light Level Natural Foods Temperature Regimes Volitional Emergence

NATURAL

Low Gravel Low None Present Variable Yes

HATCHERYHighUsually PlasticHighLow to ModerateNot PresentConstant to VariableUsually No

Rearing Conditions



FACTOR
Density:
Habitat:
Food:
Predators:
Flow:
Movement:

NATURAL Low Complex Diverse Present Variable Volitional

HATCHERY High Simple Uniform Absent Low & Constant Constrained

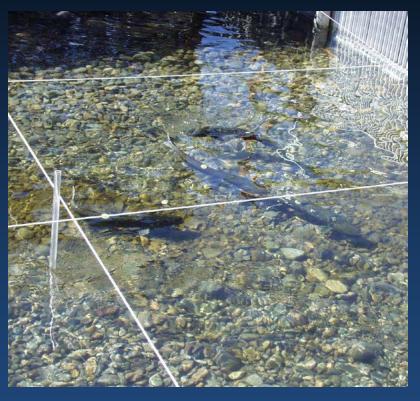
Degree Of Variation

Natural Environments Are Often Quite Variable Hatchery Environments Are Relatively Constant

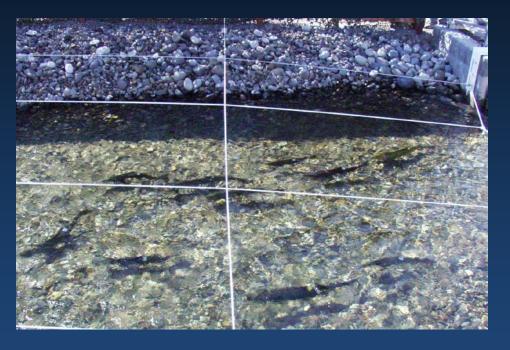
Potential Effect Of These Differences

They May Cause Genetic Change

Via: Relaxation Of Selection For Traits Favored In The Wild Environment,

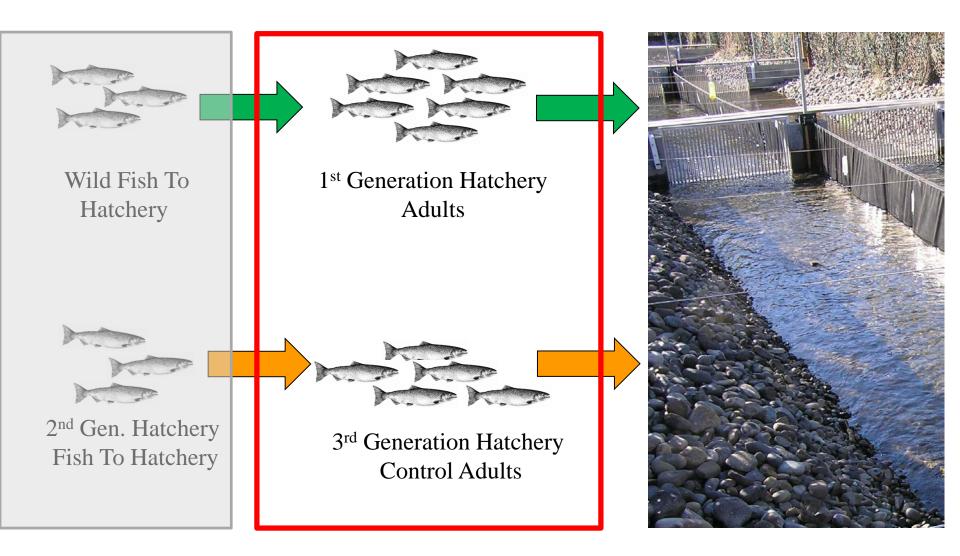

> Directed Selection For Traits Favored In The Hatchery Environment,

& Genetic Drift


And Non-Genetic Phenotypic Changes

Initial Study Findings: H vs W

- 1) Hatchery & Wild Females Had Similar Egg Deposition Rates
- Wild Females Had Higher
 Egg-to-Fry Survival Rates
 (~ 6%) Than Hatchery
 Females
- 3) Wild and Hatchery Males Had Similar Breeding Success Values
- 4) In Our Experimental Setting First-Generation Hatchery Effects Were Low


Why Test 1st Generation vs 3rd Generation Fish?

Wild & 1st Generation Hatchery Fish Experienced Different Early Environments

Therefore:

The Relative Importance of Genetic Change & Environmental Effects On Breeding Success Cannot Be Disentangled

Fish Being Compared

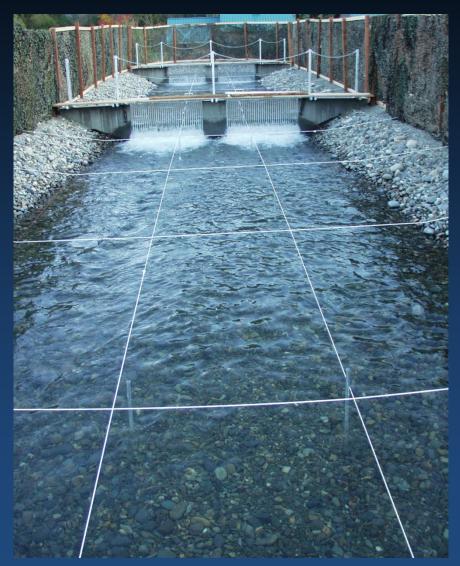
Types of Fish Used

 <u>First-Generation Hatchery:</u> Derived From Natural Origin Parents

 <u>Third-Generation Hatchery:</u> Derived From 2nd Generation Hatchery Control Parents

Life History Types Placed Into The Stream

Hatchery & Wild 4 & 5 yr –old Males & Females: ("Large Anadromous Fish")


Artificial Stream At Cle Elum

Dimensions and Water Flow 127 m long x 7.9 m wide Water Velocity 0.1 – 2.0 m/s Discharge 0.37m³/s Mean Depth 0.4 m

Why An Artificial Stream?

Confounding Factors Can Be Controlled

- Physical Environment (Gravel, Water Velocity & Depth)
- Fish (No., Type, Maturation, Condition, Entrance Timing)
- DNA (All Adults & Subsample Of Fry)
- Behavior (Correlate Individual Behavior with Fish Origin & Breeding Success)

Prior To Placement, Each Fish Was:

Tagged and Fin Material Was Removed For Later DNA Extraction

They Were Then Released Into The Stream...

...And Observations Made

2010-2013

- Use homogenous replicates of 1st and 3rd generation fish
- Each replicate contained four males and four females
- 2 replicates per section
- 6 total sections

 The goal is produce 24 test groups of each type of fish in order to have enough statistical power to detect subtle (> 20%) differences in breeding behavior and offspring production.

Year	1 st Generation	3 rd Generation
2010	6 groups	6 groups
2011	6 groups	6 groups
2012	6 groups	6 groups
2013	6 groups	6 groups

Comparisons made between 1st and 3rd generation hatchery fish:

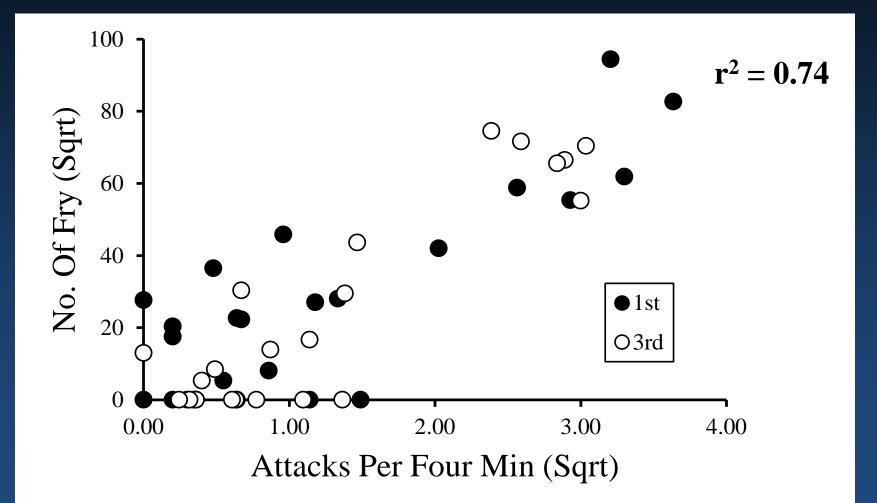
- Spawning ground longevity
- Body size
- Fecundity
- Reproductive behavior
- Fry production

To Date

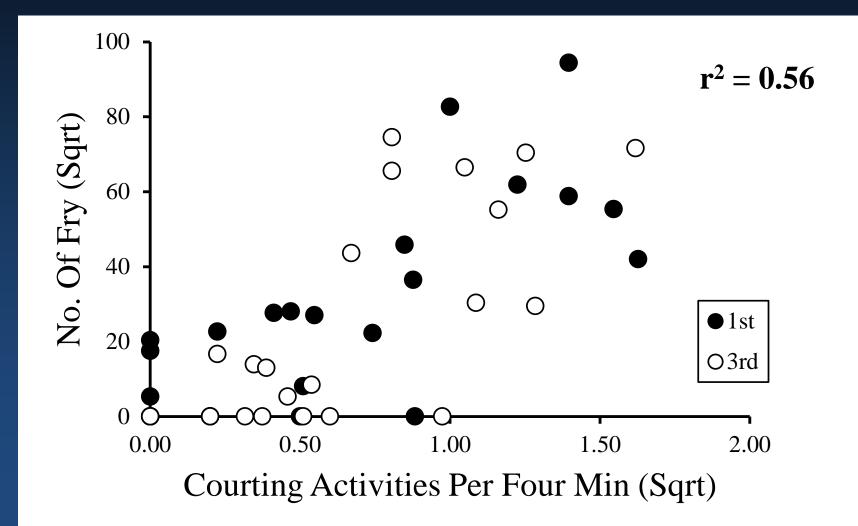
For 2010 spawners:

- 67,235 fry were produced
- 7,135 were collected for use in pedigree assessments
- 2,920 fry were actually pedigreed
- of which 89% were successfully assigned to the spawning adults

In 2010, 1st generation females and males had sign. longer spawning ground longevities


In 2011, no significant difference

- No sign. differences in the FLs of first and third generation fish in 2010 or 2011.
- However, in both years first generation females had greater average fecundities.



Brood Year	Female Type	Ν	Mean Fecundity	
2010	1 st Generation	24	4361	9.7%
	3 rd Generation	24	3975	
2011	1 st Generation	24	4165	7.5%
	3 rd Generation	24	3873	//0

Male aggression vs. Fry production in first and third generation hatchery males in 2010.

Male courting frequency vs. Fry production in first and third generation hatchery males in 2010.

- No significant differences due to the number of generations of hatchery culture in either male or female:
 - aggression
 courting or digging frequencies

• First and third generation females did not significantly differ in:

egg deposition,
fecundity-to-fry
survival rate, or
absolute fry
production.

Caveats

- Only one year (2010) of fry production data and two years of spawner behavioral data analyzed.
- These results should be regarded as preliminary and subject to change.
- Additional homogenous test groups containing first and third generation hatchery fish will be placed into the stream in 2012 and 2013.

Acknowledgments

Charlie Strom, Vernon Bogar and other hatchery personnel at the CESRF helped select and process the fish used in the study and operated and maintained the artificial stream

Mark Johnston and his crew collected the study fish at Roza and transported them to the CESRF

WDFW staff helped us make behavioral observations

Cheryl Dean, Cherril Bowman and other staff in the WDFW's Molecular Genetics Laboratory assisted us in the pedigree analyses

BPA for funding

