The Paradox of Faster Growing Wild Fish Maturing at Older Ages Than Slower Growing Hatchery Fish

Curtis M. Knudsen¹, Steve L. Schroder², Craig Busack², Mark V. Johnston³, Todd N. Pearsons^{2,4}, William J. Bosch³, and David E. Fast³

¹ Oncorh Consulting

² Washington Department of Fish and Wildlife

³ Yakama Nation

⁴ Grant County Public Utility District

Objectives:

- Describe two predictions made from Life History Theory
- Results from the High and Low Feed Ration study and compare them with the Life History Theory predictions
- Describe the Growth/Maturation Paradox
- Results from 2007 and 2008 for NO, SH and HC populations
- What processes are in here play that result in empirical results that are contradictory to the predictions one would make from LHT?
- Examples of other correlated life history or fitness related traits

Two basic predictions made from Life History Theory:

- When a population experiences increased growth in body size then fish should
- 1. mature at younger ages and
- 2. at larger size-at-age.

• High and Low Feed Ration study results, then compare them with the Life History Theory predictions

Juvenile body weight over time up to volitional release BY02-04

• <u>The Growth/Maturation Paradox</u>:

Hatchery origin fish return at a smaller sizeat-maturity, but mature at younger mean age

Age 4 size-at-age reaction norms for NO, SH and HC fish

Origin effect p=0.001 Tukey MCT HC < SH < NO

Age 3 size-at-age reaction norms for SH, HC and NO fish

In 2008 fish were 25-58% larger than 2007. Significant GxE interaction p<0.05.

2007 Origin effect p<0.001, Tukey MCT HC < SH < NO 2008 Origin effect p>0.5

Percentage Age 3 by Broodyear

Our results significantly disagree with LHT predictions. The reason is have three different genotypes: NO, SH and HC. • What possible processes are in play here that produce results that are contrary to the predictions from LHT?

Body size

Reaction norms follow this trend: HC (2 Gen)< SH (1 Gen)< Natural Origin

Given a smaller size-at-age maturation threshold, then:

- smaller age specific size-at-maturity and
- younger age composition.

Time

• What about other life history or fitness related traits correlated with body size?

____/

Fry Body Size at ponding BY08

ANCOVA equal slopes p<0.001

Mean Eyed-Egg Survival (<u>+</u> 1 SE)

Summary

- LHT predictions are correct when dealing within a single population or genotype
- NO, SH and HC populations have different reaction norms because they are different genotypes as a result of domestication effects
- Other traits correlated with body size are also showing the effects of domestication
- Evidence of selection for a hatchery type and against NO type within the hatchery

Questions?

Fry Body Size at ponding BY08

ANCOVA equal Slopes p<0.001

Source	Sum-of-Squares	df	Mean-Square	F-ratio	Р
LN_FL	1.7950	1	1.7950	307.9954	<0.0001
ORIGIN	0.1394	1	0.1394	23.9207	<0.0001
ORIGIN*LN_FL	0.1403	1	0.1403	24.0713	<0.0001
Error	1.9057	327	0.0058		