Effects of Water Temperature (Year), Sex and

Domestication On Intriver Migration and

Survival of Adult Upper Yakima River

Spring Chinook

C. Knudsen, B. Bosch, M. Johnston, C. Stockton and C. Strom

Objectives: RY's 2011 to 2015

- NOAA Ocean Predictors, and Bonneville and Prosser (Kiona) water temperatures

Part 1 - PIT tagged Fish

- Trends in arrival timing at Bonneville, McNary and Prosser
- Trends in migration rates from Bonneville to McNary and Prosser dams
- Bonneville to Prosser Survival Rates

Part 2 - Pre-spawning Mortality

- Logistic Regression to estimate effects of Year, Origin, Sex, and Roza Passage Date on pre-spawning mortality at CESRF

NOAA time series plots of large-scale atmospheric forcing and local physical and biological indicators from 2011-2015. (Taken from:
https://www.nwfsc.noaa.gov/research/divisions/fe/estuarine/oeip/time-series-plots.cfm.)

Ecosystem Indicators	2011	2012	2013	2014	2015
$\begin{gathered} \text { PDO } \\ \text { (Sum Dec-March) } \end{gathered}$	4	2	8	10	18
$\begin{gathered} \text { PDO } \\ \text { (Sum May-Seot) } \end{gathered}$	3	1	8	17	18
ONI (Average Jan-June)	4	5	7	9	17
$\begin{gathered} 46050 \text { SST } \\ \left(\cdot{ }^{\circ}\right. \text { : May-Sept) } \end{gathered}$	10	11	12	13	17
Upper 20 mT (C. Nov-Mar)	4	3	7	2	18
Upper 20 mT (C. Mav-Seot)	10	6	15	17	9
Deeptemperature (.C:May-Sept)	11	3	17	16	15
$\begin{gathered} \text { Deep salinity } \\ \text { (May-Seot) } \end{gathered}$	10	9	13	17	12
Copepod richness a nom, (no. species; May-Sept)	4	5	2	9	18
N. copepod biomass anom. ($\mathrm{m}=\mathrm{Cm}^{-2} \cdot$ Mav-Sect)	1	2	4	5	16
S. copepod biomass anom. \qquad (meCm. Mav-Sect)	9	8	6	11	16
Biological transition (day of year)	4	9	5	13	18
Ichthyoplankton biomass (mec $1000 \mathrm{~m}^{-2}$: Jan-Mar)	12	8	6	17	4
Chinooksalmon juvenile catches (ne. km^{-2} - June)	14	3	2	9	13
Coho salmon juvenile catches ($n \mathrm{n} . \mathrm{km}^{-2}$. June)	13	16	1	11	8
Mean of ranks	7.5	6.1	7.5	11.7	14.5
Rank of the mean rank	7	4	7	13	16

Mean Monthly Temperature (${ }^{\circ} \mathrm{C}$) Bonneville

Cumulative Proportion of CESRF PIT tags Passing Bonneville By Return Year

Passage Date Bonneville

Bonneville Arrival By Return Year

Lower case letters indicate means
significantly different at $\mathrm{p}<0.01$ in ANOVA assuming unequal variances.

Mean Travel Time (+1 SE) Bonneville-to-McNary (days)

Lower case letters indicate means significantly different at $\mathrm{p}<0.001$ in ANOVA assuming unequal variances.

Travel Time McNary-to-Prosser Distributions

Mean McNary-to-Prosser Travel Time (± 1 se)

Lower case letters indicate means significantly different at $\mathrm{p}<0.05$ in ANOVA assuming unequal variances.

Prosser Passage Date (julian)

Maximum Daily Water Temp $\left({ }^{\circ} \mathrm{C}\right)$ at Kiona 2012-2015

2012
2013
2014
2015

Estimated Probabilities of Passing Prosser Based on
Max Daily Temp When Passing Kiona

Sockeye Salmon Survival from Bonneville to McNary

Figure 7. Sockeye salmon survival from Bonneville to McNary Dam by run grouping determined by quartiles (i.e., first 25% of the run (1), $26 \%-50 \%$ of the run (2), etc.). (Taken from DeHart. 2015. Fish Passage Center Memo 159-15)

Logistic Regression Model

Mortality ~ Roza Collection Date + Sex + Origin + Return Year

	Estimate	Std. Err	z value	$\operatorname{Pr}(>\|\mathbf{z}\|)$
(Intercept)	-6.2956	0.4274	-14.7307	$<\mathbf{0 . 0 0 0 1}$
Roza Collec. Date	0.0216	0.0021	10.2545	$<\mathbf{0 . 0 0 0 1}$
Female vs Jack	1.1889	0.1595	7.4520	$<\mathbf{0 . 0 0 0 1}$
Female vs Male	0.3676	0.1367	2.6898	$\mathbf{0 . 0 0 7 2}$
2011 vs 2012	-1.4915	0.3115	-4.7886	$<\mathbf{0 . 0 0 0 1}$
2011 vs 2013	0.4966	0.1812	2.7411	$\mathbf{0 . 0 0 6 1}$
2011 vs 2014	0.6928	0.1898	3.6494	$\mathbf{0 . 0 0 0 3}$
2011 vs 2015	1.7091	0.1743	9.8033	$<\mathbf{0 . 0 0 0 1}$
NO vs SH	-0.2370	0.1669	-1.4203	0.1555
SH vs HC	-0.7660	0.1885	-4.0630	$\mathbf{0 . 0 0 0 1}$
NO vs HC	0.5290	0.1494	3.5412	$\mathbf{0 . 0 0 0 4}$

Summary: PIT tagged fish

>2015 was an anomalous year in many ways due in large part to higher ocean and freshwater temperatures, but was also likely flow related issues (not looked at here).
$>$ Adult returns in 2015:

- Arrived significantly earlier at Bonneville
- Migrated from Bonneville to McNary at significantly faster rates
- Were then blocked by a thermal barrier at the mouth of the Yakima R. which delayed fish passage and appeared to stop passage completely from mid-May to August
- Showed significantly longer McNary-to-Prosser Travel Times
- Experienced 21% higher mortality from Bonneville to Prosser

Summary: Fish held at CESRF

> Examining the Pre-Spawning Mortality rates of fish held at CESRF using logistic regression analysis we found that:

- Sex: Jacks had the highest mortality rates followed by Males and then Females
- Return Year: RY 2015 had the highest mortality rates and 2012 the lowest with the order of RY's following closely the overall temperature profiles for each RY
- Origin: HC fish had the highest mortality rates followed by NO and then SH fish. HC fish were significantly higher than NO and, more importantly, SH fish demonstrating a significant domestication effect across the 5 RY's.

Summary: Fish held at CESRF

$>$ Origin:

- If fish held at CESRF reflect the rates of pre-spawning mortality on the spawning grounds, then the supplemented fish (SH) are likely experiencing survival rates similar to NO fish in the wild.

