
DNA-Based Parentage Assignments of Chinook Salmon from the Cle Elum Spawning Channel in 2005

Todd W. Kassler, WDFW Molecular Genetics Laboratory

Yakima Basin Science and Management Conference June 14-15, 2006

Background

- Joint project between WA Dept. of Fish and Wildlife (WDFW) and Yakama Nation (YN)
- Project objective is to assess parentage of Chinook salmon in a closed access spawning channel at the Cle Elum Hatchery
- There are difficulties assessing parentage of naturally spawning fish by observation
- Genetic analysis using microsatellite DNA loci provides a means to quantify individual spawners' reproductive output after spawning has occurred

Methodology

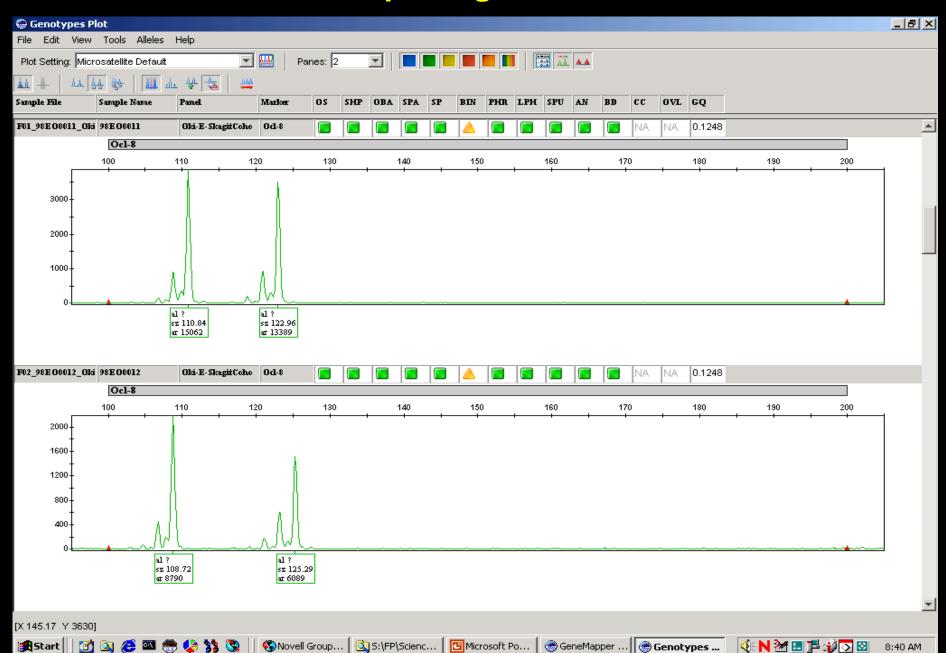
- DNA based parentage analysis has been conducted on spawning populations of spring Chinook in the Cle Elum spawning channel from 2001 - 2005
- Adult males and females, jacks, and precocious male Chinook were sampled for DNA analysis before they were stocked into Cle Elum experimental spawning channel
- Only natural-origin Chinook were used in 2001 while hatchery and natural-origin Chinook were used in 2002 - 2005
- The spawning channel was divided into two sections in 2001 2003, and remained open as one section in 2004 and 2005
- Fry and precocious males (not initially sampled) were recovered daily from the spawning channel in the spring and sampled for genetic analysis

- DNA was extracted from fin tissue
- PCR amplification was performed using microsatellite loci
- Amplified products were run through an ABI-3730 Genetic Analyzer
- Electropherograms were scored using Genemapper software v.3.0
- Data was exported and binned using Microsatellite Binner
 v.1.h (available from S.F. Young, WDFW)

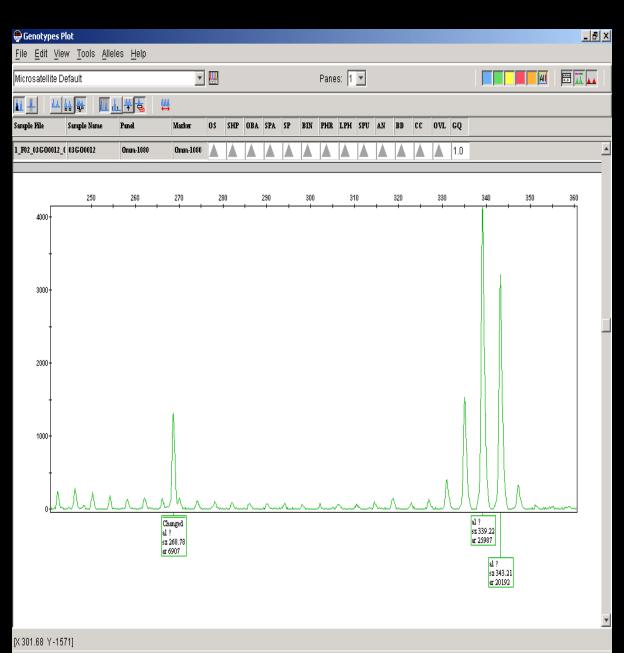
Jessica setting up DNA extraction

- DNA was extracted from fin tissue
- PCR amplification was performed using microsatellite loci
- Amplified products were run through an ABI-3730 Genetic
 Analyzer
- Electropherograms were scored using Genemapper software v.3.0
- Data was exported and binned using Microsatellite Binner
 v.1.h (available from S.F. Young, WDFW)

Cheryl setting up thermalcycler


- DNA was extracted from fin tissue
- PCR amplification was performed using microsatellite loci
- Amplified products were run through an ABI-3730 Genetic
 Analyzer
- Electropherograms were scored using Genemapper software v.3.0
- Data was exported and binned using Microsatellite Binner
 v.1.h (available from S.F. Young, WDFW)

Norm loading the ABI-3100




- DNA was extracted from fin tissue
- PCR amplification was performed using microsatellite loci
- Amplified products were run through an ABI-3730 Genetic
 Analyzer
- Electropherograms were scored using Genemapper software
 v.3.0 (~31,940 individual electropherograms)
- Data was exported and binned using Microsatellite Binner
 v.1.h (available from S.F. Young, WDFW)

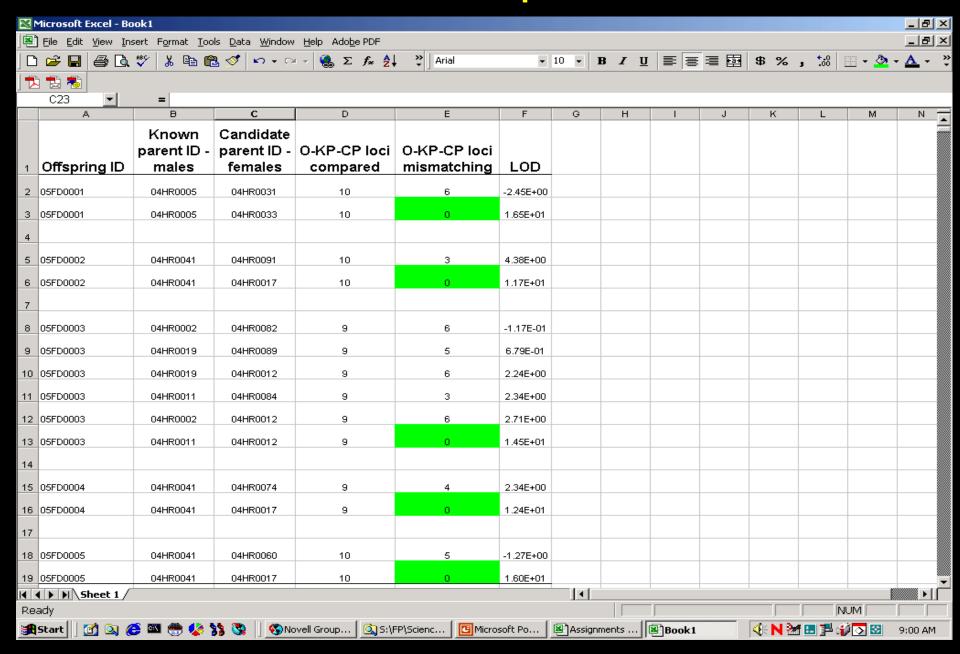
Electropherogram – Ocl-8

Todd Scoring an Electropherogram

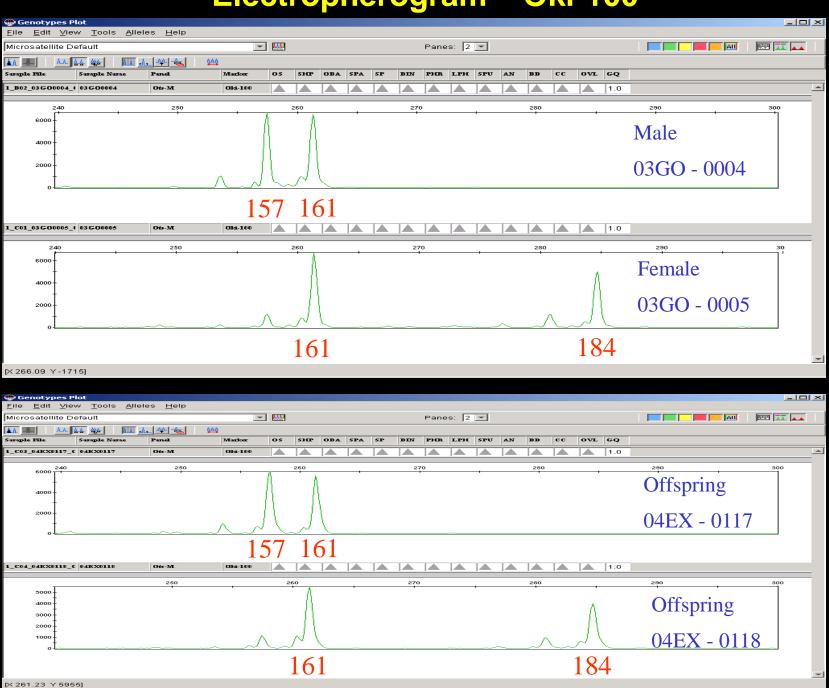
- DNA was extracted from fin tissue
- PCR amplification was performed using microsatellite loci
- Amplified products were run through an ABI-3730 Genetic
 Analyzer
- Electropherograms were scored using Genemapper software v.3.0
- Data was exported from Genemapper and binned using
 Microsatellite Binner v.1.h (available from S.F. Young, WDFW)

Locus Data

Locus	N Alleles	N parents Genotyped	H _o	H_e	Excl (1)	Excl (2)
Ogo-4	11	97	0.732	0.787	0.423	0.603
Oki-100	21	97	0.928	0.906	0.672	0.804
Omm-1080	35	97	0.959	0.958	0.828	0.906
Ots-201b	21	97	0.928	0.914	0.691	0.817
Ots-208b	25	97	0.918	0.945	0.784	0.879
Ots-211	23	97	0.897	0.929	0.735	0.847
Ots-212	18	97	0.825	0.876	0.591	0.744
Ots-213	23	97	0.918	0.937	0.759	0.863
Ots-G474	10	97	0.351	0.425	0.097	0.248
Ssa-408	18	97	0.763	0.923	0.714	0.833
Total					0.999	1.000


Excl (1) = Exclusionary ability of the locus when neither parent is known

Excl (2) = Exclusionary ability of the locus when one parent is known


Evaluation of Parentage Assignments

- Maximum likelihood parentage assignments performed with the program Cervus 2.0 for a sample of 3,000 offspring
- Assignments for offspring were calculated for all females that had a positive log of odds (LOD) score (multiple females will assign to an offspring at this stage)
- Assignments were then calculated for the two most likely male parents using the females as a known parent (again multiple parents will assign to an offspring at this stage)
- All assignments with negative LOD scores or greater than two mismatches were excluded as too unlikely
- Assignments for two different sets of parents with equal numbers of mismatches were excluded because a confident assignment could not be determined

Cervus output file

Electropherogram – Oki-100

Mismatching

	Oki-100	Ots-3M	Ots-213
Female – 1	100/100	100/100	100/100
Female – 2	200/200	200/200	200/200
Male -1	120/120	120/120	120/120
Male – 2	240/240	240/240	240/240
Offspring – 1	100/120	100/120	100/120
Offspring – 2	200/240	200/240	200/240
Offspring – 3	100/120	100/120	100/240

Causes of Mismatching

- Germ-line mutation a parent passes a changed allele to their offspring (sequence or allele changes during replication)
- PCR error (or process error) error introduced by poor amplification from lower quality DNA extracts
- Genotyping error inadvertent human error and computer software error in scoring due to multiple peaks being selected

Results

2,892 / 3,000 offspring analyzed were assigned parents

Cumulative Results 2001 - 2005

2001

Males Females # fry assigned parents/Total Analyzed 18* 774 / 961 = 80.5%

2002

Males Females # fry assigned parents/Total Analyzed 1,775 / 2,000 = 88.8%

2003

Males Females # fry assigned parents/Total Analyzed 2,830 / 3,000 = 94.3%

2004

MalesFemales# fry assigned parents/Total Analyzed51a262,750 / 3,012 = 91.3%

2005

MalesFemales# fry assigned parents/Total Analyzed47a232,892 / 3,000 = 96.4%

^{*}Only includes natural-origin fish

^a = 22 additional precocious males were recovered in the spring

^a = 27 additional precocious males were recovered in the spring

Acknowledgements

- BPA funds for the YKFP supported this work effort
- Steve Schroder (WDFW) and Curt Knudsen (Oncor Consulting) designed the experimental spawning channel
- Crews at the Cle Elum Hatchery for collecting samples in the spawning channel
- Jennifer Von Bargen for all laboratory analysis
- Denise Hawkins and Ken Warheit (WDFW) for editorial review