RECLAMATION

Managing Water in the West

Cle Elum Dam Fish Passage Modeling & Design

Yakima Basin Science & Management Conference

June 18, 2014

Joel Hubble, Yakima Field Office Leslie Hanna, Hydraulic Investigations & Research Laboratory Jason Wagner, Water Conveyance Group Yakima Storage Dams Fish Passage Core Team

U.S. Department of the Interior Bureau of Reclamation

Large Storage Reservoir Challenges

- Large water surface fluctuations due to seasonal releases.
- Dam Height
- Minimize Operational & Maintenance Costs

Fish Passage Concept- original design

- Downstream juvenile passage
 - Multi-level gated intake structure; conduit to below dam

N

Original Design

Eliminated Because: The potential for excessive turbulence in the down well plunge pools inside the multilevel intake structure.

Multilevel Intake Structure

Original Design

Eliminated Because: The potential for excessive turbulence in the down well plunge pools inside the multilevel intake structure.

1st Downstream Passage

- Most Challenging
 - Positive Feedback on the Current Design
 - Yakima Storage Dams Fish Passage Core Team
 - From the Consultant Review Board

Intake Structure Design (final?)

- Follows Reservoir bank-line
- Overlapping intake zones

Initial Inlet structure Design

Initial Inlet Structure

Operating at 400 ft3/s with Depth Over Sill = 3.5 ft

2nd Inlet Structure Design

2nd Inlet Structure Design

3rd Inlet Structure Design

3rd Inlet Structure Design

Operating at 400 ft3/s

4th Inlet Structure Design

Development of the Helix

Helix CFD studies

(Jim Higgs)

- Initial Helix geometry
 - 6 ft diameter pipe
 - 52 ft Helix diameter
 - 11.75 ft drop between loops

CDF = Computational Fluid Dynamics

Observed Severe "Corkscrew" Water **Movement Down the Helix**

Sensitivity Analysis - shapes

6-ft diameter pipe with 3 helix diameters

4-ft and 5-ft rectangular box

A "Fishing" Expedition!

4-ft chamfered rectangular box 4-ft and 5-ft rotated rectangular boxes

Sensitivity Analysis (from fish's perspective)

Total area with velocity less than 1 ft/s cross-velocity (blue shades indicate a more favorable condition).

Tightness of rotational flows.

Maximum sweeping velocity.

Rollover Parameter (ROP)

and Min vertical velocity

Courtesy of Leslie Hanna

6-ft diameter pipe with 3 helix diameters

Helix Numerical analysis

- Most stable flume geometry
 - Large sweet spot low secondary rotational velocities
 - Appears to have no excessive sloshing or rollover

Helix Tower

Function- moves fish from the inlet structure into conduit bypass through the dam

Go To Helix Video Power Point

Adult Fish Passage Facility Layout

A Conventional Trap & Haul Approach

2nd Upstream Passage

Adult Fish Passage Modeling

I'm Outta Here

