RECLANATION Managing Water in the West

Identifying Salmonid Habitat With a Two-Dimensional Hydraulic Model for the Yakima Basin Storage Study

U.S. Department of the Interior Bureau of Reclamation

Presentation Outline

- Introduction and Purpose of the Models
- Reaches Modeled
- Data Sources for Surface
 - Terrestrial LiDAR
 - Bathymetric LiDAR
- Model Specifics
 - Mesh Generation
 - Hydraulic Model, GSTAR-W
- Habitat Characteristics Identified with the Model
 - Pool, Riffle, Glide via Froude Number
 - Flow Depth
 - Velocity

Thanks to Dave Mooney for assistance with modeling

Introduction

- Why are we doing this?
- This study is being performed in conjunction with the Yakima Basin Storage Study
 - To better understand the habitat availability over a wide range of flows

RECLAMATIO

• How much water is enough?

Introduction

- Information from the 2-D models are being used by the Reclamation Storage Study as input to the Ecosystem Diagnosis and Treatment (EDT) model
 - To quantify the biological potential of stream habitat for salmonid fish species
 - Habitat evaluated over a wide range of flows
 - 2-D models provide continuous data throughout the reach modeled
 - Output from the models is rectified values of:
 - Depth averaged velocity
 - Flow depth
 - Froude number
 - Water surface elevation

Introduction

- Wetted area will show which side channels are inundated at specific flow rates
- Output can be displayed and mathematically manipulated in a GIS

Reaches Modeled

- Reclamation modeled three reaches
 - <u>Easton</u>, (11 RM) I-90 bridge just below Easton Dam to I-90 crossing upstream of Cle Elum R. mouth
 - <u>Kittitas</u>, (4.5 RM) Upstream of Hansen Ponds to head of Yakima Canyon
 - <u>Naches</u>, (10 RM) Naches Br. to Powerhouse Br. At Cowiche Dam
- USGS modeling the Gap-to-Gap and Wapato reaches
 - Using River2D
 - Still in work

Modeled Reaches

Easton Reach

Kittitas Reach

Naches Reach

Data Sources

- Terrestrial LiDAR flown ~ November, 2000
- Bathymetric LiDAR flown September, 2004 and May, 2005
- Combined these point data sets to obtain a complete TIN surface
 - Required some manipulation in areas where channel migrated into the banks on the Naches reach
 - Used 2003 photography to assist this process on the Naches reach

Data Sources

Mesh Generation

- Mesh generation
 - Mesh generated in Surface Water Modeling System (SMS, EMS-I)
 - Uses a combination of structured and unstructured mesh
 - Structured portions within areas of greatest interest channels
 - Unstructured portions in areas of less interest floodplains
 - Greatest resolution within the channel
 - Typical mesh size ~ 10ft. X 18ft. within the channel
 - Rectangular, structured mesh
 - Outside of channel varying resolution
 - Polygon, unstructured mesh

Mesh Generation

• Example of the mesh used in these models

- <u>GSTAR-W</u> -- Generalized Sediment Transport for Alluvial Rivers and Watersheds (Lai, 2006)
 - Two-dimensional (2D) hydraulic and sediment transport model for river systems and watersheds
 - Coupled modeling of channels, floodplains, and overland flow
 - Solves 2-D form of the diffusive or dynamic wave equations, using an implicit scheme
 - Uses steady or unsteady flows over all flow regimes (subcritical, critical, and transcritical
- This application used: steady flow, diffusive wave solver with an implicit scheme

- Output of GSTAR-W for this application is spatially rectified values of:
 - Depth averaged velocity in x and y direction
 - Magnitude velocity
 - Flow depth
 - Water surface elevation
 - Froude number

- Four sets of roughness values used (Manning's n)
 - Main channel
 - Side channels and littered gravel bars
 - Forested floodplain
 - Cultivated floodplain

Main channel	Main channel Side channel/ littered gravel bar		Forested areas
0.03-0.04	0.035-0.045	0.04-0.045	0.055-0.075

• Example of roughness designations

Boundary conditions

- Upstream boundary steady flow rate
- Downstream boundary constant water surface elevation determined by a verified 1-D model at the downstream end
- Slip boundary essentially a 'friction free' wall bounding the modeled surface

Model verification

 All three models were verified with surveyed water surface elevations at locations throughout the reach at a minimum of two flow rates

Reach	Flow Rate (cfs)	Mean Error	Std. Deviation	Number of locations
Easton	250	-0.02	0.33	7
Easton	500	0.18	0.27	4
Kittitas	3146	-0.04	0.43	N/A
Kittitas	1032	0.23	0.49	4
Naches	720	0.01	0.36	5
Naches	2680*	0.31	0.36	4

*Flows at the Naches Gage @ Naches fluctuated 80 ft^3 /s during the survey. Additionally, flows fluctuated spatially throughout the reach by 63 ft^3 /s due to irrigation diversion and return. An average of the estimated flows at each location was used for the modeled flow rate.

- Pool-Riffle-Glide habitat determined with the Froude number
 - Measure of inertial forces divided by gravitational forces
 - Most commonly used to describe free surface flows

- Used piecewise function to determine individual habitats
- <u>Pool</u> Fr < 0.09
- $\underline{\text{Glide}} \quad 0.09 \le \text{Fr} \le 0.42$
- <u>Riffle</u> Fr > 0.42
 - Following the method of Jowett, 1993

- Example of Pool-Riffle-Glide classification
 - Naches Reach, 720 cfs

Habitat Classification

Verification of method

- Habitat classification was surveyed in each reach from a raft
- Beginning and end of each feature was marked with a hand-held GPS receiver
- That data was put into Arc GIS and compared to model classification results at the same flow rate

• Example of verification of Froude number habitat classification

 Measuring the success of modeling habitat

Reach	Success for all features (%)	Success for Riffles (%)	Success for Glides (%)	Success for Pools (%)	Number of Each Feature Identified in the Field
Easton	73	63	87	64	69 Riffles 66 Glides 19 Pools
Kittitas	85	83	91	50	17 Riffles 15 Glides 2 Pools
Naches	81	87	77	0	34 Riffles 31 Glides 1 Pool

 $(1 - (72/360))^*100 = 80\%$

• Change in pool-riffle-glide classification with change in flow

• Example of side channels becoming inundated at 500 cfs that were dry at 250 cfs

• Flow depth and depth averaged velocity examples

• Another example of flow depth and velocity displayed in SMS

Making Use of 2-D Habitat Data

- How will all this information be used?
- To provide input to EDT
 - Pool-Riffle-Glide areas will be quantified in GIS for each flow
 - Side channel habitat will be quantified over the range of flows
 - Depth and velocity values will be used to construct meso-habitat maps for the range of flows (Ken Bovee, USGS)
 - These will be used for a decision support system used in conjunction with EDT

Questions?