How Will Forests Affect Mountain Snow Storage in a Warming Climate?

Susan Dickerson-Lange

susan@naturaldes.com

Collaborators:

Rolf Gersonde – Seattle Public Utilities Timothy Link – University of Idaho Jessica Lundquist – University of Washington Anne Nolin – Oregon State University Mark Raleigh – University of Colorado Julie Vano – UCAR, Boulder, Colorado

W UNIVERSITY of WASHINGTON Seattle Public Utilities

Funding:

Northwest Climate Science Center (Dept of Interior)

Overview

Motivation: Climate Change and Forest Change

Background: Forest-Snow Processes

<u>Research</u>: Snow Storage across the PNW

Application: Decision Tree and Examples

Conclusions

<u>Motivation</u>: Climate Change and Forest Change Combined effects on snow important

Background: Forest-Snow Processes Vary in time and space

<u>Research</u>: Snow Storage across the PNW Limitations... but there are patterns

Application: Decision Tree and Examples Actions for today and future

Overview

Motivation: Climate Change and Forest Change

Background: Forest-Snow Processes

<u>Research</u>: Snow Storage across the PNW

Application: Decision Tree and Examples

Motivation: Climate Change Effects on Streamflow

Yakima River near Parker

Motivation: Climate Change Effects on Streamflow

Yakima River near Parker

Motivation: Climate Change + Forest Change

Yakima River near Parker

Forest Effects on Snow Storage?

Overview

Motivation: Climate Change and Forest Change

Background: Forest-Snow Processes

<u>Research</u>: Snow Storage across the PNW

Application: Decision Tree and Examples

Processes

Processes

Effects

Watershed Impacts

Processes

Effects

Photos: Kael Martin, Google Earth

Watershed Impacts

Processes

Effects

Snow Storage Differences Relate to Temperature 5 Mean Winter Temp (°C) n -5 -10 -15 -20 -7-3037 14 -14 Δ Snow Duration (days)

<u>**4 week**</u> difference between forested and open areas!

Overview

Motivation: Climate Change and Forest Change

Background: Forest-Snow Processes

Research: Snow Storage across the PNW

Application: Decision Tree and Examples

Research: Questions

How do forests and forest change affect the magnitude and duration of snow storage across the PNW?

Today and in a warming climate?

(2 journal articles in review/preparation)

Research: Paired Observations of Snow Depth

Research: Comparing Snow Depth

Figure 3, Dickerson-Lange, et al. 2016 (in review)

Research: Comparing Snow Duration

Figure 3, Dickerson-Lange, et al. 2016 (in review)

Research: Conclusions

Findings

- Process analysis: hierarchy
- Limitations: Inter-annual variability, spatial data gaps
 - Patterns observed

Figure 3, Dickerson-Lange, et al. 2016 (in review)

Overview

Motivation: Climate Change and Forest Change

Background: Forest-Snow Processes

<u>Research</u>: Snow Storage across the PNW

Application: Decision Tree and Examples

Winter Temperature

121°W

Temperature data from PRISM Climate Group. Cloudiness based on Bristow & Campbell (1984) equation applied to Livneh, et al. (2015) data.

Cloudiness

Average March-April-May Atmospheric Transmittance

Cloudiness based on Bristow & Campbell (1984) equation applied to Livneh, et al. (2015) data.

Cloudiness

Cloudiness based on Bristow & Campbell (1984) equation applied to Livneh, et al. (2015) data.

Application: Decision Tree and Maps

Decision Tree and Maps are available (Beta Versions!):

http://depts.washington.edu/mtnhydr/research/PNWsnowforestmap.shtml

- Decision Tree
- Maps: Images, Google Earth, Rasters
 - Webinar Overview

Characteristics

<u>Today</u>

<u>Climate</u>

Consider:

Change

Warm Winter + Cloudy Spring:

- Interception & loss dominates
- Shading effect minimized
- Snow duration longer in open

	<u>Characteristics</u>	<u>Today</u>	<u>Climate</u> <u>Change</u>	<u>Consider:</u>
Western Cascades	 Warm Winter + Cloudy Spring: Interception & loss dominates Shading effect minimized Snow duration longer in open 	Open canopy (gaps, thinning)		

	<u>Characteristics</u>	<u>Today</u>	<u>Climate</u> Change	<u>Consider:</u>
Western Cascades	 Warm Winter + Cloudy Spring: Interception & loss dominates Shading effect minimized Snow duration longer in open 	Open canopy (gaps, thinning)	Open canopy	Consider: Rising rain/snow Line

	<u>Characteristics</u>	Today	<u>Climate</u> Change	<u>Consider:</u>
Western Cascades	 Warm Winter + Cloudy Spring: Interception & loss dominates Shading effect minimized Snow duration longer in open 	Open canopy (gaps, thinning)	Open canopy	Consider: Rising rain/snow Line
Eastern Cascades	 Cold Winter + Sunny Melt Season: Less interception Shading effect important Snow duration equal 			

	<u>Characteristics</u>	<u>Today</u>	<u>Climate</u> Change	Consider:
Western Cascades	 Warm Winter & Cloudy Spring: Interception & loss dominates Shading effect minimized Snow duration longer in open 	Open canopy (gaps, thinning)	Open canopy	Consider: Rising rain/snow Line
Eastern Cascades	 Cold Winter + Sunny Melt Season: Less interception Shading effect important Snow duration equal 	Forest thinning	Open canopy on north slopes	Earlier ablation in future?

	<u>Characteristics</u>	<u>Today</u>	<u>Climate</u> Change	<u>Consider:</u>
Western Cascades	 Warm Winter & Cloudy Spring: Interception & loss dominates Shading effect minimized Snow duration longer in open 	Open canopy (gaps, thinning)	Open canopy	Consider: Rising rain/snow Line
Eastern Cascades	 Cold Winter + Sunny Melt Season: Less interception Shading effect important Snow duration equal 	Forest thinning	Open canopy on north slopes	Earlier ablation in future?
Northern Idaho	Cold Winter + Cloudy Melt Season:]		
Cascade Crest	High Wind Exposure:			

Conclusions

Motivation: Climate Change and Forest Change Combined effects on snow important Background: Forest-Snow Processes Vary in time and space

<u>Research</u>: Snow Storage across the PNW Limitations... but there are patterns

Application: Decision Tree and Examples Actions for today and future

depts.washington.edu/mtnhydr/research/PNWsnowforestmap.shtml

Thanks!

Susan Dickerson-Lange

susan@naturaldes.com

http://depts.washington.edu/mtnhydr/research/PNWsnowforestmap.shtml

Funding: Northwest Climate Science Center (Dept of Interior)

Topographic Position

121°W

Analysis: How Do Forest-Snow Processes Vary?

Results: More difference in accumulation rates

Conceptual Model: Possible Approaches

How do forests and forest change affect the magnitude and duration of snow storage across the PNW?

Today and in a warming climate?

Empirical Model

Lundquist et al. 2013 Robles et al. 2014

Distributed Model *Ellis et al. 2013 Du et al. 2016*

Conceptual Model

1a. Canopy Snow Interception and Loss

Canopy Snow Interception & Loss

- Forest canopy intercepts snow
- Snow melts, sublimates, or drops to snowpack

1b. Wind Effects

Example: Hogg Pass, OR – Cascade Crest

Hogg Pass Open Mind Speed (m/s) Mind Speed (m/s) Hogg Pass Open Mind Speed (m/s) Mind Speed (m/s) Hogg Pass Open

Wind-driven Snow Deposition

- High deposition of snow within forests
- Other mechanisms:
 - Redistribution?
 - Wind unloading?

1b. Wind Effects

Example 2: Palouse Region of north-central Idaho

1b. Wind Effects

Controls

- Topographic exposure
- Region
- Opening size & fetch

See:

Hiemstra *et al.*, 2002 Geddes *et al.*, 2005 Qiu *et al.*, 2011

2. Forest Effects on Snow Ablation

How much does forest shading modify ablation (melt) rates?

Depends on conditions during the snow ablation season

Spring Cloudiness

Average Snow Disappearance Timing

NRSC SNOTEL Data

NW River Forecast Center Interface http://www.nwrfc.noaa.gov/snow/

Paradise SNOTEL (elev 5120 feet)

Solar Elevation

Solar elevation varies with time of year and latitude, and influences how important the forest is for shading

Cloudiness + Solar Elevation

How important is the forest for shading from sunlight?

Importance of forest effects on shading the snow from sunlight

Early SDD + Cloudy Late S

Late SDD + Cloudy

Low forest shading effect Low forest shading effect

Early SDD + Sunny

Late SDD + Sunny

Medium forest shading effect High forest shading effect

Cloudiness + Solar Elevation

How important is the forest for shading from sunlight?

Topographic Position

Black Carbon from Fire

Forest Gap Geometry

<u>See:</u> Strasser *et al.,* 2011 Ellis *et al.,* 2013 <u>See:</u> Burles and Boone, 2011 Gleason *et al.,* 2013 Gleason *et al.,* 2016 <u>See:</u> Seyednasrollah & Kumar, 2014 Musselman *et al.*, 2015