A Comparison of Abundance and Harvest Estimates Using Traditional Methods and Passive Integrated Transponder Tag Detections for an Upper-Columbia River Basin Hatchery Population

William J. Bosch, Curtis M. Knudsen, Gabriel M. Temple, Mark V. Johnston, Anthony L. Fritts, and David E. Fast

Acknowledgments: Melvin Sampson, Levi George, Yakama Nation, CESRF staff, Joe Hoptowit, Roza crews, Roger Dick Jr., Megan Begay, Stuart Ellis, Jon Hess, Flo Wallahee, Winna Switzler, WDFW, NOAA, USFWS, BOR, CRITFC, PSMFC, and BPA

And we can compute ...

Table 21. Estimated run size, harvest, and harvest rates of Yakima Basin spring Chinook in Columbia River

 mainstem and terminal area fisheries, 1983-present.| Year | Columbia
 R. Mouth Run Size | Col. R.
 Mouth
 to BON
 Harvest | BON to
 McNary
 Harvest | Yakima R. Mouth Run Size | Yakima
 River
 Harvest | Columbia Basin Harvest Summary | | | Col. Basin Harvest Rate | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | Total | Wild | CESRF | Total | Wild |
| 1983 | 2,452 | 118 | 99 | 1,441 | 84 | 300 | 300 | 0 | 12.3\% | 12.3\% |
| 1984 | 3,868 | 134 | 257 | 2,658 | 289 | 680 | 680 | 0 | 17.6\% | 17.6\% |
| 1985 | 5,248 | 191 | 178 | 4,560 | 865 | 1,234 | 1,234 | 0 | 23.5\% | 23.5\% |
| 1986 | 13,514 | 280 | 783 | 9,439 | 1,340 | 2,403 | 2,403 | 0 | 17.8\% | 17.8\% |
| 1987 | 6,140 | 96 | 371 | 4,443 | 517 | 984 | 984 | 0 | 16.0\% | 16.0\% |
| 1988 | 5,631 | 360 | 372 | 4,246 | 444 | 1,177 | 1,177 | 0 | 20.9\% | 20.9\% |

Zone 6 Treaty Indian Fishery

imercial fishing

But how good are these estimates?

HONOR. PROTECT. RESTORE.

Methods - Total Release

Growth and Survival History - BY2015

Clark Flat Acclimation Site
Clark Flat Acclimation Site (CFJ) Volitional Release Monitors

HONOR. PROTECT. RESTORE.

Methods - Adult PIT Detect

Mark and Release Information

Species-Run-Rear Type	Mark Site	Release Site
Hat. Spring Chinook	CLEE	CLARFP - Clark Flat Acclimation Pond 03
Coordinator	Session Message	
DTL - David Lind	YAKIMA-KLICKITAT FISHERIES PROJECT, CLE ELUM SPRING CHINOOK RELEASES, 2013	
Mark Date Release Date	Conditional Comments (Flags)	
10/16/2012 03/15/2013		
Capture Method		Comment
Dip Net		

Recapture, Observation, and Mortality Information

Event Date	Event Type	Event Site Code	Event Site Type	Event Site RKM	Event Release Date	Event Release Site Code	Event Release Site RKM
03/20/2013	Observation	CFJ	Monitored Fish Release	539.270			
05/02/2013	Observation	PRO	Combined Dam Location; separate detections of upstream and downstream migrants.	539.076			
05/09/2013	Observation	JDJ	Juvenile Fish Bypass Facility	347			
03/31/2015	Observation	BO3	Adult Fishway	234			
04/01/2015	Observation	BO4	Adult Fishway	234			
04/02/2015	Observation	BO4	Adult Fishway	234			
04/05/2015	Observation	TD1	Adult Fishway	308			
04/11/2015	Observation	MC2	Adult Fishway	470			
04/18/2015	Observation	PRO	Combined Dam Location; separate detections of upstream and downstream migrants.	539.076			
04/29/2015	Observation	ROZ	Combined Dam Location; separate detections of upstream and downstream migrants.	539.206			
04/30/2015	Observation	ROZ	Combined Dam Location; separate detections of upstream and downstream migrants.	539.206			

Methods - PIT-Based Abundance

Knowing the number of

- fish released from each raceway (j) in each brood year (l), and
- PITs detected leaving each raceway in each brood year

Which gives us an estimated total number of fish represented by each subsequent PIT detection for that brood year and raceway:

$$
\mathrm{RW}_{j, l}=\mathrm{REL}_{j, l} / \mathrm{PIT}_{j, l}
$$

Then decoding each PIT detected as an adult by brood year (l), raceway (j), and age (k)
We can sum the total adult detection expansions for any return year (i) at any adult PIT detection location as:

$$
R E T_{i}=\sum_{l=2003}^{2013} \sum_{j=1}^{18} \sum_{k=3}^{5}\left(P I T_{l, j, k} * R W_{j, l}\right)
$$

Methods - PIT-Based Harvest

Zone 6 Treaty Indian Fishery
147 miles of river open to Indian commercial fishing

Results - Bonneville Dam Abundance

Results - Prosser Dam Abundance

Results - Roza Dam Abundance

Results - Bonn. to McNary Harvest

Results - Prosser to Roza Harvest

Article

Effects of Passive Integrated Transponder Tags on Smolt-to-Adult Recruit Survival, Growth, and Behavior of Hatchery Spring Chinook Salmon

Curtis M. Knudsen, Mark V. Johnston, Steven L. Schroder, William J. Bosch, David E. Fast Charles R. Strom

First published: 08 January 2011 | https://doi.org/10.1577/M07-020.1 | Cited by: 18
Read the full text > PDDF TOOLS $<$ SHARE

Abstract

We tagged juvenile upper Yakima River hatchery spring Chinook salmon Oncorhynchus tshawytscha with passive integrated transponder (PIT) and coded wire snout tags in a double-tag study to test the assumptions that tags are not lost and do not affect postrelease survival, behavior, or growth. The average loss of PIT tags was 2.0% (95% confidence interval $[\mathrm{CI}]=0.7-3.2 \%$) in juveniles before release and 18.4% in recaptures returning 6 months to 4 years after release $(95 \% \mathrm{Cl}=17.2-19.5 \%)$. Adult tag losses were not significantly correlated with age of return (analysis of covariance, $P=0.40$), indicating that the majority of PIT tag loss had occurred within the first 6 months after release. Smolt-to-adult recruit survival (SARS) of PIT-tagged fish was significantly lower ($P<0.05$) than that of non-PIT-tagged (NPT) fish because of tag loss and reduced survival, resulting in an average underestimate of SARS of 25.0%. After correcting for tag loss, we estimated PIT tag-induced mortality to be as great as 33.3% with a mean of 10.3% over all brood years ($P<0.05$). Mean lengths and weights of PIT-tagged adults were less than those of NPT adults in all age comparisons. However, only age-4 PIT-tagged adults were significantly smaller than NPT fish of the same age (mean length difference $=1.1 \mathrm{~cm}$; mean body weight difference $=0.1 \mathrm{~kg}$; analysis of variance, $P<0.05$). There was no significant difference between migration timing of PIT-tagged and NPT adults within the upper Yakima River (Mann-Whitney test, $P>0.09$). Given the widespread and increasing use of PIT tags, and their use in calculating critical estimators related to salmonid life history of Endangered Species Act populations, the effects of using PIT tags must be quantitatively considered under actual study conditions and, if necessary, be accounted for.

Metrics
 Citations: 18
 Am) score

Details

© 2009 American Fisheries Society

Funding Information

- Washington Department of Fish and Wildlif

Publication History

Issue Online
08 January 2011
Version of Record online:
08 January 2011
Manuscript accepted:
06 October 2008
Manuscript received:
01 February 2007

Summary

- Abundance differences [between methods] decrease as fish get closer to homing destination
- Trap count < Video count < Run Reconstruction
- Post-release PIT loss and PIT-induced mortality are important factors to consider

■ Creel estimates look "reasonable" and may even be conservative

More info: Bill_Bosch@yakama.com

