

Application of Genetic Baseline: Aiding the Recovery of Steelhead

Scott M. Blankenship

Yakima Basin Science & Management Conference – 2011

Overview

- Status and trends monitoring viable salmonid population criteria
- Yakima Steelhead Recovery Plan
- Genetic resources available and their application

Viable Salmonid Population Criteria

VSP-What is being monitored

- What are the monitoring needs associated with Recovery Plans for Pacific Northwest ESU and DPS listed under the Endangered Species Act?
- Monitoring Recommendations (Crawford and Rumsey 2009)
- Address all:
 - Viable salmonid population criteria Listing Factors Threats

VSP - What is being monitored

VSP Adult Spawner Abundance

- •Unbiased sampling design with known precision and accuracy
- •Ratio of adipose absent/intact on spawning grounds
- •Calculate average coefficient of variation for natural-origin spawner estimates (per population)
- •Determine power to detect a significant change in abundance

VSP - What is being monitored

- VSP Adult Spawner Abundance
- VSP Productivity

•Develop at least 12 brood years of spawner information from cohort analysis

•Recruits per spawner

•Estimate juvenile migrants for at least one MPG population within each ESU/DPS

•Calculate average coefficient of variation

•Determine power to detect a significant change

VSP - What is being monitored

- VSP Adult Spawner Abundance
- VSP Productivity
- VSP Spatial Distribution
- VSP Species Diversity
 - •Short term:

•Use distribution, spawn time, age structure, fecundity, and sex ratio

•Long term:

•Develop a genotypic and phenotypic baseline for each population within each MPG

Priorities and **Problems**

Problem Cases

• <u>Highest:</u>

Adult Abundance in natural spawning areas

Methods:

Escapement Sampling (e.g. adjusted weir count) Probabilistic Sampling – unbiased randomized sites Index Spawner Survey – (e.g. expanded redd counts)

- What if you have multiple populations above count site?
- What if you do not observe redds or recover carcasses poorly?

Landmarks:

1999 – Middle Columbia River steelhead listed a threatened

<u>Landmarks:</u>

- 1999 Middle Columbia River steelhead listed a threatened
- 2006 Listing revised to cover only anadromous form of O. mykiss
- 2006 Yakima Subbasin Salmon Recovery Plan adopted
- 2009 Yakima Steelhead Recovery Plan (updated, revised)
- 2009 YSRP incorporated into Middle Columbia Steelhead Recovery Plan

Abundance and Productivity:

Ladder counts at Prosser Dam Counts at Roza Dam

Yakima Steelhead Genetic Resources

Yakima Baseline - FCA

Reference Collections

Initial Baseline

Satus Creek Toppenish Creek Ahtanum Creek Naches River upper Yakima River Teanaway River Taneum River Skamania Hatchery

Additions

Cowiche Creek Oat Creek Little Rattlesnake Creek N.F. Little Naches River Nile Creek Pile Up Creek West Quartz Creek

Umtanum River Goldendale Hatchery

Yakima Steelhead - STRUCTURE

Individual steelhead from baseline

Reference Collections

Baseline **Goldendale Hatchery** Satus Creek **Toppenish Creek** Little Rattlesnake Creek **Naches River** N.F. Little Naches River Nile Creek Pile Up Creek West Quartz Creek Taneum River (residents) **Taneum River** Teanaway River (resident) **Teanaway River** upper Yakima River

Reporting Group Goldendale Satus Toppenish

Naches

upper Yakima

Yakima Steelhead - STRUCTURE

Power of reference baseline

	Realistic Fishery Simulations					
Reporting Group	GoldendaleH	SatusCr	ToppenishCr	NachesR	TaneumR	TeanawayR
Goldendale	1.000	0.000	0.000	0.000	0.000	0.000
Satus	0.000	0.979	0.005	0.004	0.000	0.003
Toppenish	0.000	0.002	0.990	0.000	0.000	0.001
Naches	0.000	0.006	0.001	0.982	0.007	0.003
Upper Yakima	0.000	0.013	0.004	0.014	0.993	0.994

Conclusions

- VSP criteria integral to monitoring and recovery planning
- Genetic techniques offer alternative strategies for meeting monitoring requirements
- Yakima Steelhead Recovery Plan adopted genetic-based metrics for estimating abundance and productivity
- Genetic infrastructure in place

Future steps

- Partition juveniles migrants by region (traps, Chandler facility)
- Spatial Distribution

Radio tracking and new tagging technologies What is the role of mainstem spawning to recovery scenarios?

Diversity

Understanding the balance between life history forms Non-native hatchery fish

Acknowledgements

WDFW MGL

Norm Switzler Maureen Small Jennifer von Bargen Sarah Bell

Funding

Bonneville Power Administration

NOAA

Steelhead information

Washington State Fund

Yakama Nation

CRITFC

Questions?

Prosser Dam Mixed Adults

			Location	WDFW		
Population	Location	Stage	(rkm)	Year	Code	SPAN
Yakima MPG	Prosser-Mixed Adults	Adult	Prosser	2007	07AJ	165
Yakima MPG	Prosser-Mixed Adults	Adult	Prosser	2008	08LM	228

Prosser Dam Mixed Adults

2007

Satus	0.07	(0.01, 0.12)		
Toppenish	0.20	(0.12, 0.26)		
Ahtanum	0.11	(0.03, 0.16)	lower	0.38
Naches	0.28	(0.19, 0.34)	Naches	0.28
Upper Yakima	0.26	(0.16, 0.35)	Upper Yakima	0.34
Teanaway	0.09	(0.04, 0.20)		
Skamania	0.00	(0.00, 0.00)		

Prosser Dam Mixed Adults

2008

Satus	0.10	(0.03, 0.14)		
Toppenish	0.29	(0.21, 0.34)		
Ahtanum	0.07	(0.03, 0.13)	lower	0.46
Naches	0.29	(0.21, 0.37)	Naches	0.29
Upper Yakima	0.17	(0.09, 0.23)	Upper Yakima	0.24
Teanaway	0.06	(0.03, 0.18)		
Taneum	0.01	(0.00, 0.03)		
Skamania	0.00	(0.00, 0.00)		