Hydraulic redd sampling and two-year smolt rearing to reduce domestication in steelhead supplementation programs

**Barry Berejikian** 

NOAA Fisheries Northwest Fisheries Science Center Resource Enhancement and Utilization Technologies Division Manchester Research Station

# Acknowledgements

| Teresa Sjostrom and volunteers                       | Hood Canal Salmon Enhancement<br>Group |
|------------------------------------------------------|----------------------------------------|
| Rick Endicott and Joy Lee-Waltermire                 | Long Live the Kings                    |
| Matt Kowalski and Alex Gouley                        | Skokomish Tribe                        |
| Ed Jouper and Thom Johnson                           | Washington Dept. Fish and Wildlife     |
| Rick Bush, Megan Petrie, Rob Endicott,<br>Skip Tezak | NOAA Fisheries                         |
| Dan Magneson and Larry Telles                        | US Fish and Wildlife Service           |
| Mark McHenry and Larry Ogg (ret)                     | US Forest Service                      |
| Private landowners                                   |                                        |

# Steelhead hatchery effects

- Domestication selection may lower fitness of hatchery steelhead (Araki et al. 2008)
  - Artificial spawning and incubation
  - Emergence and freshwater rearing
  - Smolt migration
- Potential methods to reduce domestication
  - Eliminate artificial spawning
  - Release at a natural size and age (i.e. age-2)

### Hatchery effects experimental Design

- •BACI with replication
- •Compare supplemented to non-supplemented populations
- •Before, during and after supplementation periods
- •Response variables: abundance, productivity, life history, and genetic variation





# Annual fish production goals

| River        | Embryo<br>collection | Smolt<br>release<br>(age-2) | Adult<br>release<br>(age-4) |
|--------------|----------------------|-----------------------------|-----------------------------|
| Duckabush    | 8,620                | 6,667                       | 229                         |
| Dewatto      | 9,566                | 7,400                       | 253                         |
| SF Skokomish | 44,616               | 34,507                      | 400                         |

# Obtaining eggs for culture

#### Artificial spawning





Hydraulic redd sampling





# Hydraulic redd sampling



# Embryo collection success



Embryos collected/collection goal





# Viability and survival in culture



# Targeting release numbers

Proportion of the natural spawners represented in the captive population



# Selection in yearling smolt programs



378 Genetic Management of Hatchery and Wild Stocks

Fig. 27.2 Fork length of experimental fish when they were injected with PIT tags in March 1997. The fish were released into the Crooked River one month after being tagged. Relative frequencies for released fish in each cross sum to one; likewise for detected fish. Solid bars show the lengths at tagging for the fish released into Crooked River; open bars show the lengths at tagging for only those fish that were detected at downstream dams in the Snake or Columbia Rivers.  $H \times H$ ,  $H \times W$ , and  $W \times W$  denote the crosses among hatchery (H) and wild (W) fish.

Selection against slower growing hatchery fish

Domesticated age-1 smolts perform better than natural broodstock age-1 smolts

Source: Reisenbichler et al. (2004) in Leber et al. (editors), Stock Enhancement and Sea Ranching 2<sup>nd</sup> ed. pp 371-382

## Mechanism



Appetite increases in the upper modal (S1) group in late summer/fall

Internal control of developmental 'strategy' (i.e., slow or fast)

Potential selection against the slow development group in S1 programs

FIG. 1. Length-frequency distributions of the studied sibling population from September to December 1986. Sampling dates and sample sizes were as follows: 17 September (n=378), 1 October (405), 19 November (832) and 10 December (complete population, n=835). Also hown (top) is the estimated percentage of fish of a given size in September that subsequently became members of the UMG, based on the marked sample of fish.

Source: Metcalfe et al. 1988. J. Anim. Ecol. 57:463-474

## Hood Canal Steelhead Conservation Hatcheries

Long Live the Kings Lilliwaup Hatchery



#### WDFW McKernan Hatchery



Age-1 and -2 smolt release



#### Among-population weight comparison



#### Age-2 smolt size (hatchery and natural)



# Male maturation rates



# Summary

- Egg collections are effective for obtaining broad genetic representation
  - may be limited to smaller programs
  - flow regime is important
- Two year smolt rearing is achievable if water temps permit
- Effects of these approaches on reducing domestication selection require targeted research

# Hydraulic Redd Sampling

| Benefits                                                       | Drawbacks                                                                             |
|----------------------------------------------------------------|---------------------------------------------------------------------------------------|
| Can limit # eggs collected/female                              | Unknown damage to non-collected embryos                                               |
| Broader genetic representation to reach a given release target | Requires frequent redd surveys and high effort to recovery embryos                    |
| Natural and sexual selection occurs in the wild                | Limits on maximum number that can be collected                                        |
| Requires no weirs or traps and no pre-<br>spawning mortality   | Most appropriate for smaller programs (<50,000 eggs)                                  |
| High embryo survival in hatchery                               | Impossible in some rivers (e.g.,<br>steelhead rivers with high early spring<br>flows) |
| Better chance at short-term maintenance of N <sub>e</sub>      | No pathology data on adults                                                           |

# Population size (N) and breeders represented in embryo collection (B)

#### **Assumptions and estimates**

•0.67 females per redd (*Kuligowski et al.* 2005, Berejikian et al. 2005)

•N = # redds observed x 0.67 x 2 (i.e.,1:1 sex ratio)

•B = # redds represented in egg collection x 0.67 x 2
•4,000 eggs per female

# Targeting number of breeders

How many eggs would be spawned to obtain the genetic representation that was obtained by hydraulic sampling?

