Occupancy and habitat use by larval lamprey in Bonneville and The Dalles pools
anto overview of standard sampling methods

Larval Lamprey in Mainstem Columbia R.

Historically...

- Anecdotal observations
- At hydropower projects (JBS)
-'browns' and 'silvers'
- As prey of avian predators
- Parasitizing migratory fish (as juveniles)
- Juveniles migrating through to saltwater
- Larvae lost from tributary populations

G. KovalchuK, PSMPC

Unknowns

-Larval lamprey utilizing/rearing in mainstem habitats
-Active vs. passive downstream movement
-Effects of hydrosystem operation on larval lamprey

- Dewatering/stranding, downstream passage
-Recruitment
-Methods for quantitative sampling of patchy distribution in large rivers

Knowns
-Lamprey collected in BON reservoir - preliminary work in 2010-2011

Work history

- 2009 - Lower Willamette - Jolley et al. 2012, TAFS
- 2010 - BON pool, BON tailwater, Lower Columbia River
- 2011 - BON tailwater, BON tributary mouths and lower reaches
- 2012 - TDA pool, TDA tributary mouths
- 2013 - BON, TDA pools, trib mouths, shallow water strata

Evaluation of larval Pacific lamprey rearing in mainstem areas of the Columbia and Snake
rivers impacted by dams
Broad objectives

- Evaluate whether mainstem pools are occupied by larval lamprey
- Evaluate strata-specific larval lamprey occupancy of mainstem pools
- Evaluate the size of larval lamprey rearing in pools

Tools and techniques

Question - Do larval lamprey occupy XX area?

Define sample area ('The Where')

1. Bonneville Reservoir (as a single strata)
2. The Dalles Reservoir (as a single strata)
3. Tributary mouths/deltas (within the pools)
4. Shallow water zone (influenced by pool elevation changes)

Tools and techniques

From: Jolley et al. 2012, Occupancy and Detection of Larval Pacific Lampreys and Lampetra spp. in a Large River: the Lower Willamette River

1) The How: Sampling - deepwater electrofishing technology
2) The Where: Random, spatially balanced site selection = quantitative unbiased sample framework

- GRTS approach: generalized random tessellation stratified

3) The Effort: Reach specific detection probability guidance for sampling effort, given level of certainty

- 34 sample quads $=>90 \%$ certainty when 0 detected

Bonneville Reservoir: Site Selection

GRTS Framework

1. $30 \times 30 \mathrm{~m}$ quads $(90,200)$
2. UTM center points
3. GRTS script in Program R

- Numerically ordered
- Random
- Spatially balanced

4. $\mathrm{N}=34$ quadrats

Tributary Mouth: Site Selection

GRTS Framework

1. Selected from BON GRTS points
2. 500 m radius from confluence
3. $N=34$

The Dalles Reservoir: Site Selection

GRTS Framework

1. $30 \times 30 \mathrm{~m}$ quads
$(41,574)$
2. $N=34$

Deschutes Mouth: Site Selection

GRTS Framework

1. 500 m radius from confluence
2. $N=34$

Shallow Water Strata

Sept 2006 - Sept 2013 Bonneville Forebay Pool Elevation (ft)

Sept 2006 - Sept 2013 The Dalles Tailwater Discharge (cfs)

Shallow Water Strata

2D Hydrodynamic Model

- BON forebay elevation and TDA tailwater
- Bounding conditions modeled

Shallow Water Strata

Shoreline Model

- Low and high water conditions
- Area between potentially dewatered

Tools and techniques

Deepwater electrofisher methodology

-Boat-mounted bottom sampler ('bell') -Samples $0.61 \mathrm{~m}^{2}$
-Suction pump coupled to ABP-2 efisher

Bergstedt and Genovese 1994

Tools and techniques

-3 pulses/sec, 10\% duty, 2:2 pulse train -Voltage $0.6-0.8 \mathrm{~V} / \mathrm{cm}$ at substrate -1 min pulse w/concurrent suction (+1 min additional suction)
-Larvae strained into collection basket
 -Deployed in depths up to 68'

Tools and techniques

Captured larvae are

- Anesthetized
- Measured for TL
- Identified to genus using caudal pigmentation
- Caudal fin clip
- Released

2013 Preliminary Results

- All strata occupied by larval lamprey (PCL at all but LWS)
- The Dalles Pool occupied only within Deschutes River mouth
- Detection (d) of larvae was 0.03 in BON, and 0.11 in tributary mouth strata
- Sampled depths 0.2-20.7 m, lampreys occupied 0.3-13.1 m
- Number larvae in any quadrat 0-14

Date	Reach	Quads sampled	Quads where detected	d	Number larvae	PCL	WBL UNID	
$8 / 7$	Deschutes mouth	34	3	0.09	7	1	0	6
$8 / 14-8 / 15$	Klickitat mouth	34	4	0.12	6	5	0	1
$8 / 29-9 / 4$	Klickitat mouth	34	9	0.26	53	4	0	49
$9 / 11$	Klickitat mouth	34	12	0.35	42	3	0	39
$8 / 19$	Wind mouth	34	6	0.18	17	3	8	6
$9 / 10$	Wind mouth	34	7	0.21	23	7	8	8
$9 / 24$	Wind mouth	34	8	0.24	25	2	7	16
$9 / 12-10 / 22$	Hood mouth	34	3	0.09	6	3	0	3
$9 / 12-11 / 4$	White Salmon mouth	34	4	0.12	7	4	0	3
$11 / 19$	Little White Salmon mouth	34	3	0.09	4	0	4	0
$11 / 4-11 / 18$	Bonneville Reservoir	34	1	0.03	2	2	0	0
$11 / 20-11 / 21$	The Dalles Reservoir	32	0	0.00	0	0	0	0

Species

Lampetra spp.

Preliminary Results

Pacific lamprey

- Abundant age 0 larvae
- TL range 15-140 mm

10
5

Substrate

	Pacific						Western brook
Year	Reach	lamprey	lamprey	Unid	Total	Source	
2009	Lower Willamette River	0.07	5	6	1	12	Jolley et al. 2012c
2010	Bonneville Reservoir	0.02	1	0	0	1	Jolley et al. 2011a
	Bonneville Tailwater	0.00	0	0	0	0	
2011	Bonneville Tailwater	0.03	0	1	0	1	Jolley et al. 2012a
	Hood River mouth	0.06	1	1	0	2	
	Klickitat River mouth	0.00	0	0	0	0	
	White Salmon River mouth	0.00	0	0	0	0	
	Wind River mouth	0.29	22	9	6	37	
	Lower Klickitat River	0.26	13	0	2	15	Jolley et al. 2012b
	Lower White Salmon River	0.29	5	11	3	19	
	Lower Wind River	0.32	13	9	4	26	
Klickitat River mouth	0.12	3	0	2	5	Jolley et al. 2013b	
	White Salmon River mouth	0.03	1	0	0	1	
	Wind River mouth	0.29	6	15	16	37	
	Lower Klickitat River	0.03	1	0	0	1	
	Lower White Salmon River	0.09	0	4	0	4	
	Lower Wind River	0.24	4	10	1	15	
	The Dalles Pool	0.00	0	0	0	0	Jolley et al. 2013a
	Deschutes River mouth	0.00	0	0	0	0	
2013	Deschutes mouth	0.09	1	0	6	7	Jolley et al. in prep
	Klickitat mouth	0.12	5	0	1	6	
	Klickitat mouth	0.26	4	0	49	53	
	Klickitat mouth	0.35	3	0	39	42	
	Wind mouth	0.18	3	8	6	17	
Wind mouth	0.21	7	8	8	23		
	Wind mouth	0.24	2	7	16	25	
Hood mouth	0.09	3	0	3	6		
White Salmon mouth	0.12	4	0	3	7		
Little White Salmon mouth	0.09	0	4	0	4		
Bonneville Reservoir	0.03	2	0	0	2		
The Dalles Reservoir	0.00	0	0	0	0		

Summary

- BON and TDA pools are occupied with larval lamprey
- Detection rates were higher proximate to tributary inputs
- Multiple species over wide size range were present - large number of age-0 larvae
- Larval lamprey may be widely distributed throughout the Columbia River mainstem
- It is possible that mainstem areas of large rivers are important rearing areas for larval lamprey and that larvae may rear in these habitats for numerous years

2014 Work

- Sample shallow strata in BON
- Analysis of tissue samples for genetic ID
- JDA and MCN pools

Guidance for Pacific lamprey distribution and occupancy

- Goal - provide one technique and useful applications (mostly for wadeable areas)
- Goal - collaborate, increase efficiency among partners
- Not - dictate how to sample

Detection Probability Approach

- EPA/EMAP work

- Generalized Random Tesselation Stratified (GRIS)
- Random selection
- Spatially balanced
- Statistically robust

Probability of Detection - Model

EFISH

Estimating the probability of presence
if no fish are detected during sampling
prior P of presence $=\mathbf{0 . 5 0}$

Occupancy - Lamprey

>White Salmon River Application

- pre/post Condit dam removal assesment
- are lamprey there (above)?
- assume P(d) ~0.20 = 7 reaches (80% certainty)
- assess oc cupancy (3 ${ }^{\text {rd }}$ order patches)
- gain additional P(d)

White Salmon - Lamprey

White Salmon - Lamprey

Unit

Buck Creek	2007	21	0	<0.02
Tout Lake Creek	2007	21	4	1.00
Rattesnake Creek (b)	2007	3	$0<0.35$	
Litie Buck Creek	2008	8	0	<0.20
Mil Creek	2008	7	0	<0.20
Morison Creek	2008	5	0	<0.30
Phelps Creek	2009	4	0	0.30
Weberg Creek	2009	3	0	<0.35
Gotchen Creek	2009	0	0	-
Upper Buck Creek	2009	2	0	<0.40
Rattesnake Creek 2007, 2009	21	0	<0.02	
Green Canyon Creek	2010	8	8	0
Cave Creek	2010	0	<0.20	
NinefootCreek	2010	8	0	<0.20
Cascade Creek	2010	4	0	0.30
Mclloy Creek	2010	4	0	0.30

Lessons

1)Can we use reaches/GRTS?

1) YES
2)What is $P(d)$?
2) Approximately 0.95 (Cedar Creek experience)
3) HIGHLY detectable
3)Required Effort?
4) $3.5 \mathrm{~min} /$ reach to detect
5) Evaluate occupancy (8 reaches)
6) Determine P(d) (21 reaches)

Limitations/Opportunities

1) Unknown relationship between (i.e.) abundance \& D.P. 1) Reintroductions could help
2) Standardized approach throughout region?

Workshops

- Stay tuned on workshop announcements
- Contact me if you are interested
- Questions....

Preliminary Results

41

The problem: detecting rare/patchily distributed animals

	Present	Absent
Present	Correct	Non-sensical
Absent	Incorrect (false absence)	Correct

