Occupancy and habitat use by larval lamprey in Bonneville and The Dalles pools and overview of standard sampling methods

> Jeffrey C. Jolley Gregory S. Silver Joseph J. Skalicky Timothy A. Whitesel U.S. Fish and Wildlife Service Columbia River Fisheries Program Office

Larval Lamprey in Mainstem Columbia R.

Historically...

- Anecdotal observations
 - At hydropower projects (JBS)
 - -'browns' and 'silvers'
 - As prey of avian predators
 - Parasitizing migratory fish (as juveniles)
- Juveniles migrating through to saltwater
- Larvae lost from tributary populations

Unknowns

- •Larval lamprey utilizing/rearing in mainstem habitats
- Active vs. passive downstream movement
- Effects of hydrosystem operation on larval lamprey
 - Dewatering/stranding, downstream passage
- Recruitment
- Methods for quantitative sampling of patchy distribution in large rivers

Knowns

•Lamprey collected in BON reservoir – preliminary work in 2010-2011

Work history

- 2009 Lower Willamette Jolley et al. 2012, TAFS
- 2010 BON pool, BON tailwater, Lower Columbia River
- 2011 BON tailwater, BON tributary mouths and lower reaches
- 2012 TDA pool, TDA tributary mouths
- 2013 BON, TDA pools, trib mouths, shallow water strata

Evaluation of larval Pacific lamprey rearing in mainstem areas of the Columbia and Snake rivers impacted by dams

Broad objectives

- Evaluate whether mainstem pools are occupied by larval lamprey
- Evaluate strata-specific larval lamprey occupancy of mainstem pools
- Evaluate the size of larval lamprey rearing in pools

Tools and techniques Question – Do larval lamprey occupy XX area?

Define sample area ('The Where')

- 1. Bonneville Reservoir (as a single strata)
- 2. The Dalles Reservoir (as a single strata)
- 3. Tributary mouths/deltas (within the pools)
- 4. Shallow water zone (influenced by pool elevation changes)

Tools and techniques

From: Jolley *et al.* 2012, Occupancy and Detection of Larval Pacific Lampreys and *Lampetra* spp. in a Large River: the Lower Willamette River

- 1) The How: Sampling deepwater electrofishing technology
- 2) The Where: Random, spatially balanced site selection = quantitative unbiased sample framework
 - GRTS approach: generalized random tessellation stratified
- 3) The Effort: Reach specific detection probability guidance for sampling effort, given level of certainty
 - 34 sample quads = >90% certainty when 0 detected

Bonneville Reservoir: Site Selection

GRTS Framework

- 1. 30x30 m quads (90,200)
- 2. UTM center points
- 3. GRTS script in Program R
 - Numerically ordered
 - Random
 - Spatially balanced
 - 4. N = 34 quadrats

Tributary Mouth: Site Selection

GRTS Framework

- 1. Selected from BON GRTS points
- 2. 500 m radius from confluence
- **3.** N = 34

The Dalles Reservoir: Site Selection GRTS Framework 1. 30x30 m quads (41,574) 2. N = 34

Deschutes Mouth: Site Selection

GRTS Framework 1. 500m radius

from confluence

2. N = 34

Shallow Water Strata

Sept 2006 - Sept 2013 Bonneville Forebay Pool Elevation (ft)

Sept 2006 - Sept 2013 The Dalles Tailwater Discharge (cfs)

Shallow Water Strata

2D Hydrodynamic Model

- BON forebay elevation and TDA tailwater
- Bounding conditions modeled

Shallow Water Strata

Shoreline Model

- Low and high water conditions
- Area between potentially dewatered

Tools and techniques Deepwater electrofisher methodology •Boat-mounted bottom sampler ('bell') •Samples 0.61m²

•Suction pump coupled to ABP-2 efisher

FIGURE 1.-(A) Deepwater electrofishing device for driving sea lamprey larvae from the bottom and (B) the pumping system used to move them to the surface for collection.

Bergstedt and Genovese 1994

Tools and techniques

3 pulses/sec, 10% duty, 2:2 pulse train
Voltage 0.6 - 0.8 V/cm at substrate
1 min pulse w/concurrent suction (+1 min additional suction)
Larvae strained into collection basket
Deployed in depths up to 68'

Tools and techniques

Captured larvae are

- Anesthetized
- Measured for TL
- Identified to genus using caudal pigmentation
- Caudal fin clip
- Released

2013 Preliminary Results

- All strata occupied by larval lamprey (PCL at all but LWS)
- The Dalles Pool occupied only within Deschutes River mouth
- Detection (*d*) of larvae was 0.03 in BON, and 0.11 in tributary mouth strata
- Sampled depths 0.2-20.7 m, lampreys occupied 0.3 13.1 m
- Number larvae in any quadrat 0 14

		Quads	Quads where					
Date	Reach	sampled	detected	d	Number larvae	PCL	WBL	UNID
8/7	Deschutes mouth	34	3	0.09	7	1	0	6
8/14-8/15	Klickitat mouth	34	4	0.12	6	5	0	1
8/29 - 9/4	Klickitat mouth	34	9	0.26	53	4	0	49
9/11	Klickitat mouth	34	12	0.35	42	3	0	39
8/19	Wind mouth	34	6	0.18	17	3	8	6
9/10	Wind mouth	34	7	0.21	23	7	8	8
9/24	Wind mouth	34	8	0.24	25	2	7	16
9/12 - 10/22	Hood mouth	34	3	0.09	6	3	0	3
9/12 - 11/4	White Salmon mouth	34	4	0.12	7	4	0	3
11/19	Little White Salmon mouth	34	3	0.09	4	0	4	0
11/4 - 11/18	Bonneville Reservoir	34	1	0.03	2	2	0	0
11/20 - 11/21	The Dalles Reservoir	32	0	0.00	0	0	0	0
				Totals	192	34	27	131

Lampetra spp.

• 192 larvae total

- 34 Pacific lamprey
- 27 Lampetra spp.
- 131 unid. larvae

Preliminary Results

• Abundant age 0 larvae

Number

• TL range 15 – 140 mm

Total length (mm)

Substrate

			Pacific	Western brook			
Year	Reach	d	lamprey	lamprey	Unid	Total	Source
2009	Lower Willamette River	0.07	5	6	1	12	Jolley et al. 2012c
2010	Bonneville Reservoir	0.02	1	0	0	1	Jolley et al. 2011a
	Bonneville Tailwater	0.00	0	0	0	0	
2011	Bonneville Tailwater	0.03	0	1	0	1	Jolley et al. 2012a
	Hood River mouth	0.06	1	1	0	2	
	Klickitat River mouth	0.00	0	0	0	0	
	White Salmon River mouth	0.00	0	0	0	0	
	Wind River mouth	0.29	22	9	6	37	
	Lower Klickitat River	0.26	13	0	2	15	Jolley et al. 2012b
	Lower White Salmon River	0.29	5	11	3	19	
	Lower Wind River	0.32	13	9	4	26	
2012	Klickitat River mouth	0.12	3	0	2	5	Jolley et al. 2013b
	White Salmon River mouth	0.03	1	0	0	1	
	Wind River mouth	0.29	6	15	16	37	
	Lower Klickitat River	0.03	1	0	0	1	
	Lower White Salmon River	0.09	0	4	0	4	
	Lower Wind River	0.24	4	10	1	15	
	The Dalles Pool	0.00	0	0	0	0	Jolley et al. 2013a
	Deschutes River mouth	0.00	0	0	0	0	
2013	Deschutes mouth	0.09	1	0	6	7	Jolley et al. in prep
	Klickitat mouth	0.12	5	0	1	6	
	Klickitat mouth	0.26	4	0	49	53	
	Klickitat mouth	0.35	3	0	39	42	
	Wind mouth	0.18	3	8	6	17	
	Wind mouth	0.21	7	8	8	23	
	Wind mouth	0.24	2	7	16	25	
	Hood mouth	0.09	3	0	3	6	
	White Salmon mouth	0.12	4	0	3	7	
	Little White Salmon mouth	0.09	0	4	0	4	
	Bonneville Reservoir	0.03	2	0	0	2	
	The Dalles Reservoir	0.00	0	0	0	0	

Summary

- BON and TDA pools are occupied with larval lamprey
- Detection rates were higher proximate to tributary inputs
- Multiple species over wide size range were present large number of age-0 larvae
- Larval lamprey may be widely distributed throughout the Columbia River mainstem
- It is possible that mainstem areas of large rivers are important rearing areas for larval lamprey and that larvae may rear in these habitats for numerous years

2014 Work

- Sample shallow strata in BON
- Analysis of tissue samples for genetic ID
- JDA and MCN pools

Guidance for Pacific lamprey distribution and occupancy

- Goal provide one technique and useful applications (mostly for wadeable areas)
- Goal collaborate, increase efficiency among partners
- Not dictate how to sample

Detection Probability Approach

- EPA/EMAP work
- Generalized Random Tesselation Stratified (GRTS)
- Random selection
- Spatially balanced
- Statistically robust

Probability of Detection - Model

Occupancy - Lamprey

White Salmon River Application

- pre/post Condit dam removal assesment
- are lamprey there (above)?
- assume P(d) ~ 0.20 = 7 reaches (80% certainty)
- assess occupancy (3rd order patches)
- gain additional P(d)

White Salmon - Lamprey

White Salmon - Lamprey

Unit	Year	#RSam	#ROcc	Est. Prob. of Occ.
Buck Creek	2007	21	0	< 0.02
Trout Lake Creek	2007	21	4	1.00
Rattlesnake Creek (k	2007	3	0 < 0.35	
Little Buck Creek	2008	8	0	< 0.20
Mill Creek	2008	7	0	< 0.20
Morrison Creek	2008	5	0	< 0.30
Phelps Creek	2009	4	0	0.30
Wieberg Creek	2009	3	0	< 0.35
Gotchen Creek	2009	0	0	-
Upper Buck Creek	2009	2	0	< 0.40
Rattlesnake Creek 20	21	0	< 0.02	
Green Canyon Cree	2010	8	0 <0.20	
Cave Creek	2010	8	0	<0.20
Ninefoot Creek	2010	8	0	<0.20
Cascade Creek	2010	4	0	0.30
McIlroy Creek 2010		4	0	0.30

- 1)Can we use reaches/GRTS?
 - 1) YES
- 2)What is P(d)?
 - 1) Approximately 0.95 (Cedar Creek experience)
 - 2) HIGHLY detectable
- 3)Required Effort?
 - 1) 3.5 min/reach to detect
 - 1) Evaluate occupancy (8 reaches)
 - 2) Determine P(d) (21 reaches)

Limitations/Opportunities

- Unknown relationship between (i.e.) abundance & D.P.
 Reintroductions could help
- 2) Standardized approach throughout region?

Workshops

- Stay tuned on workshop announcements
- Contact me if you are interested

• Questions....

Preliminary Results

The problem: detecting rare/patchily distributed animals

	Present	Absent
Present	Correct	Non-sensical
Absent		Correct

Number of samples