FLUVIAL RECONNAISSANCE OF ROCK CREEK AND SELECTED TRIBUTARIES WITH IMPLICATIONS FOR ANADROMOUS SALMONID HABITAT MANAGEMENT

Will Conley, Hydrologist Yakama Nation Fisheries Program Klickitat Field Office Wahkiacus, WA

Columbia Gorge Fisheries and Watershed Science Conference Gorge Discovery Center The Dalles, OR April 14[,] 2015

LOCATION

- 226 sq-mi watershed
- eastern Klickitat County
- Columbia R. tributary at River-Mile (RM) 230
- ~12 RM upstream of John Day Dam

Within the geographic region of the Mid-Columbia River DPS of steelhead trout (*Oncorhynchus mykiss*) [ESA threatened]

STUDY GOALS AND OBJECTIVES

Develop recommendations for stream restoration, protection, and enhancement potential for steelhead habitat in the Rock Creek watershed and identify areas needing further investigation.

Three components:

- 1) <u>Synthesize existing literature and data</u> Compile and review existing data, maps, and reports related to the Rock Creek subbasin, with an emphasis on those related to steelhead habitat.
- <u>Fluvial Reconnaissance</u> Conduct spatial analyses, modeling, and interpretation of hydrogeomorphic and physical habitat data using combination of field observations, pre-existing habitat data, and remote sensing techniques.
- 3) <u>Implications for Physical Habitat Management</u> Incorporate results from items 1 and 2 with findings from prior fisheries studies. Provide general suitability recommendations for stream protection, restoration and/or enhancement actions.

STUDY AREA

- Determined by availability of high resolution (LiDAR) topography and aerial photography.
- LiDAR extent partly based on stream reaches identified by local biologists likely to support anadromous salmonid production

Remote Sensing:

~58 miles (cumulative) of valley corridors, including:

- Rock Cr. 25.4 mi
- Quartz Cr. 10.4 mi
- Squaw Cr. 9.9 mi
- Luna Gulch 5.6 mi
- Harrison Cr. 3.8 mi
- White Cr. 2.2 mi
- Box Canyon 0.5 mi

Field:

• Rock Cr VM 3.0 to 17.0

ELEVATION & MEAN ANNUAL PRECIPITATION

Basin elevation

- Mean = 2,293'
- Minimum = 264'
- Maximum = 4,730'

83% of watershed < 3,000'

Mean annual precipitation

- Basin average = 16.6"
- Basin maximum = 25.5"
- Basin minimum = 9.5"

GEOLOGY

- 3 major units of CRB Group:
 - mostly Saddle Mountains and Wanapum basalts
 - Grand Ronde basalts:
 Minor surficial basin area (~1%)
 High frequency of stream contact:
 - · >9.5 mi. of Rock Cr
 - >1.0 mi. of Quartz Cr
 - >0.8 mi. of Squaw Cr
 - · >0.5 mi. of Harrison Cr
- Yakima Fold Belt
- Maximum inundation elevation of late-Pleistocene outburst floods ~1,115' (Benito and O'Connor, 2003)

PEAKFLOW HYDROLOGY - SEASONALITY

- precipitation and peakflow distributions are strongly seasonal
- annual maxima distribution lags ~1 month behind mean monthly precipitation

PEAKFLOW HYDROLOGY – CONCURRENCE

 \rightarrow East

	Little Klickitat R. nr Goldendale (83.5		W. Prong Little Klickitat R. nr G'dale		Rock Creek nr		Alder Creek nr		Alder Creek nr		
Matan	mi)	(10.4	(10.4 mi ²)		Roosevelt (213 mi ²)		BICKIETON (8.35 ml ⁻)		Alderdale (197 ml ²)	
water					-						
Year	Date	Flow (cfs)	Date	FIOW (CTS)	Date	Flow (cfs)	Date	FIOW (CTS)	Date	FIOW (CTS)	
1946	12/15/46	1,330	1			2,658					
1948	1/7/48	1,760				3,894					
1949	2/17/49	888	Cal	culate M	lissing						
1950	2/24/50	1,360				2,744					
1958	2/15/58	1,020		/alues w	/ith	h					
1959	1/11/59	526									
1960	3/29/60	511		Regressi	ion						
1961	2/9/61	2,830	2/9/61	192		6,970					
1962	12/24/61	456	12/24/61	38							
1963	2/3/63	2,090	2/3/63	98	2/3/63	3,940	2/3/63	880	2/3/63	5,560	
1964	1/25/64	760	1/25/64	37	1/25/64	912	1/25/64	58	1/26/64	68	
1965	12/22/64	5,200	B/23/64		cocc 12/22/64	14,200 *	12/22/64	973	12/22/64	17,600	
1966	3/9/66	530		ioh veŝi	COOI011/66	962	3/9/66	149	1/6/66	670	
1967	1/28/67	673	1/28/67	77	1/29/67	1,570	1/28/67	110	1/28/67	154	
1968	2/23/68	1,300	2/23/68	144	2/23/68	1,760	1/15/68	137	2/3/68	513	
1969	3/17/69	618	1/7/69	72		-	1/6/69	251			
1970	1/23/70	1,760	1/23/70	182		3,894	1/23/70	164			
1971	1/16/71	1,340	1/16/71	105		2,687	1/16/71	234			
1972	1/20/72	3,290		culate M	issing	8,293	1/20/72	293			
1973	12/21/72	720	1/13/73	56			1/13/73	240			
1974	1/15/74	4,800	1775772	/alues w	/ith ===	12,634	1/16/74	992			
1975	2/12/75	418	2/12/75	138			3/1/75	165			
1976	12/4/75	1,230		regress	ion	2,370	12/26/75	115			
1977	11/30/76	776			and does not been and been been and been been and been been and been been		2/12/77	0.5			
1978	12/13/77	2,550				6,165					

* USGS reports maximum daily average

Values in blue are calculated by regression with Little Klickitat gage

PEAKFLOW HYDROLOGY - FREQUENCY

Relationships

	Little Klickitat nr Goldendale (cfs)	Rock Creek nr Roosevelt (cfs)						
Frequency Analysis (Gamm Gage Observations		Excel Calculation Region 6 USGS Regressions	GIS Value Using Region 6 USGS Regressions	Calculated from Little Klickitat (Gamma) Using Local Regression				
Q2	1,219	1,091	766	2,339				
Q5	2,262	n/a	n/a	5,337				
Q10	2,983	3,254	2,646	7,410				
Q25	3,895	4,887	n/a	10,032				
Q50	4,567	6,356	n/a	11,964				
	5 000	0.440	7 4 4 0	40.050				

Field Interpretation of minimum high water surface:

- highest modern indicators = 1964 peakflow (~14-18kcfs; ~Q100)
 - mostly, old LWD and tree scars
- "fresh" indicators = March 2012 (~3,300 cfs; ~Q3)
 - fine-textured organic deposits, uncolonized fines, LWD, tree scars

MINIMUM HIGH WATER SURFACE: ~Q100

Bridge (left) that was washed off its piling foundation (right) by the 1964 flood.

Remains of different washed-out bridge (left) with accumulated sediment (right).

MINIMUM HIGH WATER SURFACE: Q25 - Q100

Woody debris buried by needle-cast (left, middle). Racked woody debris and scar on oak tree (right).

Fluvially re-worked walnut trees on (left) and tree with downstream lean (right) along high floodplain.

MINIMUM HIGH WATER SURFACE: ~Q3

Fresh woody debris jam and tree scars

Fresh woody debris and detritus

Band of detritus

Gravel sheet with detritus patches

Fresh sand deposit

MINIMUM HIGH WATER SURFACE: MULTIPLE

MINIMUM HIGH WATER SURFACE: INDETERMINATE

PERENNIAL STEELHEAD HABITAT

- baseflow habitat censuses 2009 2012 (Allen et al. 2014)
- 14 miles of Rock and Squaw creeks (77% of total subbasin stream length < 0.025 ft/ft gradient).
- Underwater cover limited juvenile survival during summer baseflow in all years.
- Surveys conducted during baseflow (Sept.)
 - average across years (by total length):
 17% "pool" (wetted at time of survey)
 47% "non-pool wet"
 36% "dry" (dries-up seasonally)
 - 2012 (a very dry summer/fall):

 mapped to LiDAR topography (right)
 14% perennial pools (blue in map)
 40% "non-pool wet" (light green in map)
 46% dries-up seasonally (red in map)

TYPICAL WINTER HABITAT

photos: January 2014

Simple, shallow plane-bed habitat conditions predominate throughout much of Rock Creek.

Higher-quality habitat is uncommon and tends to be forced, typically by bedrock or riparian trees.

BASEFLOW INTERMITTENCY

- Perennial reaches often entrenched
- Seasonal reaches often unentrenched, may be important for recharge
- Entrenchment sometimes correlated with valley confinement

- Other likely controls
 - Proximity to groundwater inflow
 - Subsurface hydraulic conductivity
 - Cumulative evapotranspiration

HIGH RELIEF DIAGONAL BARS

- Arrive as sediment slugs during high magnitude peakflows (>Q25)
- Get re-worked by lower magnitude peaks (<Q10)
- "seam" channel migrates headward along resistant boundary
- "chute" channels carry cross-over flow

TORRENTS?

- Air photos indicate the 1964 peakflow was a signature event
- 1974 and 1996 peakflows also caused morphologic shifts
- Valley-scale lobate features (below) and poorly-sorted floodplain deposits (bottom) suggest a history of torrents or debris flows, though were not specifically correlated with a particular event.

LANDSCAPE AND TEMPORAL CONTEXTS

- Intrinsic watershed characteristics
- Groundwater development
- Climate forecasts

Watershed Characteristics

Dynamic stream behavior is largely a function of intrinsic watershed characteristics, including:

- equant shape
- low elevation
- south-facing aspect
- low annual precipitation
- no appreciable surface storage
- low infiltration rates
- moderately-high relief

STREAM TEMPERATURE

- 2080 temperatures already being observed at multiple stations
- Model over-represents summer flow network
- Important take-home message: general warming trend

GROUNDWATER DEVELOPMENT

FISHERIES CONTEXT

- Recovery Plan
- Spawning surveys
- PIT-tagging
- Genetics

RECOVERY PLAN

NMFS (2009) and ICTRT (2003, 2009):

- single Major Spawning Area (MaSA) for Rock Cr. Subbasin
- within Washington Gorge Management Unit
 - White Salmon Klickitat Rock Creek Alder Creek
 - Chapman Cr.
 Wood Gulch
 Pine Creek

- Glade Creek
- within Cascades Eastern Slope Tributaries Major Population Group (MPG)
 - Klickitat
- Deschutes Rock Creek
- Fifteenmile
- White Salmon
- Small tributaries east of Rock Creek (Chapman, Pine, & Wood) •
 - Part of extirpated Willow Creek MPG
 - Current production likely either ephemeral, linked with upstream tributary (in Umatilla MPG), or result of straying

STEELHEAD POPULATION CHARACTERISTICS

Spawner surveys suggest good spawner abundance:

	Live Adults		Redds		Miles Surveyed		Redds/Mile		Estimated Adults	
Year	Rock Cr	Tribs	Rock Cr	Tribs	Rock Cr	Tribs	Rock Cr	Tribs	ODFW ^a	WDFW ^b
2009	7	30	12	33	5.0	7.5	2.4	4.4	81	73
2010	84	20	89	38	9.2	5.5	9.7	6.9	220	204
2011	73	81	187	100	20.8	6.0	9.0	16.7	492	461
2012	38	21	159	99	29.8	27.1	5.3	3.7	443	414
2013	36	6	84	22	20.8	22.0	4.0	1.0	184	170

^a ODFW (2013) ^b Miller et al. (2014)

PIT-tag based metrics paint a more tempered picture:

Smolt-to-Adult ratio (SAR; based on data presented in Harvey 2014, above):

- most native populations: 2% to 3% considered adequate for replacement
- Rock Creek (2011-2013): 16.1% to 17.2%.
- Suggests a substantial immigration component in Rock Creek population

Origin (Allen et al. 2014a):

- 85% of unique adult detections of known juvenile origin from Snake R. basin
- Of these, 55% were known to have been transported downstream by barge

STEELHEAD GENETICS

- Genetic sampling indicates the steelhead run (yellow ovals) to be highly introgressed with the Snake River DPS (Matala 2014).
- *O. mykiss* samples from sites upstream of extended highergradient reaches group where expected (green oval).
- Currently unclear if steelhead in Rock Creek are a viable naturalized Snake River DPS subpopulation or sustained solely by routine straying.

Whether or not the watershed is a meta-population "sink" is important to ensure that habitat actions are necessary and potentially effective.

WHAT DOES IT ALL MEAN?

- Dynamic stream and watershed behavior
- Marginal conditions for steelhead persistence
- Future conditions likely to become more marginal
- Uncertain viability of existing steelhead population

TO ENHANCE STEELHEAD HABITAT (OR NOT)?

(balancing benefit and effort)

SYNOPSIS

- Marginal conditions for population persistence
- MANY, substantial uncertainties, but....
 - Future habitat conditions likely to become more marginal
- No apparent fisheries benefit treating seasonal reaches
- Extended duration of post-disturbance response ('64, '74, '96) combined with expected recurrence frequency of such disturbances suggest many of Rock Creek's alluvial reaches can be expected to be in a nearly continual state of geomorphic adjustment.
- High potential for well-intended in-stream actions to:
 - do harm or have unintended consequences
 - have short service-life
- Uncertain population status could result in no benefit to population or Mid-Columbia DPS

WHILE ANSWERING POPULATION VIABILITY QUESTIONS...

Some interim habitat actions could be pursued, including:

- securing senior protections for instream flow & physical habitat,
- passive techniques:
 - allowing / encouraging beaver colonization
- Limited implementation of manual additions of locally-sourced woody debris (branches and tops) to improve instream cover.
- Re-frame efforts to be more watershed focused:
 - Invasive species

All actions should be organized hierarchically with baseflow protections above all other actions.

ADDITIONAL INFORMATION NEEDS

- document geographic distribution of perennial habitats
- groundwater / surface water relationships
- effectiveness monitoring of manual woody debris additions on summer survival
- ongoing PIT-tagging to address questions of productivity and population status

ACKNOWLEDGEMENTS

Project funding was provided by the Bonneville Power Administration via Project Number 2007-156-00.

Pre-existing data were received from:

John Foltz (Klickitat County), Elaine Harvey (YNFP), Loren Meagher (EKCD), and Greg Morris (YNFP)

Constructive suggestions and edits were received from:

- Jeanette Burkhardt, Watershed Planner, YN Fisheries Program (YNFP)
- Scott Ladd, Hydrologist, YN Water Resources Program (YNWRP)
- Tom Ring, Hydrogeologist, YNWRP
- Joe Zendt, Fisheries Biologist, YNFP

Special Thanks:

- David Lindley (YNFP) reviewed multiple versions and was instrumental in refinement of the report.
- Brady Allen (USGS) provided baseflow data and insights and provided a very thorough review
- Private landowners for providing access and Elaine Harvey for making arrangements.

Questions?

