Wind River IMW: Steelhead Responses to Dam Removal and Habitat Restoration

Klickitat and White Salmon Rivers (Columbia Gorge) Fisheries and Watershed Science Conference 4/15/2014

Dan Rawding Charlie Cochran

Pat Connolly Ian Jezorek

Talk Outline

- Wind River Ecological History
- Hemlock Dam Removal Study Design
- Data Collection Methods
- Preliminary Results and Power Analysis
- Conclusions

Basin:

Drainage area: 580 km² Elevations from 30-1200 m Rain dominated hydrograph Monthly Mean Discharge 5.7-60 cms Land Ownership & Use:

77% USFS multi-purpose 23% timber, rural residential Location:

Columbia River rkm 250 ~15 km Bonneville Dam Anadromous fish:

Summer Steelhead (Hatchery Spring Chinook) Shipherd Falls (rkm 3) Barrier to salmon Wild steelhead refuge (pHOS 1%)

Fish Habitat in the Wind: Logging

Railroad Logging (begins ~ 1890)

Splash Dams

Log Drive Shipherd Falls 1990s

Fish Habitat in the Wind: Logging

Upper Wind River 1944

Fish Habitat in the Wind: Dams

Splash Dam at the Hemlock Site—1902

Dam completion—1935

- 26 feet high; 183 feet long
- Originally constructed for hydropower
- Retrofitted for irrigation in 1958
- Had low-moderate functioning fish ladder

1980-1990's Changes

- Northwest Forest Plan (1994)
 - Wind Tier 1 Key watershed
- Cessation of logging
- Focus on restoration
 - Ongoing in-stream work in Trout Creek
 - Mining reach restored in Upper Wind
 - Hemlock Dam planning begins

1980-1990's Fish Monitoring Begins

- Fly fishing club starts snorkel surveys (1988-1989)
- Steelhead abundance noted to be very low (1990's)
- Steelhead listed (1998)
- Hatchery Steelhead Plants terminated (1997)
- Current Wind IMW monitoring initiated (1992-2000)
 - Adults and smolts at basin and sub-basin scales

Hemlock Dam Removal (2009)

- Total dam removal cost estimated at \$2.7 million
- Goal: Increase viability, productivity of Wind River steelhead.
- Objectives:
 - Improve passage for adult and juvenile steelhead passage
 - Reduce peak stream temperatures in lower Trout Creek.
 - Restore substrate transport in lower Trout Creek
 - Increase habitat complexity in lower Trout Creek

Hemlock Dam (2009)

Hemlock Dam (2010)

In-stream Work in Trout Creek

Year	Major Habitat Accomplishment	Metrics	Cost
2005	Upper Trout Creek Instream	1,300 logs placed in 2 miles of stream	\$120,000
	Restoration	17,000 native plants	
2006	Upper Trout Creek Riparian Thinning	250 sites thinned to release conifers	\$150,000
2007	Upper Trout Creek Instream	1,000 whole trees one river mile	\$130,000
	Restoration by helicopter	35 acres invasive plant removal	
2009	Hemlock Dam Removal	Hemlock Dam Removed 2,900 native plants in reservoir footprint	\$2,700,000
2012	Martha Creek Dam Removal (Trout Cr. Trib)	Removed dam (7' x 40') from Martha Creek	\$50,000

*Some restoration occurred outside the treatment basin (road decommisioning, culvert removal in non fish bearing, planting)

Talk Outline

- Wind River Ecological History
- Hemlock Dam Removal Study Design
- Data Collection Methods
- Preliminary Results and Power Analysis
- Conclusions

Trout Creek BACI and BA design

- Steelhead response to dam removal and instream work in Trout Creek sub-basin (30 sq. mi)
 - Passage improvement at Hemlock
 - Improved habitat in upper Trout Creek
- Use existing basin/subbasin design
 - Treatment: Trout Creek
 - Control(s):
 - Adults: Wind R. minus Trout Creek; (subbasins)
 - Juveniles: Upper Wind, Panther Creek
- Cannot test for changes due to improved habitat quality downstream of dam site

Testable Hypotheses

- 1. Ho: No change in abundance of: (BACI)
 - a. Smolts
 - b. Adults
 - c. Parr (index)
- 2. Ho: No change in Parr : Smolt ratio in smolt traps (BACI)
- 3. Ho: No change in survival (BACI)
 - a. Smolts migrating downstream
 - b. Trout Creek vs. UW adults migrating upstream
 - c. Kelts migrating downstream
- 4. Ho: No change in percentage of repeat spawners. (BACI)
- 5. Ho: No change in Productivity/Capacity of Trt Crk. (BA)

Timing of First Potential Responses

Pre-Treatment Data

Post-Treatment Data in Hand

Future Post-Treatment Data

Talk Outline

- Wind River Ecological History
- Hemlock Dam Removal Study Design
- Data Collection Methods
- Preliminary Results and Power Analysis
- Conclusions

Wind River IMW Data Collection

• Fish data

- Water temperature and water quality(~40 loggers throughout watershed; USGS, UCD, USFS)
- Benthic invert production (YIN index sites)
- Stream flow (two mainstem, historic tributary gauges)
- Habitat monitoring (USFS project-scale; CHaMP proposed for future)
- National Environmental Observatory Network (NEON) in development for Wind R. (air quality, temp, etc.)

Adult Monitoring

- Abundance
 - Wind River
 - mark-resight (2000-pres.)
 - Trout Creek
 - Hemlock Dam census (1992-2009)
 - PIT tag detection efficiency and mark-resight (2010-pres.)
- Bio-Samples
 - Scales, length, sex, origin, & tags (PIT and Floy)

(snorkel upper river)

Adult Data Sites

- PIT Tag Array (MUX)
- Tributary PIT Array (Allflex)
- Shipherd falls Adult trap
- Snorkel resight reach

≊USGS

Control Basin

Treatment Basin

Juvenile Monitoring

- Data (4 smolt traps)
 - All start between 1992and 1998
 - Smolt abundance
 - Parr abundance (index)
 - Bio-Samples
 - Lengths, scales, PIT tags

Juvenile Data Sites

- PIT Tag Array (MUX)
- Tributary PIT Array (Allflex)
- Smolt trap

Control Basin

Treatment Basin

PIT Tagging and instream arrays

- MR Smolt and Parr estimates
- Adult abundance in TC post treatment
- Life history information
- SAR Wind to Wind, Wind to BON, BON to BON
- Loss to fisheries, avian predators

Steelhead Parr Lifehistory: USGS Parr PIT-Tagging Areas (2011 and 2012)

Talk Outline

- Wind River Ecological History
- Hemlock Dam Removal Study Design
- Data Collection Methods
- Preliminary Results and Power Analysis
- Conclusions

Results: Adults

- Trout Creek abundance increased following dam removal...
- ...but so did the Wind
- Some indication Trout Creek abundance remains higher BUT methods an issue
- Good correspondence between treatment and control (R² =0.69) –good BACI

Adults t-test & Power BA vs. BACI

- t-test, α = 0.10, β = 0.90
- BA design effect size decreases from 43 to 16 adults
- BACI effect size decreases from 36 to 13 adults.
- Greater change for BA than BACI because BACI removes some variance through control

Results: Smolts

- Reasonable correspondence between TC and UW ($R^2 = 0.49$) \bullet
- Unexplained decrease in UW smolts immediately prior to dam ightarrowremoval
- No obvious jump in first year of post treatment data \bullet

Power: Smolts

- Ho: No change T-C difference in smolt production before and after dam removal
- Before T-C difference: mean = 43 smolts, sd= 394 (8 years)
- After T-C difference of mean = 431 smolts (24% effect size) for 8 yrs would yield significant results
- t-test, α = 0.10, β = 0.80, and equal variance

Power: Productivity/Capacity

- Ho: no change in productivity/capacity (BA analysis from Bradford et al. 2005)
- Models & alpha values influence detectable differences
- 50% change in smolt P/C over a 12 year period detectable with HS model but only partially with BH model ($\alpha = 0.20$)

Talk Outline

- Wind River Ecological History
- Hemlock Dam Removal Study Design
- Data Collection Methods
- Preliminary Results and Power Analysis
- Conclusions

Summary

- Too early to measure response of steelhead to effects of Hemlock Dam removal + Restoration
- Different from other dam removals
 - Prior access not completely blocked

Long pretreatment datasets allow better study

- Pretreatment data are variable (freshwater and marine)
- Identification of good controls (Upper Wind vs. Panther)
- Help identify monitoring timeframe necessary

Summary Cont.

• Power analysis

- Value of controls (BA vs. BACI)
- BA is problematic due to variable conditions
- Need for longterm monitoring to detect modest sized effects
- Change in abundance at sub-basin and basin scale harder to detect than project-scale change in density
- Wind restoration control subbasin issues
 - Restoration plans vs. Research
 - Some restoration may be OK in 'control' areas
 - Need to consider Effect Size, Timescale
- Adult abundance issues
 - Confounding of treatment and change In TC abundance methods
 - Violations to "I.I.D." assumptions for PIT array intrinsic efficiency
 - New PIT array will address this in 2014

Acknowledgements

- WDFW
 - Dan Rawding—study design, analytical framework, slides
 - Charlie Cochran—data collection and database management
 - Bryce Glaser—assistance with project management
 - WDFW seasonal technicians—data collection
- USGS
 - Pat Connolly—Study design, analytical framework
 - Ian Jezorek– PIT tag interrogator installation & maintenance, tributary tagging
- USFS
 - Brian Bair photos, slides, and information on dam removal
 - Bengt Coffin –photos and information on dam removal and restoration
- Bonneville Power Administration
 - Project Funding
 - Mary Todd Haight—project administration
- Wind River Watershed partners UCD, USFS, USFWS, USGS, & YN.

Questions?

Wind River Steelhead Timeseries

Mark-Resight —Index Snorkel

Wind Steelhead Modeled Spatial Distribution

Fishing in the Wind

"The Wind holds one of the best runs of summer-run steelhead in the State of Washington."

Bradner (1950), Bradner (1973)

Before_After (BA) Designs

- Compare data from multiple years collected from before and after dam removal for a difference typically with ANOVA, T-test, mix
 - Has temporal replication but lacks spatial replication.
 - Difference in the impact area is attributed to the actions but may be due to fish response to natural variations or cycles (marine survival, water temperatures, flooding, etc) or other activities.
 - Cannot disentangle response from natural variation and cycles in the impact area.

Before_After_Control_Impact (BACI) Design

- Measurements are taken at both the treatment (impact) and control site before and after the action and typically analyzed with ANOVA or Ttest.
 - $D_{ik} = X_i C_j X_i I_k = \mu + \eta_i + \varepsilon_{ik}$, μ =mean difference between control and impact, η_i = change in difference control and impact, and ε_{ik} = error associated with the differences.
 - To account for the problem with natural variation in the B_A design the impact area is paired to control area.
 - Has temporal replication but lacks spatial replication due to single control. The solution is to add another control site.

Preliminary results

- Post Dam Removal (2009) Data
 - Adults 2010-2012 spawn years
 - Smolts 2012 (only 2 year olds)
 - Parr index 2011-2012
- New method for Trout Creek adults since trap census not available
- Trout Creek smolt age is 2.25, so smolts produced by 2010 spawners started emigrating in Spring 2012

Power: Adult % of Basin

Trout Cr. Esc. Estimate using a DAG, 2010 & 11

Trout Creek Results

<u>Probability of Detection</u> p_det = 0.604 95% CI = 0.512-0.692

<u>Trout Cr. Abundance</u> N[2010] = 57 95% CI = 34-227

N[2011] = 137 95% CI = 77-280

Recommendations If more precise estimates are desired either improve detection efficiency w/additional interrogators, snorkel efficiency w/additional surveys, or both.

