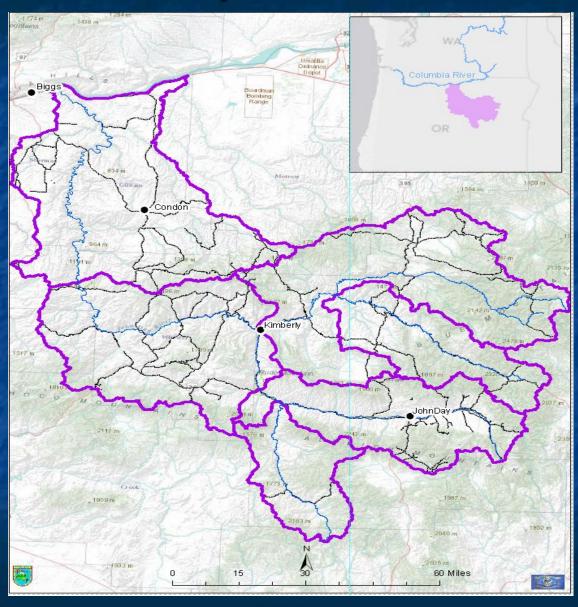
John Day River Basin Irrigation Efficiency

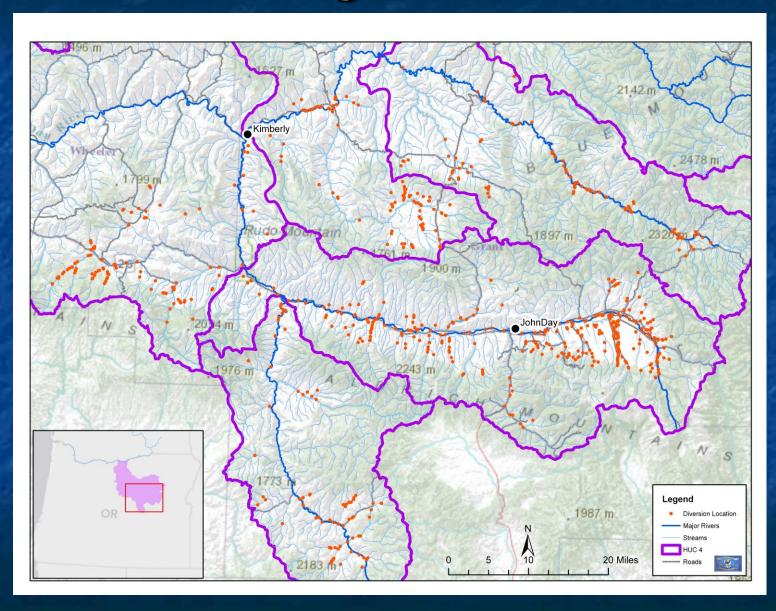
Chris Moan Fish Biologist


Confederated Tribes of the Warm Springs Reservation of Oregon

Outline

- John Day Basin irrigation background
- Methods and decisions
- Preliminary results and 2012 field season

John Day River Basin



John Day River Basin

 Climate ranges from sub-humid to semiarid

- Snowmelt driven system
 - Peak discharge March through June
 - Low flows August through October

Irrigation

 Water availability and consumptive use at 50% exceedance levels for the upper John Day River above the mouth of the South Fork

Month	Natural Stream Flow (cfs)	Consumptive Use	Consumptive use for Irrigation	Instream Requirement	Net Water Availability
JAN	229.0	4.8	0.0	80	144.0
FEB	346.0	5.1	0.0	118	223.0
MAR	493.0	5.6	0.0	118	369.0
APR	705.0	31.2	25.0	118	556.0
MAY	727.0	63.1	56.9	118	546.0
JUN	512.0	83.7	76.2	80	348.0
JUL	195.0	119.0	113.0	50	25.8
AUG	98.8	93.4	87.1	30	-24.6
SEP	77.7	63.3	57.0	30	-15.6
OCT	144.0	26.1	21.6	50	67.9
NOV	163.0	4.6	0.0	80	78.4
DEC	207.0	4.7	0.0	80	122.0

 Water availability and consumptive use at 50% exceedance levels for the upper John Day River above the mouth of the South Fork

Month	Natural Stream Flow (cfs)	Consumptive Use	Consumptive use for Irrigation	Instream Requirement	Net Water Availability		
JAN	229.0	4.8	0.0	80	144.0		
FEB	346.0	5.1	0.0	118	223.0		
MAR	493.0	5.6	0.0	118	369.0		
APR	705.0	31.2	25.0	118	556.0		
MAY	727.0	63.1	56.9	118	546.0		
JUN	512.0	83.7	76.2	80	348.0		
JUL	195.0	119.0	113.0	50	25.8		
AUG	98.8	93.4	87.1	30	-24.6		
SEP	77.7	63.3	57.0	30	-15.6		
ОСТ	144.0	26.1	21.6	5 0	67.9		
NOV	163.0	4.6	0.0	80	78.4		
DEC	207.0	4.7	0.0	80	122.0		

■ Two ESA species steelhead and bull trout

Chinook and lamprey

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Spring Chinook												
Spawning												
Rearing												
Migration												
Summer Steelhead												
Spawning												
Rearing (*1.)												
Migration	Holding		Enter Tribs					Enter JD		Holding		
Bull Trout												
Spawning												
Rearing												
Migration												
Pacific Lamprey												
Spawning												
Rearing (*2.)												
Migration (*3.)	Holding		Resume		Enter JD					Holding		

Irrigation Efficiency Study

Develop detailed water budget for each irrigation ditch

■ POD_{cfs} = POU_{cfs} + seepage + evapotransporation

 Create framework to allow managers to evaluate the benefit of piping projects

Dads Creek Ditch

$POD_{cfs} = POU_{cfs} + seepage + evapotransporation$

- Stream flows weekly from June Sept.
- Stage height daily

Flow complications

- Best method for low flow
 - Weirs
 - Flow trackers

Inconsistent flow

Logger technical issues

POD_{cfs} = POU_{cfs} + **seepage** +evapotransporation

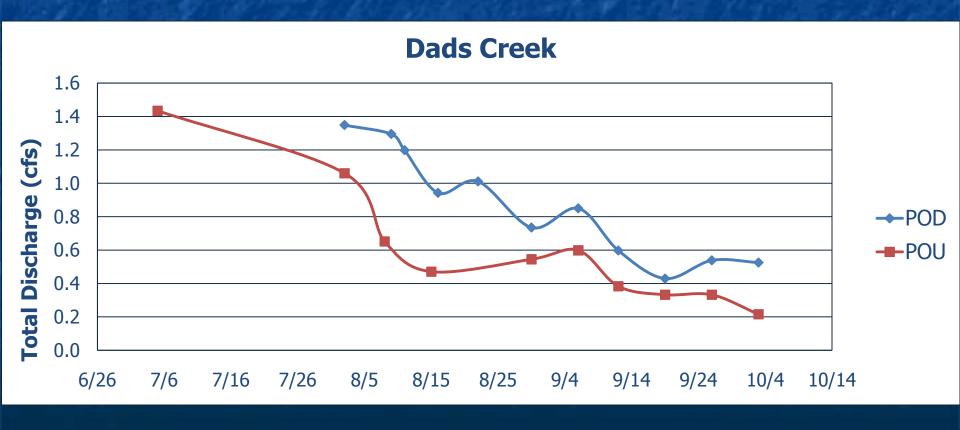
Modified Idaho seepage meters

Calculate seepage flux (ml/min)

At least two per ditch

Seepage complications

Seepage meter construction


Hard substrates

Broad soil categories

Results - Flow

 \blacksquare 0.64 - 0.1 cfs or 415,000 - 62,000 gallons/day

Results - Seepage

Seepage meter location	Average seepage flux (ml/min)
Dads POD plastic	-0.0042
Dads POD metal	-0.0054
Dads POU plastic	0.0005
Dads POU metal	0.0036

2012 Field season

Staff continuity

Longer data collection

Resolved logger issues

More detailed soil categories

Acknowledgements

- Patti Wright and Wendy Neal CTWSRO
- Scott Peerman Freshwater trust
- Robert Hassmiller USFS
- Lorraine Vogt NRCS

Pacific Coast Salmon Recovery Fund

