Spawner Demographics and Spawning Behavior of Sockeye Salmon Reintroduced into Cle Elum Lake

5

(1) 12

- bureau of RECLAMATION

중
(T)

The site of reintroduction

- Historical escapement of sockeye among Yakima Basin nursery lake $\sim 200 \mathrm{~K}$
- Cle Elum Lake was believed to be the largest producer

Fate of Sockeye in Cle Elum Lake

- Timber crib dam built at the outlet of Cle Elum Lake in 1906

- significant obstruction for migrating salmon, leading to "functional" extirpation (>95\% decline from historical abundances)

Fate of Sockeye in Cle Elum Lake

- Cle Elum Dam completed in 1933 - lake becomes a storage reservoir
- no fish passage for migrating salmon - complete extirpation follows

Bringing Sockeye back after 100 year absence

1987-1993: feasibility studies (NOAA, BOR)
2005: temporary juvenile bypass flume built
2009: translocation of adult sockeye begins
2013: First return of wild sockeye

Donor stock sources for reintroduction

the only two extant populations in the Columbia River
stocks will be designated by color throughout

Characteristics of donor stocks

- Strongly differentiated genetically (PCoA plot based on genotypes)

Characteristics of donor stocks

relevant landmarks

- Bonneville Dam: where total Columbia River escapement is estimated

Bonneville Dam

relevant landmarks

- Priest Rapids Dam: fish collected for translocated to Cle Elum Lake (mix of upriver donor stocks - proportions unknown)

relevant landmarks

- Prosser Dam: Yakima fish count data is collected
- Roza Dam: trap \& haul site for wild sockeye returning to the Yakima R.

migration time for return to the Columbia River

- Typical return time is first week in June through last week in July
\square Bonneville Dam Sockeye count (2020)

migration time for return to the Yakima River

- The early return of natural origin fish to the Yakima River follows closely on the heals of the Bonneville return

migration time for return to the Yakima River

- Elevated water temperatures $\left(>21^{\circ} \mathrm{C}\right)$ starting in early July deter salmon from entering the Yakima River
- Prosser Dam Sockeye count (2020)

migration time for return to the Yakima River

- Fish begin migrating up the Yakima River again in late summer as temperatures drop; this phenomenon has occurred each year since 2015

■ Prosser Dam Sockeye count (2020)

migration time for return to the Yakima River

- No apparent difference in return time between stocks
- Unclear if one is more impacted by the delay (e.g. straying) which may affect relative abundances

Spawning Ground Surveys:

temporal assortative mating

ns spawn times - trait retained from natal populations

Spawning Ground Surveys:

temporal assortative mating

Spawning Ground Surveys:

spatial distribution differs

Spawning Ground Surveys:

spatial distribution differs

An accounting problem:

Why so few Osoyoos fish recovered?

Lake Trout removal by gillnet
 Sockeye bycatch

evidence of lake shore spawning nearly exclusive to Osoyoos stock

Spawning Ground Surveys:

spatial distribution differs

spawn location - behavior in response to the environment

Consequences of delayed migration

- Remember this histogram?

Consequences of delayed migration

- Fish awaiting cooler conditions in the Yakima River deplete their resources while holding at the confluence for an extended period

Consequences of delayed migration

- Fish trapped at Roza in June-July are chrome ("ocean bright")
- Fish trapped at Roza in late August-September exhibit spawning colors

Consequences of delayed migration

- Recall that spawn time usually differ by $\sim 4-5$ weeks

Consequences of delayed migration

- Exhaustion may cause late arriving Osoyoos fish to spawn early

- may inflate incidence of stock mixing (i.e. interstock "hybrid")

Consequences of delayed migration

- prespawn mortality \& poor egg development
- usually observed early in the survey season;
- linked to fish trapped among the late return

Fortunately, trap \& haul of most fish occurs by late July

The payoff: relatively productivity among stocks

- Wenatchee lineage fish appear to be more successful?

- What is the impact on productivity due to:

1) differences in spawning habitat?
2) differences in juvenile rearing environment?
3) differences in fry emergence time?
egg basket study
implementation -2022

That's all (but there's so much more)

Brian Saluskin	- YN	Charlie Strom	- YN	Peter Galbreath	- CRITFC
Kevin Segar	-YN	Simon Goudy	-YN	Hayley Nuetzel	- CRITFC
Andrew Maldonado	-YN	Arnold Barney	-YN	Jeremiah Newell - CRITFC	
Joe Blodgett	-YN	Ted Martin	-YN	Toby Kock	- USGS
Mark Johnston	-YN	Quin James	-YN	Richard Visser	- BOR
Chuck Carl	-YN	Michael Fiander - YN	Pat Monk	- BOR	
				Paul Hoffarth	- WDFW
				Rod O'connor	- GPUD

