YAKIMA/KLICKITAT FISHERIES PROJECT MONITORING AND EVALUATION Yakima Subbasin

PROJECT NUMBER 1995-063-25
Report covers work performed under BPA contract \#00056662 REL 185
Report was completed under BPA contract \#00056662 REL 198

FINAL REPORT
For the Performance Period
May 1, 2019 through April 30, 2020
August 10, 2020

Joe Blodgett, Project Coordinator
Mark Johnston, Research Scientist/Project Lead Bill Bosch, Research and Data Coordinator/Editor

Yakima/Klickitat Fisheries Project

THE CONFEDERATED TRIBES AND BANDS OF THE YAKAMA NATION
Toppenish, WA 98948

This report was funded by the Bonneville Power Administration (BPA), U.S. Department of Energy, as part of BPA's program to protect, mitigate, and enhance fish and wildlife affected by the development and operation of hydroelectric facilities on the Columbia River and its tributaries. The views in this report are the authors' and do not necessarily represent the views of BPA.

This report should be cited as follows:
Blodgett, J., M. Johnston, and B. Bosch (editors). 2020. Yakima-Klickitat Fisheries Project Monitoring and Evaluation - Yakima Subbasin, Final Report for the performance period May/2019-April/2020, Project number 1995-063-25, 378 electronic pages.

Table of Contents

List of Tables i
List of Figures iii
Acknowledgements 1
Executive Summary 3
Introduction 7
Fish Population Status Monitoring 12
Status and Trend of Adult Fish Populations (Abundance) 12
Status and Trend of Adult Productivity 17
Status and Trend of Juvenile Abundance 24
Status and Trend of Juvenile Migration Survival to McNary Dam 29
Status and Trend of Juvenile Productivity (smolt-to-adult returns) 32
Status and Trend of Spatial Distribution (Redd Counts) 39
Status and Trend of Diversity Metrics 46
Habitat Monitoring 51
Status and Trend of Fine Sediment 51
Harvest Monitoring 54
Marine and Mainstem Columbia Fisheries 54
Yakima Subbasin Fisheries 58
Hatchery Research 61
Effect of Artificial Production on the Viability of Natural Fish Populations 61
Effectiveness of Hatchery Reform 66
Predation Management and Predator Control. 71
Avian Predation Index 71
Fish Predation Index and Predator Control 80
Adaptive Management and Lessons Learned 90
References and Project-related Publications 92
APPENDICES 103
List of Tables
Table 1. Adult-to-adult productivity indices for upper Yakima wild/natural spring Chinook 19
Table 2. Adult-to-adult productivity indices for Naches River Subbasin wild/natural spring Chinook 21
Table 3. Adult-to-adult productivity indices for Cle Elum SRF spring Chinook. 22
Table 4. Estimates of adult-to-adult productivity indices for Yakima Basin natural-origin coho. 23
Table 5. CESRF total releases of Spring Chinook by brood year, treatment, and acclimation site. 26
Table 6. Total releases of Coho by brood year, life stage, and brood source. 27
Table 7. Total releases of fall-run Chinook by release year and release site. 28
Table 8. Total releases ${ }^{1}$ of summer-run Chinook by release year and release site. 28
Table 9. Estimated smolt passage at Prosser Dam for Yakima Basin wild/natural and hatchery-origin spring Chinook and coho. 29

Table 10. Estimated smolt passage at Chandler and smolt-to-adult return indices
(Chandler smolt to Yakima R. mouth adult) for Yakima Basin wild/natural and
CESRF-origin spring Chinook. 34
Table 11. Average combined hatchery- and natural-origin smolt counts at Prosser for fish returning at age $-3,-4$, and -5 , combined adult returns to Prosser Dam of all age classes, and estimated Prosser smolt-to-adult return indices for Yakima River fall- run Chinook for adult return years 1988-2019. 35
Table 12. Preliminary estimates of Prosser-to-Prosser smolt-to-adult survival (SAR) indices for adult returns from hatchery- and natural-origin coho for the Yakima reintroduction program, juvenile migration years 2000-2018. 36
Table 13. Preliminary McNary Dam smolt to Bonneville Dam adult SAR-indices for hatchery-origin PIT-tagged summer and fall-run chinook released in the Yakima subbasin by brood year and life stage at release, 2006-2015. 37
Table 14. Preliminary McNary Dam smolt to Bonneville Dam age-3 adult return (SAR) indices for hatchery-origin PIT-tagged coho released as smolt (sm) or parra${ }^{\text {a }}$ in Lower Yakima (LY), Naches (Na), and Upper Yakima (UY) mainstem or tributary areas, brood years 2003-2014. 37
Table 15. Yakima Basin spring Chinook redd counts and distribution, 1981 - present. 40
Table 16. Yakima Basin coho redd counts and distribution, 1998 - present. 43
Table 17. Results from Taneum Creek adult out-plant study. 45
Table 18. Sex ratio of upstream migrating fall Chinook sampled at the Prosser Dam right bank denil ladder and fish trap, 2001-present 47
Table 19. Sample size (N), mean fork and mid-eye to hypural plate (MEH) lengths (cm), and weights (pounds) of upstream migrating fall Chinook sampled at the Prosser Dam right bank denil ladder and fish trap, 2001-present. 47
Table 20. Sex ratio of upstream migrating coho sampled at the Prosser Dam right bank denil ladder and fish trap, 2001-present. 48
Table 21. Sample size (N), mean fork and mid-eye to hypural plate (MEH) lengths (cm), and weights (pounds) of upstream migrating coho sampled at the Prosser Dam right bank denil ladder and fish trap, 2001-present. 48
Table 22. Age composition of returning hatchery-origin PIT-tagged summer and fall-run chinook released in the Yakima subbasin as subyearling or yearling fish. 49
Table 23. Marine and freshwater recoveries of CWTs from brood year 1997-2014 releases of spring Chinook from the CESRF as reported to the Regional Mark Information System (RMIS). 55
Table 24. Estimated run size, harvest, and harvest rates of Yakima Basin spring Chinook in Columbia River mainstem and terminal area fisheries, 1983-present. 56
Table 25. Spring Chinook harvest in the Yakima River Basin, 1983-present. 59
Table 26. Estimated fall Chinook return, escapement, and harvest in the Yakima River, 1998-2019 60
Table 27. Estimated Coho return, escapement, and harvest in the Yakima River, 1999- 2019 60
Table 28. Escapement (Roza Dam counts less brood-stock collection and harvest above Roza) of natural- (NoR) and hatchery-origin (HoR) spring Chinook to the upper Yakima subbasin, 1982 - present. 69
Table 29. Avian predation river reach survey start and end locations and total reach length. 71
Table 30. Yakima River Avian Predators. 72
Table 31. Estimated consumption in 2019 by Avian species at three spring Chinook Salmon acclimation sites 80
Table 32. Fish Predator Survey River Miles and Distances. 82
Table 33. Yakima River Fish Species. 83

List of Figures

Figure 1. Yakima River Basin and Yakama Nation/YKFP-related artificial production and monitoring facilities (map provided by Paul Huffman). 11
Figure 2. Estimated counts of natural- and Cle Elum Supplementation and Research Facility (CESRF-) origin spring Chinook (adults and jacks) at Prosser Dam, 1982- present. 13
Figure 3. Estimated returns of adult and jack summer- and fall-run Chinook to the Yakima River mouth, 1983-present. 14
Figure 4. Estimated counts of marked (presumed hatchery-origin) and unmarked (presumed natural-origin) Coho (adults and jacks) at Prosser Dam 1986-present. 14
Figure 5. Estimated counts of natural- and Cle Elum Supplementation and Research Facility (CESRF-) origin spring Chinook (adults and jacks) at Roza Dam, 1982- present. 15
Figure 6. Average daily passage of Chinook and Coho (adults and jacks) at Prosser Dam, 2010-2019 15
Figure 7. Passage timing of adult and jack Chinook at Prosser Dam in 2019 by run (see Methods) 16
Figure 8. Upper Yakima wild/natural spring Chinook return rate per spawner, before (brood years 1984-2000) and after (brood years 2001-2014) commencement of supplementation. 20
Figure 9. Naches subbasin spring Chinook return rate per spawner, before (brood years 1984-2000) and after (brood years 2001-2014) commencement of supplementation in the Upper Yakima River. 20
Figure 10. Productivity indices for age-3 natural-origin coho, brood years 2001-2016.. 23
Figure 11. Box plot showing the 20 -year average survival probabilities of natural-origin (Natural) and hatchery-origin (Hatchery) spring Chinook Salmon smolt. 31
Figure 12. Average annual survival rate (release to McNary Dam) of juvenile Summer Chinook smolts migrating from 2010 through 2019 32
Figure 13. Redd Counts upstream of Prosser Dam in the Yakima River Basin by species, 1981-present. 39
Figure 14. Teanaway River Spring Chinook redd counts, 1981-2019 (vertical lines denote pre- and post-supplementation periods) and the proportion of natural-origin (NO) carcasses observed in intensive spawning ground surveys, 2002-2010. 41
Figure 15. Distribution of summer and fall run Chinook redds in the Yakima River Basin (above Prosser Dam) based on redd observations from 2014 to 2018. 41
Figure 16. Fall Chinook redd counts above and below Prosser Dam, 1961-present, for years in which surveys were conducted and data are available. 42
Figure 17. Distribution of coho redds in the Yakima River Basin. 43
Figure 18. Adult return timing at Prosser Dam of PIT-tagged summer- and fall-run Chinook reared at the Marion Drain and Prosser Hatcheries and released as subyearlings, pooled for return years 2009-2018. 50
Figure 19. Overall Fine Sediment ($<0.85 \mathrm{~mm}$) Trends with 95% confidence bounds in the Little Naches River Drainage, 1992-2019 52
Figure 20. Fine Sediment Trends in the South Fork Tieton River, 1999-2015. 53
Figure 21. Overall average percent fine sediment ($<0.85 \mathrm{~mm}$) in spawning gravels of the Upper Yakima River, 1997-2019 54
Figure 22. Distribution of coded-wire tag recoveries of Yakima Basin summer/fall run Chinook releases in marine, mainstem Columbia River, and Yakima Basin fisheries. 57
Figure 23. Map of the Yakima River Basin, Cle Elum Supplementation and Research Facility (CESRF) locations, and timeline of the spring Chinook supplementation program 63
Figure 24. Spring Chinook redd counts in the supplemented Upper Yakima (red bar) relative to the un-supplemented Naches (control; blue bar) for the pre- (1981-2000) and post-supplementation (2001-2019) periods 63
Figure 25. Natural-Origin returns of Spring Chinook in the supplemented Upper Yakima (red bar) relative to the un-supplemented Naches (control; blue bar) for the pre- (1982-2004) and post-supplementation (2005-2019) periods 64
Figure 26. Hypothetical outcomes of trait divergence (domestication effects) over time for a segregated (hatchery-control or HC) line of fish, compared to an integrated (supplementation or S) line of fish and a wild (wild-control or WC) line of fish 67
Figure 27. Estimated genetic divergence (variation) for integrated (INT blue), segregated (SEG red), and wild founder (black) spring Chinook in the CESRF program after 4 parental-generations of the hatchery program ($\mathrm{P} 1=1998$, $\mathrm{F} 1=2002$, $\mathrm{F} 2=2006$, $\mathrm{F} 3=2010$, $\mathrm{F} 4=2014$; updated from Figure 4 in Waters et al. 2015). 70
Figure 28. Avian Predator Survey Locations 73
Figure 29. Avian Predator Totals by Reach. 75
Figure 30. Parker Reach Total Avian Predators by Week. 75
Figure 31. Parker Reach Avian Predator Species Counts 76
Figure 32. Granger Reach Avian Predator Species Counts 76
Figure 33. Below Prosser Avian Predator Species Counts 77
Figure 34. Benton Reach Avian Predator Species Counts 77
Figure 35. Lower Yakima Reach Avian Predator Species Counts 78
Figure 36. Avian Predator Counts at Chandler "hotspot" 79
Figure 37. Avian Predator Counts at Wanawish Dam "hotspot" 79
Figure 38. Fish Predator Survey Locations 82
Figure 39. Fish Predator Counts by Reach and Species. 84
Figure 40. Parker Reach Fish Counts by Species. 85
Figure 41. Granger Reach Fish Counts by Species 85
Figure 42. Above Prosser Dam Fish Counts by Species. 86
Figure 43. Below Prosser Dam Fish Counts by Species 86
Figure 44. Benton Reach Fish Counts by Species. 87
Figure 45. Lower Yakima Reach Fish Counts by Species 87
Figure 46. Total Count of Fish Predators below Prosser Dam. 88

Figure 47. Adult Smallmouth Bass Totals by Reach.. 89
Figure 48. Adult and Juvenile Smallmouth Bass Total below Prosser Dam.................... 90

Acknowledgements

Monitoring and evaluation efforts in the Yakima River Basin are the result of a cooperative effort by many individuals from a variety of agencies including the Yakama Nation Fisheries Program, the Washington Department of Fish and Wildlife, the United States Fish and Wildlife Service, the Columbia River Inter-Tribal Fish Commission, the National Oceanic and Atmospheric Administration Fisheries department as well as some consultants and contractors. We also wish to acknowledge and thank the Yakama Nation Tribal Council, U.S. Bureau of Reclamation, Yakima Subbasin Fish and Wildlife Recovery Board, Pacific States Marine Fisheries Commission, U.S. Forest Service Naches Ranger District, University of Idaho, Lars Mobrand and associates, University of Washington, and Central Washington University for their many contributions to this project including both recommendations and data services.

The core project team includes the following individuals: Mel Sampson, Joe Blodgett, Joe Hoptowit, Mark Johnston, Bill Bosch, Todd Newsome, Melinda Davis, Michael Porter, Sara Sohappy, Chris Frederiksen, Shubha Pandit, Andrew Matala, Daylen Isaac, Jim Matthews, and a number of technicians from the YN; Charles Strom and a number of assistants from the Cle Elum Supplementation and Research Facility; Michael Fiander and the crew at the Prosser Hatchery; Anthony Fritts, Gabe Temple, Christopher Johnson, and a number of assistants from the WDFW; We also receive considerable support from: Sharon Lutz, Susan Gutenberger and assistants from the USFWS; Don Larsen, Andy Dittman, Charlie Waters and assistants from NOAA Fisheries; Zach Penney, Doug Hatch, and many others at the Columbia River InterTribal Fish Commission; and Kerry Naish and others at the University of Washington. The following individuals are now retired but we acknowledge their many and invaluable contributions over the years: Dave Fast, David Lind, Bill Fiander, and Paul Huffman of the YN, Curt Knudsen from Oncorh Consulting and Doug Neeley from IntSTATS Consulting.

Special acknowledgement and recognition is owed to all of the dedicated Yakama Nation and YKFP personnel working on various tasks including Ray Decoteau, Joe Yallup, Joe Jay Pinkham III (retired), Leroy Senator (retired), Sy Billy, Wayne Smartlowit, Morales Ganuelas, Pharamond Johnson, Steve Salinas, Shiela Decoteau, Jimmy Joe Olney, Conan Northwind, Quincy Wallahee, Andrew Lewis, Nate Pinkham, Gene Sutterlick, Germaine Hart, Jamie Bill, Nate Pinkham, William Manuel, Terrance Compo, Levi Piel, Winna Switzler, Florence Wallahee, Ted Martin and Arnold Barney. The accomplishments and achievements documented here are a direct result of their dedication and desire to seek positive results for the betterment of the resource. Also, these achievements are attainable because of the efficient and
essential administrative support received from all of the office and administrative support personnel for the YKFP including: Rubi Rodriguez, Joey Estrada, Shirley Alvarado, and Adrienne Wilson.

We would especially like to thank former contributors to the Yakima/Klickitat Fisheries Project including Bruce Watson, Joel Hubble, Steve Schroder, Todd Pearsons, Craig Busack, Ray Brunson, Joy Evered, and Bill Hopley. These individuals put in countless hours of hard work during the planning, design, and implementation of this project. Their contributions helped to lay a solid foundation for this project and our monitoring and evaluation efforts. Dan Barrett (retired) served as the manager of the CESRF from 1997-2002. He helped to lay a solid foundation for the critical work done day in and day out at the Cle Elum facility.

This work is funded by the Bonneville Power Administration (BPA) through the Northwest Power and Conservation Council's (NPCC) Fish and Wildlife Program. Michelle O'Malley is BPA's contracting officer and technical representative (COTR) for this project. David Byrnes and Patricia Smith served as COTRs in the past and contributed substantially to the project over the years.

Executive Summary

The Yakima-Klickitat Fisheries Project (YKFP) is a joint project of the Yakama Nation (lead entity) and the Washington State Department of Fish and Wildlife (WDFW) and is sponsored in large part by the Bonneville Power Administration (BPA) with oversight and guidance from the Northwest Power and Conservation Council (NPCC). It is among the largest and most complex fisheries management projects in the Columbia Basin in terms of data collection and management, physical facilities, habitat enhancement and management, and experimental design and research on fisheries resources. The YKFP is attempting to evaluate all stocks historically present in the Yakima Subbasin and apply a combination of habitat restoration and hatchery supplementation or reintroduction, to restore the Yakima Subbasin ecosystem with sustainable and harvestable populations of salmon, steelhead and other at-risk species. This project and report address regional monitoring and evaluation strategies and sub-strategies as they apply to spring Chinook, summer/fall Chinook, and coho work in the Yakima Subbasin. This project (199506325) is related to numerous other projects in the Yakima Subbasin; additional information is available in the annual reports of these related projects.

The YKFP began a spring Chinook salmon hatchery program at the Cle Elum Supplementation and Research Facility (CESRF) near Cle Elum on the upper Yakima River in 1997. This program is a supplementation effort targeting the upper Yakima River population and is designed to test whether artificial propagation can be used to increase natural production and harvest opportunities while limiting ecological and genetic impacts. It is an integrated hatchery program because only natural-origin brood-stock is used and returning hatchery-origin adults are allowed to spawn in the wild. The program employs "best practice" hatchery management principles including reduced pond densities, strict disease management protocols, random brood-stock selection, and factorial mating to maximize effective population size. Fish are reared at the central facility, but released from three acclimation sites located near the central facility at: Easton approximately 25 km upstream of the central facility, Clark Flat about 25 km downstream of the central facility, and Jack Creek about 12 km upstream from the Teanaway River's confluence with the Yakima River. The CESRF collected its first spring Chinook brood-stock in 1997, released its first fish in 1999, and age-4 adults have been returning since 2001. The first generation of offspring of CESRF and wild fish spawning in the wild returned as adults in 2005. The program uses the adjacent, un-supplemented Naches River population as an environmental and wild control or reference system.

Adult returns of fall Chinook to the Yakima River Basin consist mostly of hatcheryorigin fish returning from releases averaging 1.6 million Upriver Brights annually from
the Prosser Hatchery which have occurred since 1983. Summer-run Chinook were extirpated from the Yakima Basin by 1970. To increase the temporal and spatial distribution of summer/fall run Chinook in the Yakima River Subbasin, the program began releases of Wells Hatchery summer-run Chinook in the Yakima River Basin in 2009. Coho were extirpated from the Yakima Subbasin by the early 1980s. Pursuant to U.S. v. Oregon court-mandated agreements, substantial numbers (annual average $>$ 700,000) of hatchery-reared coho salmon were released into the Yakima River since the mid-1980s. Prior to 1996 the primary purpose of releases was harvest augmentation and fish were released in sub-optimal spawning and rearing areas below Wapato Dam. With the inception of the YKFP in 1996, the objective of the coho program became "to determine the feasibility of reestablishing a naturally spawning coho population" and releases were moved upriver to more suitable habitats for natural coho.

Annual abundance of spring Chinook at Prosser Dam has increased from a 1982-2000 average of about 4,000 fish to a 2001-2019 average of about 9,800 fish. These increases can be attributed to returns from the Cle Elum supplementation program beginning in 2001, improved freshwater passage conditions, improved marine survival, and habitat restoration and enhancement work. Annual abundance of summer/fall Chinook at the Yakima River mouth has increased from a 1983-1999 average of about 1,200 fish to a 2000-2019 average of about 6,600 fish. While this increase coincides with improved ocean conditions, some of the increase may also be due to improved passage in the mainstem Columbia River, and improvements in spawning and rearing protocols. Approximately 250 summer-run Chinook were estimated to pass above Prosser Dam in 2019. The 2019/2020 adult passage over Prosser Dam was approximately 2,400 coho. An additional 1,400 adults returned directly into the Prosser Fish Hatchery. The hatchery is located approximately 1 mile below the dam and the returning adults are used for brood stock. Coho returns to Prosser averaged over 5,300 fish from 1997-2019 (an order of magnitude improvement from the average for years prior to the project) including estimated returns of wild/natural coho averaging over 800 fish annually since 2001.

Trends in adult productivity indices for Yakima Basin natural-origin spring Chinook appear to be very similar for both Upper Yakima and Naches populations. Trends in adult productivity indices for natural-origin coho are not as clear. Under present conditions, productivity for spring Chinook appears to peak at about 1,000 to 1,500 spawners and decline as spawner abundance approaches 2,000 fish or greater. These data indicate that density-dependent limiting factors depress natural productivity at fairly low population abundance in the Yakima River Basin. Until these factors are fully addressed, supplementation yields higher overall productivity rates and can be used to return adults to fisheries and to augment natural spawning populations.

For smolt migration years 2000 to present, annual abundance estimates of juvenile smolts migrating downstream at Prosser Dam averaged 212,800 wild/natural spring Chinook, 329,200 CESRF-origin spring Chinook, 44,000 wild/natural-origin coho, and 262,800 hatchery-origin coho. Preliminary smolt-to-adult survival indices averaged approximately 2.6% and 2.9% for natural-origin spring Chinook and coho, respectively. Because of many complexities associated with the production of smolt indices, these data are useful for analysis of trends but should not be used as direct citations of, or for comparisons of marked and unmarked, smolt-to-adult survival rates. Substantial juvenile mortality occurs as smolts migrate through the Yakima River system. Strategies have been proposed to address limiting factors and improve survival of emigrating Yakima Basin juveniles. As these strategies are implemented, we expect smolt and smolt-to-adult survival to improve.

Spatial distribution of spring Chinook spawners has increased as a result of acclimation site location, salmon homing fidelity and more fully seeding preferred spawning habitats. Spring Chinook redd counts in the Teanaway River increased from a pre-supplementation average of 3 redds per year to a post-supplementation average of 55 redds per year. Fall Chinook redd distribution in the Yakima River Basin appears to be experiencing a transition with an increasing proportion of redds observed above Prosser Dam in the most recent decade. This change is primarily attributed to substantial changes in lower Yakima River habitats in recent years. Redd counts and spatial distribution of coho have increased substantially in recent years, with about 410 redds enumerated annually on average in tributaries in the upper watersheds since 2004. In 2019/2020, 112 coho redds were observed in tributaries in the Naches and Upper Yakima Subbasins. Approximately, 80 redds were found in the Naches River and over 60 were found in the mainstem Yakima River above Roza Dam.

Monitoring and evaluation of diversity metrics is primarily focused on the CESRF spring Chinook program in the Upper Yakima River. Generally, we have detected small, but significant differences between hatchery- and natural-origin fish in some juvenile and adult traits with many results already published in the peer-reviewed literature.

Overall average fine sediment levels in the Naches and Upper Yakima River subbasins over many years of sampling continue to trend downward.

We believe Yakima Basin spring Chinook contribute minimally to marine fisheries as their spatial and temporal ocean migration patterns do not appear to intersect with marine fisheries. However, Yakima Basin fall- and summer-run Chinook and coho do
contribute substantially to marine fisheries and to mainstem Columbia River fisheries from the mouth to the Hanford Reach area. Recreational spring Chinook fisheries have returned to the Yakima River Basin after a 40-year absence. This has contributed to improved relationships between all the Basin's stakeholders and increased opportunities for collaboration.

Supplementation has increased spring Chinook redd abundance in the Upper Yakima relative to the Naches control system. We observed an average increase in redd counts in the upper Yakima about 57% greater than that in the Naches system from the pre- to post-supplementation periods. Natural-origin returns of adult spring Chinook in the post-supplementation period (2005-2019) are trending downward relative to the pre-supplementation period (1982-2004) in both the Upper Yakima and Naches Rivers but the trend in the Naches control system is a steeper decline. After several generations of study, the results (many of which are published in the peerreviewed literature) from the spring chinook supplementation program in the Upper Yakima River demonstrate that a well-designed and carefully managed integrated hatchery program using 100% natural-origin broodstock can produce fish for harvest and return fish to the natural spawning grounds with minimal negative impacts to the target ecosystem. Coho re-introduction research in the published literature suggests that hatchery-origin coho, with a legacy of as many as 10 to 30 generations of hatchery-influence, can reestablish a naturalized population after as few as 3 to 5 generations of outplanting in the wild.

YKFP efforts to monitor and evaluate hatchery reform focus on the CESRF spring Chinook program which was designed explicitly for this purpose from its inception. By designing the program to use only natural-origin fish for brood-stock, the program has demonstrated reduced genetic divergence for the integrated program compared to a traditional segregated hatchery program. The CESRF is also meeting or exceeding scientific recommendations for proportionate natural influence (PNI) on an annual basis with a 19 -year mean annual PNI of 65%. The project is thus far meeting or exceeding most other established objectives related to hatchery reform.

Major piscivorous predators in the Yakima River Basin include: common mergansers, American white pelicans, double-crested cormorants, gulls, great blue herons, northern pike minnows, and smallmouth bass. The project has initiated efforts to control the pike minnow and smallmouth bass populations.

Project results are communicated broadly through the annual science and management conference, technical reports and peer-reviewed journal publications (see references and project-related publications), and via several related web sites described in Appendix A.

Introduction

The Yakima-Klickitat Fisheries Project (YKFP) is a joint project of the Yakama Nation (lead entity) and the Washington State Department of Fish and Wildlife (WDFW) and is sponsored in large part by the Bonneville Power Administration (BPA) with oversight and guidance from the Northwest Power and Conservation Council (NPCC). It is among the largest and most complex fisheries management projects in the Columbia Basin in terms of experimental design and research on fisheries resources, physical facilities, habitat enhancement and restoration, and data collection and management. Consistent with Wy-Kan-Ush-Mi Wah-Kish-Wit (CRITFC 1995) and using principles of adaptive management (Salafsky et al. 2001), the YKFP is attempting to evaluate all stocks historically present in the Yakima Subbasin and apply a combination of habitat restoration and hatchery supplementation or reintroduction, to restore the Yakima Subbasin ecosystem with sustainable and harvestable populations of salmon, steelhead and other at-risk species.

The original impetus for the YKFP resulted from the landmark fishing disputes of the 1970s, the ensuing legal decisions in United States versus Washington and United States versus Oregon, and the region's realization that lost natural production needed to be mitigated in upriver areas where these losses primarily occurred. The YKFP was first identified in the NPCC's 1982 Fish and Wildlife Program (FWP) and supported in the U.S. v Oregon 1988 Columbia River Fish Management Plan (CRFMP). A draft Master Plan was presented to the NPCC in 1987 and the Preliminary Design Report was presented in 1990. In both circumstances, the NPCC instructed the Yakama Nation, WDFW and BPA to carry out planning functions that addressed uncertainties in regard to the adequacy of hatchery supplementation for meeting production objectives and limiting adverse ecological and genetic impacts. At the same time, the NPCC underscored the importance of using adaptive management principles to manage the direction of the Project. The 1994 FWP reiterated the importance of proceeding with the YKFP because of the added production and learning potential the project would provide. The YKFP is unique in having been designed to rigorously test the efficacy of hatchery supplementation. Given the current depressed status of many salmon and steelhead stocks, and the heavy reliance on artificial propagation as a recovery tool, YKFP monitoring results have great region-wide significance.

Supplementation is envisioned as a means to enhance and sustain the abundance of wild and naturally-spawning populations at levels exceeding the cumulative mortality burden imposed on those populations by habitat degradation and by natural cycles in environmental conditions. A supplementation hatchery is properly operated as an
adjunct to the natural production system in a watershed. By fully integrating the hatchery with a naturally-producing population, high survival rates for the component of the population in the hatchery can raise the average abundance of the total population (hatchery component plus naturally-producing component) to a level that compensates for the high mortalities imposed by human development activities and fully seeds the natural environment. However, it is important to recognize that "rebuilding natural populations will ultimately depend on improving habitat quality and quantity" (ISRP 2011, Venditti et al. 2017) of which habitat connectivity is an essential component (CRITFC 1995, Milbrink et al. 2011). Hatchery programs, even "state of the art" integrated supplementation programs designed to follow all of the best management practice recommendations (Cuenco et al. 1993, Mobrand et al. 2005), do not directly affect any of these habitat parameters which are vital to improving natural productivity. Therefore, the YKFP is working with partners in multiple forums to implement habitat restoration and water resource management projects designed to address factors limiting productivity (see Yakima Subbasin, Recovery, and Integrated plans).

The objectives of the YKFP are to: enhance existing stocks; re-introduce extirpated stocks; protect and restore habitat in the Yakima Subbasin; operate using a scientifically rigorous process that will foster application of the knowledge gained about hatchery supplementation and habitat restoration throughout the Columbia River Basin; and use Ecosystem Diagnosis and Treatment (EDT) and other modeling tools to facilitate planning for project activities. In strictly scientific terms the stated purpose of the project is, "to test the assumption that new artificial production can be used to increase harvest and natural production while maintaining the long-term genetic fitness of the fish population being supplemented and keeping adverse genetic and ecological interactions with non-target species or stocks within acceptable limits" (RASP 1992, BPA 1996). WDFW is addressing some critical uncertainties (see Columbia River Basin Research Plan and Critical Uncertainties for the Columbia River Basin Fish and Wildlife Program) related to genetic and ecological interactions under project 1995-064-25. We are working jointly with WDFW and CRITFC (2009-009-00) to address fish propagation, predation, harvest, and monitoring and evaluation methodology uncertainties including:

Fish Propagation Question 1. Are current propagation efforts successfully meeting harvest and conservation objectives while managing risks to natural populations?
1.2. Can hatchery production programs meet adult production and harvest goals (integrated and segregated) while protecting naturally spawning populations?
1.4. What is the magnitude of any demographic benefit or detriment to the production of natural-origin juveniles and adults from natural spawning of hatchery-origin supplementation adults?
1.5. What are the range, magnitude and rates of change of natural spawning fitness of integrated (supplemented) populations, and how are these related to management rules including the proportion of hatchery fish permitted on the spawning grounds, and the proportion of natural origin adults in the hatchery broodstock?

Predation Question 1. Are the current efforts to address predation and reduce numbers of predators effective?

Predation Question 2. Are there actions other than removing predators that could reduce predation on listed species?

Harvest Question 1. Do current harvest and escapement strategies provide the expected results in supporting recovery efforts and providing harvest opportunities?

Monitoring and evaluation methods Question 1. Are current methods to ... count fish and to measure productivity adequate to cost effectively inform decisions?

Monitoring and evaluation methods Question 2. Are there innovative methods for counting fish and measuring their productivity that would better inform decisions?

YKFP-related project research in the Yakima River Basin has resulted in the publication of over 60 manuscripts in the peer-reviewed literature (see References and Project-Related Publications). The status of ongoing research relative to the above uncertainties is presented as part of this report.

This report includes sections on the following regional research, monitoring, and evaluation (RME) strategies: fish population status, harvest, hatchery, and predation. Each section addresses all relevant sub-strategies that apply to this project. The report addresses these strategies and sub-strategies as they apply to spring Chinook (Oncorbynchus tshanytscha), summer/fall Chinook (O. tshanytscha), and coho (O. kisutch) RM\&E work in the Yakima subbasin. Steelhead (O. mykiss) RME work is addressed in related VSP (2010-030-00), on-reservation watersheds (1996-035-01), and Kelt Reconditioning (CRITFC 2008-458-00 and 2007-401-00) projects. WDFW is addressing hatchery uncertainties related to genetic and ecological interactions under project 1995-064-25. YKFP-related habitat activities for the Yakima Subbasin are addressed under projects 1997-051-00 and 1996-035-01 (except for sediment sampling
which is addressed here). Hatchery Production Implementation ($O \& M$) is addressed under project 1997-013-25. Data and findings presented in this report should be considered preliminary until results are published in the peer-reviewed literature.

Study Area
The project study area is the Yakima River Basin WRIA 37/38/39 (Figure 1).

Figure 1. Yakima River Basin and Yakama Nation/YKFP-related artificial production and monitoring facilities (map provided by Paul Huffman).

Fish Population Status Monitoring

Status and Trend of Adult Fish Populations (Abundance)

Methods: Adult salmon populations in the Yakima River Basin are enumerated at Prosser Dam using video equipment installed in all three adult fish ladders (monitoringresources.org methods 143, 144, 307, 418, 515). At both Prosser and Roza Dams, adult fish traps are also used on a seasonal basis for biological sampling and enumeration (monitoringresources.org methods 135). When the Roza adult trap is not in operation, video equipment is also employed at the adult fish ladders there. However, camera placement and actual viewing area are limited; these combined with water clarity issues during certain river conditions all affect video enumeration at Roza Dam. Automatic Passive Integrated Transponder (PIT) tag detectors are also employed at all fish ladders at both dams (see sites RZF and PRO in ptagis.org). For the safety and protection of personnel and equipment, video and PIT-detection equipment are removed during periods of high river flow. In these instances, biologists attempt to extrapolate fish counts using data from before and after the high flow event. Although adult passage over spillways is believed to occur when flows are favorable, Prosser Dam counts are generally considered by Yakama Nation biologists to be within $+/-5 \%$ of actual fish passage. Roza Dam counts during trap operation (generally the entire spring Chinook counting period, March-September) are considered virtually 100% accurate; however, during the late fall and winter counting period when video equipment is used at least part of the time, accuracy may fall to only $50-75 \%$ of actual fish passage based on preliminary evaluation of PIT tag detection data. Fish are denoted as hatchery- or natural-origin based on presence or absence respectively, of observed external or internal marks or tags (monitoringresources.org method 342). Chinook are denoted as spring-, summer-, or fall-run based on review of PIT-detection data and visual observations of coloration and body morphometry.

At Prosser Dam, time-lapse video recorders (VHS) and a video camera were used at viewing windows at each of the three fishways. Digital video recorders (DVR) and progressive scan cameras (to replace the VHS systems) were tested at each of the three Prosser fishways in 2007 and became fully operational in February of 2008. The new system functions very similarly to the VHS system but provides digital video data readily downloadable to the viewing stations in Toppenish. This new system also allows technicians in Toppenish to scan rapidly to images of fish giving a more timely and accurate fish count. The technicians review the images and record various types of data for each fish that migrates upstream via the ladders. The data are entered into a Microsoft Access database, and daily dam count reports are available at:
http://dashboard.yakamafish-star.net/DataQuery. Similarly at Roza Dam, adult trap data are entered into a Microsoft Access database, and daily dam count reports (with video counts integrated) are available at: http://dashboard.yakamafishstar.net/DataQuery. Post-season, counts are reviewed and adjusted for data gaps and knowledge about adult and jack lengths from sampling activities with corrections made to our master data sets. In addition to adult abundance data, Yakima Basin adult trap sampling (login required) data for the Prosser and Roza data sets are available at: http://dashboard.yakamafish-star.net/DataQuery.

Spring Chinook began returning from the Cle Elum Supplementation and Research Facility (CESRF) in 2000 (jacks) and 2001 (adults). All CESRF-origin spring Chinook are marked. Due to physical and logistical constraints at the Prosser Hatchery it is not possible to mark all hatchery releases of summer/fall run Chinook without jeopardizing fish health and survival but these issues are being addressed through the Master Planning process (Yakama Nation 2019). Thus, enumeration of hatchery- and natural-origin summer/fall run Chinook adult returns is not presently available but will be available in the future. New marking protocols made it possible to distinguish hatchery- and natural-origin coho beginning with return year 2001.

Results:

Figure 2. Estimated counts of natural- and Cle Elum Supplementation and Research Facility (CESRF-) origin spring Chinook (adults and jacks) at Prosser Dam, 1982-present.

Figure 3. Estimated returns of adult and jack summer- and fall-run Chinook to the Yakima River mouth, 1983-present.

Figure 4. Estimated counts of marked (presumed hatchery-origin) and unmarked (presumed natural-origin) Coho (adults and jacks) at Prosser Dam 1986-present.

Figure 5. Estimated counts of natural- and Cle Elum Supplementation and Research Facility (CESRF-) origin spring Chinook (adults and jacks) at Roza Dam, 1982-present.

Figure 6. Average daily passage of Chinook and Coho (adults and jacks) at Prosser Dam, 2010-2019.

Figure 7. Passage timing of adult and jack Chinook at Prosser Dam in 2019 by run (see Methods).

Discussion:

Annual abundance of spring Chinook at Prosser Dam has increased from a 1982-2000 average of about 4,000 fish to a 2001-2019 average of about 9,800 fish (Figure 2). Annual abundance of spring Chinook at Roza Dam has increased from a 1982-2000 average of about 2,300 fish to a 2001-2019 average of approximately 6,600 fish (Figure 5). These increases beginning in 2001 coincide with the first adult returns from the Cle Elum supplementation program. However, freshwater passage conditions, marine survival, and habitat restoration and enhancement work also affect survival and return rates. The lower adult returns observed in 2003 and 2007 coincide with notable droughts during the corresponding smolt outmigration years of 2001 and 2005. Returns in 2015, 2018, and to a lesser extent 2017 were affected by thermal barriers in the lower Yakima River during the adult migration timeframe. Discussion of uncertainties relating to the Cle Elum spring Chinook supplementation program is included under Hatchery Monitoring later in this report. Additional data and detail on the Cle Elum spring Chinook supplementation program and the status of natural- and CESRF-origin spring Chinook in the Yakima River Basin are provided in Appendix B.

Although some natural production is occurring, adult returns of fall Chinook to the Yakima River Basin consist mostly of hatchery-origin fish returning from annual releases of Upriver Brights from the Prosser Hatchery which have occurred since 1983 and averaged about 1.9 million since 1999 (Yakama Nation 2019). In addition, the Yakama Nation has a goal of re-establishing Summer-run Chinook which were extirpated from the Yakima Basin by 1970. Pursuant to this goal we began releases of Wells Hatchery summer-run Chinook in the Yakima River Basin in 2009. Annual
abundance of summer/fall Chinook at the Yakima River mouth has increased from a 1983-1999 average of about 1,200 fish to a 2000-2019 average of about 6,600 fish (Figure 3). While this increase coincides with improved ocean conditions, some of the increase may also be due to improved passage in the mainstem Columbia River, and improvements in spawning and rearing protocols. By re-establishing the summerrun component we seek to increase the temporal (Figures 6 and 7) and spatial distribution of summer/fall run Chinook in the Yakima River Subbasin (Yakama Nation 2019). Approximately 250 summer-run Chinook were estimated to pass above Prosser Dam in 2019 (Figure 7).

Coho were extirpated from the Yakima Subbasin by the early 1980s. Pursuant to U.S. v. Oregon court-mandated agreements, substantial numbers (annual average $>700,000$) of hatchery-reared coho salmon were released into the Yakima River since the mid1980s. Prior to 1996 the primary purpose of releases was harvest augmentation and fish were released in sub-optimal spawning and rearing areas below Wapato Dam. With the inception of the YKFP in 1996, the objective of the coho program became "to determine the feasibility of reestablishing a naturally spawning coho population" and releases were moved upriver to more suitable habitats for natural coho. Monitoring of these efforts to re-introduce a sustainable, naturally spawning coho population in the Yakima Basin have indicated that coho returns averaged over 5,300 fish from 1997-2019 (an order of magnitude improvement from the average for years prior to the project) including estimated returns of wild/natural coho averaging over 800 fish annually since 2001 (Figure 4).

Status and Trend of Adult Productivity

Methods:

We used recruit-per-spawner relationships (Ricker 1975) to describe adult-to-adult productivity indices. Species-specific methods were as follows.

Spring Cbinook

Estimated natural-origin spawners for the Upper Yakima River were calculated as the estimated escapement above Roza Dam plus the estimated number of spawners between the confluence with the Naches River and Roza Dam. Total natural-origin returns to the Upper Yakima River were developed using run reconstruction techniques (Appendix B). Age composition for Upper Yakima returns was estimated from spawning ground carcass scale samples (monitoring resources.org method 112) for the years 1982-1996 and from Roza Dam brood-stock collection samples (Knudsen et al. 2006; Appendix B) for the years 1997 to present. Since age-3 fish (jacks) are not collected for brood-stock in proportion to the jack run size, the proportion of age-3 fish in the upper Yakima for 1997 to present was estimated using
the proportion of jacks (based on visual observation) counted at Roza Dam relative to the total run size.

Estimated spawners and total returns for Naches River Subbasin natural-origin spring Chinook were calculated using run reconstruction techniques (Appendix B). Age composition for Naches Basin age- 4 and age- 5 returns were estimated from spawning ground carcass scale samples (monitoring resources.org method 112). The proportion of age-3 fish was estimated after reviewing jack count (based on visual observations) data at Prosser and Roza dams.

Estimated spawners at the CESRF were the total number of wild/natural fish collected at Roza Dam and taken to the CESRF for production brood-stock (Knudsen et al. 2006; Appendix B). Total returns of CESRF-origin fish were based on run reconstruction and Roza dam sampling operations. Age composition for CESRF fish was estimated using scales and PIT tag detections from CESRF fish sampled passing upstream through the Roza Dam adult monitoring facility (Knudsen et al. 2006; Appendix B).

Coho

From central British Columbia south, the vast majority of coho salmon adults are 3-year-olds, having spent approximately 18 months in fresh water and 18 months in salt water (Loeffel and Wendler 1968, Wright 1970). Therefore, we estimated a naturalorigin productivity (recruits per spawner) index by dividing natural-origin returns to Prosser Dam by the estimated returns to Prosser Dam three years prior. We computed this index for both adult and combined adult and jack returns per adult and combined adult and jack spawner. Note that this method will bias productivity estimates high, as it assumes no natural production from hatchery-origin spawners.

Summer/Fall Run Cbinook.

Adult fall Chinook returning to the Yakima Basin consist of hatchery-origin returns from releases at and above Prosser Dam and natural-origin returns from fish spawning naturally in the Yakima River. Due to fiscal, physical, logistical, and policy considerations, only a small proportion of hatchery-origin releases have been externally marked. Therefore, it is impossible at present to know the origin of unmarked adult fall Chinook counted at Prosser. Additional marking is proposed for hatchery-origin releases as part of the Master Plan (Yakama Nation 2019), which will allow development of a comprehensive brood/cohort age at return table for naturaland hatchery-origin returns. Methods and results for evaluating adult productivity of summer/fall run Chinook will be included in future reports and publications as the data become available.

Results:

Table 1. Adult-to-adult productivity indices for upper Yakima wild/natural spring Chinook.

Brood Year	Estimated Spawners	Estimated Yakima R. Mouth Returns				Returns/ Spawner
		Age-3	Age-4	Age-5	Total	
1984	1,715	92	1,348	139	1,578	0.92
1985	2,578	114	2,746	105	2,965	1.15
1986	3,960	171	2,574	149	2,893	0.73
1987	2,003	53	1,571	109	1,733	0.87
1988	1,400	53	3,138	132	3,323	2.37
1989	2,466	68	1,779	9	1,856	0.75
1990	2,298	79	566	0	645	0.28
1991	1,713	9	326	22	358	0.21
1992	3,048	87	1,861	95	2,043	0.67
1993	1,925	66	1,606	57	1,729	0.90
1994	573	60	737	92	890	1.55
1995	364	59	1,036	129	1,224	3.36
1996	1,657	1,059	12,882	630	14,571	8.79
1997	1,204	621	5,837	155	6,613	5.49
1998	390	434	2,803	145	3,381	8.68
1999	1,021 ${ }^{1}$	164	722	45	930	0.91
2000	11,864	856	7,689	127	8,672	0.73
2001	12,087	775	5,074	222	6,071	0.50
2002	8,073	224	1,875	148	2,247	0.28
2003	3,341	158	1,036	63	1,257	0.38
2004	10,377	207	1,547	75	1,828	0.18
2005	5,713	293	2,630	14	2,936	0.51
2006	3,378	868	2,887	133	3,888	1.15
2007	2,322	456	3,976	65	4,498	1.94
2008	4,343	1,135	3,410	123	4,668	1.07
2009	7,056	283	2,572	109	2,964	0.42
2010	8,383	923	3,854	59	4,836	0.58
2011	8,584	832	3,908	144	4,883	0.57
2012	5,483	197	2,445	20	2,662	0.49
2013	4,984	299	1,622	36	1,957	0.39
2014	6,751	241	814	12	1,067	0.16
2015	5,466	66	620			
2016	4,281	99				
2017	3,342					
2018	1,817					
2019	1,470					
Mean	4,095	336	2,734	108	3,264	1.52

1. The mean jack proportion of spawning escapement from 1999-2019 was 0.22 (geometric mean 0.17).

Figure 8. Upper Yakima wild/natural spring Chinook return rate per spawner, before (brood years 19842000) and after (brood years 2001-2014) commencement of supplementation.

Figure 9. Naches subbasin spring Chinook return rate per spawner, before (brood years 1984-2000) and after (brood years 2001-2014) commencement of supplementation in the Upper Yakima River.

Table 2. Adult-to-adult productivity indices for Naches River Subbasin wild/natural spring Chinook.

Brood Year	Estimated Spawners	Estimated Yakima R. Mouth Returns					Returns/ Spawner
		Age-3	Age-4	Age-5	Age-6	Total	
1984	383	110	706	564	0	1,381	3.60
1985	683	132	574	396	0	1,102	1.61
1986	2,666	68	712	499	15	1,294	0.49
1987	1,162	27	183	197	0	407	0.35
1988	1,340	32	682	828	0	1,542	1.15
1989	992	28	331	306	0	665	0.67
1990	954	24	170	74	0	269	0.28
1991	706	7	37	121	57	222	0.31
1992	852	29	877	285	0	1,191	1.40
1993	1,145	45	593	372	0	1,010	0.88
1994	474	14	164	164	0	343	0.72
1995	124	40	164	251	0	455	3.66
1996	887	179	3,983	1,620	0	5,782	6.52
1997	762	207	3,081	708	0	3,996	5.24
1998	503	245	1,460	1,128	0	2,833	5.63
1999	$358{ }^{1}$	113	322	190	0	626	1.75
2000	3,862	71	2,060	215	0	2,346	0.61
2001	3,912	126	1,254	471	0	1,850	0.47
2002	1,861	59	753	153	0	965	0.52
2003	1,400	52	237	175	0	464	0.33
2004	2,197	107	875	218	0	1,199	0.55
2005	1,439	167	653	116	0	936	0.65
2006	1,163	192	838	254	0	1,283	1.10
2007	463	125	1,649	514	0	2,288	4.94
2008	1,074	414	827	290	0	1,531	1.42
2009	903	84	448	65	0	597	0.66
2010	1,024	209	653	198	0	1,059	1.03
2011	1,942	137	1,088	305	0	1,530	0.79
2012	1,110	64	419	260	0	743	0.67
2013	750	110	660	148	0	919	1.23
2014	746	142	376	13		532	0.71
2015	1,285	26	34				
2016	790	6					
2017	971						
2018	500						
2019	51						
Mean	1,151	103	840	358	3	1,334	1.61

1. The mean jack proportion of spawning escapement from 1999-2018 was 0.09.

Table 3. Adult-to-adult productivity indices for Cle Elum SRF spring Chinook.

Brood	Estimated	Estimated Yakima R. Mouth Returns				
Year	Spawners	Age-3	Age-4	Age-5	Total	Spawner
1997	261	741	7,753	176	8,670	33.22
1998	408	1,242	7,939	602	9,782	23.98
1999	738^{1}	134	714	16	864	1.17
2000	567	1,103	3,647	70	4,819	8.50
2001	595	396	845	9	1,251	2.10
2002	629	345	1,886	69	2,300	3.66
2003	441	121	800	12	932	2.11
2004	597	805	3,101	116	4,022	6.74
2005	510	1,305	3,052	21	4,378	8.58
2006	419	3,038	5,812	264	9,114	21.75
2007	449	1,277	5,174	108	6,558	14.61
2008	457	2,344	4,567	65	6,976	15.27
2009	486	461	2,663	58	3,181	6.55
2010	336	1,495	3,183	30	4,707	14.01
2011	377	1,233	2,340	34	3,607	9.57
2012	374	221	1,492	10	1,723	4.61
2013	398	802	1,993	0	2,795	7.02
2014	384	1,008	1,447	7	2,463	6.41
2015	442	314	878		1,192	2.70
2016	376	287				
2017	382					
2018	294					
2019	312					
Mean	445	934	3,120	93	4,176	7.16^{2}

1. 357 or 48% of these fish were jacks.
2. Geometric mean.

Table 4. Estimates of adult-to-adult productivity indices for Yakima Basin natural-origin coho.

	Prosser Dam Counts	Return per Spawner Indices		
Return			With	Without
Year	Adults	Jacks	Jacks	Jacks
2001	1,432	21		
2002	309	245		
2003	1,523	135		
2004	1,820	25	1.27	1.27
2005	472	120	1.07	1.53
2006	1,562	114	1.01	1.03
2007	1,049	32	0.59	0.58
2008	459	587	1.77	0.97
2009	982	173	0.69	0.63
2010	573	37	0.56	0.55
2011	802	24	0.79	1.75
2012	550	33	0.50	0.56
2013	424	79	0.83	0.74
2014	1,082	18	1.33	1.35
2015	362	9	0.64	0.66
2016	103	45	0.29	0.24
2017	1162	15	1.07	1.07
2018	125	32	0.42	0.35
2019	301	8	2.09	2.92
Mean	794	92	0.93	1.01

Figure 10. Productivity indices for age-3 natural-origin coho, brood years 2001-2016.

Discussion:

Recruit per spawner data for the Upper Yakima and Naches spring Chinook populations are highly correlated (Tables 1 and 2; Pearson's correlation
coefficient $=0.87$) and analysis of variance indicates the means (\pm one standard error) in the 31 -year data set are not different (Upper Yakima $=1.52 \pm 0.40$; Naches $=1.61 \pm 0.32 ; P=0.85)$. Trends in adult productivity indices for Yakima Basin natural-origin spring Chinook are also very similar for both Upper Yakima (Figure 8) and Naches (Figure 9) populations. Under present conditions, productivity for spring Chinook appears to peak at about 1,000 to 1,500 spawners and declines as spawner abundance approaches 2,000 fish or greater (Figures 8-9). The trend in adult productivity indices for natural-origin coho (Figure 10) is not as obvious, and 2014 marked the first year that we observed high coho spawner escapements (when hatchery-origin spawning escapement is included) similar to those we have observed with spring Chinook in some recent years. These data indicate that density-dependent limiting factors (see YSFWPB 2004) depress natural productivity at fairly low population abundance in the Yakima River Basin, as is the case for most salmon populations throughout the Columbia River Basin (ISAB 2015). Until these factors are fully addressed, supplementation yields higher overall productivity rates and can be used to return adults to fisheries and to augment natural spawning populations (Table 3). While higher spawner abundances under present conditions do not yield increased adult production, these fish still contribute to more fully seeding available habitats, increased spatial and temporal diversity, and nutrient enhancement that should eventually lead to increased natural food supply and higher productivity in the future (NRC 1996, see especially pp. 368-369; Kiffney et al. 2014).

Status and Trend of Juvenile Abundance

Methods: The Yakama Nation releases a number of hatchery-origin smolts annually pursuant to U.S. v Oregon Management Agreements. Adult returns from these releases serve to mitigate for lost harvest opportunity (due to alteration of the Columbia River ecosystem and associated losses in natural production and productivity), to augment the number of fish spawning naturally (supplementation), or a combination of the two. Juveniles are released from many locations as yearlings or subyearlings depending on the goals of the specific programs. As these juveniles migrate downstream, they are mixed with naturally produced juveniles.

Above Prosser Dam, a portion of the river flow is diverted into the Chandler canal to generate electrical power and serve irrigation districts downstream. Juvenile fish are diverted into the Canal (and subsequently the Chandler juvenile monitoring facilityCJMF, Figure 1) at different rates depending on river and canal flow. Smolt sampling efforts at the CJMF near Prosser Dam were conducted annually from early winter through early summer corresponding with salmon smolt out-migrations. A portion of entrained salmon outmigrants (regulated by a timed gate) was manually counted and sampled for biological data on a daily basis and all PIT tagged fish were interrogated.

Sampling methods were described in Busack et al. (1997) and were consistent with monitoringresources.org methods 1562, 1563, 1595, and 1614.

Paired releases of PIT-tagged smolts were made in order to estimate the fish entrainment and canal survival rates in relation to river conditions and canal operations. For outmigration years 1999 through 2014, these data were used to generate a multi-variate river flow/canal entrainment relationship (D. Neeley 2010 and 2012a). Over a range of flow diversion rates, juvenile fish entrainment rates generally fit a logistic curve: at low diversion rates, the entrainment rate is lower than the diversion rate, and at high diversion rates the entrainment rate is higher than the diversion rate. In recent years it became difficult to adapt the model to higher winter and spring flows and to river channel changes, partly because at low diversion rates it was difficult to capture enough fish to get many point estimates of entrainment rate. The releases that were made, however, still tended to support a low entrainment rate relative to diversion rate at high river flows. For some years, Prosser smolt passage estimates produced by this model were outside of what were considered reasonable bounds (e.g., entrainment-based Prosser passage estimates approached or even exceeded known releases for hatchery-origin spring Chinook far upstream). This required us to reevaluate and change our methodology. The proportions of all PITtagged smolts released above Prosser and detected at mid-Columbia dams that were previously detected in the Chandler Canal bypass now serve as estimates of bypassdetection efficiency. Expanded Prosser passage estimates were then derived using the juvenile sample counts and detection efficiencies as described in Appendix C. These methods were generally consistent with monitoringresources.org methods 435, 623 and 1743.

Results and Discussion:

At the CESRF, the number of release groups and total number of spring Chinook released diverged from the facility goal of 810,000 smolts in some years. In brood year 1997, the Jack Creek acclimation facility was not yet complete and project policy and technical teams purposely decided to under-collect brood stock to allow a methodical testing of the new facility's operations with less risk to live fish, which resulted in the stocking of only 10 of the 18 raceways. In brood year 1998, the project did not meet facility release goals due to a biological specification that no more than 50% of returning wild fish be taken for brood stock. As a result, only 16 raceways were stocked with progeny of the 1998 brood. In the same year, raceway 4 at the Jack Creek acclimation site suffered mechanical failures causing loss of flow and reduced oxygen levels and resulted in the loss of approximately one-half the fish in this raceway prior to release. In the drought year of 2001, a large number of returning adults presented with high enzyme-linked immunosorbent assay (ELISA) levels of Renibacterium salmoninarum, the causative agent of bacterial kidney disease (BKD). The
progeny of these females were purposely destroyed. As a result, only nine raceways were stocked with fish. The project decided to use the fish from an odd raceway for a predator avoidance training sub-experiment (these fish were subsequently acclimated and released from the Easton acclimation site).

Table 5. CESRF total releases of Spring Chinook by brood year, treatment, and acclimation site.

Brood Year	Control 1	Treatment 2	CFJ					ESJ	JCJ	Total
1997	207,437	178,611	229,290	156,758		386,048				
1998^{4}	284,673	305,010	221,460	230,860	137,363	589,683				
1999	384,563	374,226	232,563	269,502	256,724	758,789				
2000	424,554	409,731	285,954	263,061	285,270	834,285				
2001^{5}	183,963	186,273	80,782	39,106	250,348	370,236				
2002	420,764	416,140	266,563	290,552	279,789	836,904				
2003	414,175	410,517	273,377	267,711	283,604	824,692				
2004^{6}	378,740	406,708	280,598	273,440	231,410	785,448				
2005	431,536	428,466	287,127	281,150	291,725	860,002				
2006	351,063	291,732	209,575	217,932	215,288	642,795				
2007	387,055	384,210	265,907	254,540	250,818	771,265				
2008	421,290	428,015	280,253	287,857	281,195	849,305				
2009	418,314	414,627	279,123	281,395	272,423	832,941				
2010	395,455	399,326	264,420	264,362	265,999	794,781				
2011	382,195	386,987	255,290	248,454	265,438	769,182				
2012	401,059	401,657	256,732	276,210	269,774	802,716				
2013	No Experiment	215,933	214,745	216,077	646,755					
2014	337,548	347,682	232,440	226,257	226,533	685,230				
2015	331,316	323,631	208,239	218,225	228,483	654,947				
2016	339,816	329,392	230,490	218,676	220,042	669,208				
2017	351,656	359,013	244,236	233,449	232,984	710,669				
2018	322,219	320,201	213,833	206,619	221,968	642,420				
Mean	360,447	357,245	241,554	237,312	246,822	714,468				

1. Brood years 1997-2001: Optimum Conventional Treatment (OCT). Brood Years 2002-2004: Normal (High) growth. Brood Years 2005-2012: Normal feed at Cle Elum or accl. sites.
2. Brood years 1997-2001: Semi-natural Treatment (SNT). Brood Years 2002-2004: Slowed (Low) growth. Brood Year 2005, 2007-2012: saltwater transition feed at accl. Sites; 2014: BioPro vs BioVIT. Brood Year 2006: EWS diet at CESRF through May 3, 2007.
3. $\mathrm{CFJ}=$ Clark Flat; ESJ=Easton; JCJ=Jack Creek.
4. At the Jack Creek acclimation site only 4 of 6 raceways were stocked, and raceway 4 suffered mechanical failures resulting in the loss of about 20,000 OCT (control) fish.
5. High BKD incidence in adult broodstock reduced production to just 9 ponds (Clark Flat 1-2, Jack Creek, and Easton). Easton ponds were used for predator avoidance trained (PAT) fish and a single Cle Elum pond was spread between 6 ponds at Easton with crowders used to simulate pond densities for fish at other acclimation sites. These releases were excluded from mean pond density calculations by treatment.
6. At the Jack Creek acclimation site raceway 3 suffered mechanical failures resulting in the loss of about 45,000 high-growth (control) fish.

Table 6. Total releases of Coho by brood year, life stage, and brood source.

Brood Year	Smolts			Parr		Local Brood		Non-Local Smolts	Total Smolts
	UppYak	Naches	Prosser	UppYak	Naches	Smolts	Parr		
1997	436,000	1,257,000							1,693,000
1998	502,155	502,239							1,004,394
1999	498,872	429,318							928,190
2000	187,659	379,904							567,563
2001	263,288	357,530							620,818
2002	403,000	407,002							810,002
2003	313,207	291,494							604,701
2004	322,417	332,455							654,872
2005	338,127	554,784	50,000						942,911
2006	426,632	516,753	81,114						1,024,499
2007	358,412	440,783	219,098						1,018,293
2008	304,638	269,936	182,719	12,000	25,000	324,598	37,000	432,695	757,293
2009	407,184	341,414	245,455	13,000	12,000	610,423	25,000	383,630	994,053
2010	443,030	131,972	190,836	15,000	15,000	522,027	30,000	243,811	765,838
2011	311,102	359,067	322,100	365,035	73,572	992,269	438,607		992,269
2012	339,034	305,197	221,567	10,555	29,565	446,295	40,120	419,503	865,798
2013	353,139	373,072	367,382	9,000	18,232	524,967	27,232	568,626	1,093,593
2014	408,112	298,619	267,830	93,525	92,023	974,561	185,548		974,561
2015	141,000	141,000	204,358			204,358		282,000	486,358
2016	407,196	369,521	205,967			205,967		776,717	982,684
2017	438,331	267,211	470,000	114,141	138,624	641,589	252,765	533,953	1,175,542
2018			929,388			400,000		528,388	929,388
Mean ${ }^{1}$	355,277	285,701	327,964	79,032	50,502	531,550	129,534	463,258	910,671

[^0]Table 7. Total releases of fall-run Chinook by release year and release site.

Release Year	Prosser On-Station Release				Billy's Pond ${ }^{2}$	Stiles Pond ${ }^{2}$	Marion Drain	Total Release
	LWH ${ }^{1}$	PRH ${ }^{1}$	Subyrl ${ }^{2}$	Yrlng ${ }^{2}$				
1997	1,694,861							1,694,861
1998	1,695,399							1,695,399
1999	1,690,000		192,000					1,882,000
2000	1,695,037		306,000				16,000	2,017,037
2001	1,699,136		427,753				12,000	2,138,889
2002	1,704,348		286,158				4,000	1,994,506
2003	1,771,129		365,409				18,000	2,154,538
2004	1,748,200		561,385				52,223	2,361,808
2005	1,700,000		466,000		75,000 ${ }^{3}$	38,890	41,000	2,320,890
2006	1,683,664		130,002			118,835	2,000	1,934,501
2007	1,700,000 ${ }^{4}$		50,000		5,000	75,000	15,731	1,845,731
2008	789,993		519,486 ${ }^{5}$	1,833	11,308	72,296	5,253	1,400,169
2009	1,647,275		299,574	7,516			24,245	1,978,610
2010	1,680,045		290,282	12,167			22,945	2,005,439
2011	1,699,944	503,772	620,952	22,857				2,847,525
2012	1,200,000	405,000	269,633	19,432			72,258	1,966,323
2013	1,506,725		184,949	22,735				1,714,409
2014	1,542,702	379,970	445,347					2,368,019
2015	1,653,495	479,078	584,397					2,716,970
2016	1,593,090		562,472					2,155,562
2017	1,789,400		423,920	159,470				2,213,320
2018	1,638,300		328,620	208,660				1,966,920
2019			457,691	224,961				682,652

1. Transfers from LWH=Little White Salmon NFH; PRH=Priest Rapids Hatchery.
2. Releases from local brood source adults collected at Prosser Dam or Hatchery.
3. Released from Edler Pond (approximately 2 miles downstream from Billy's Pond).
4. Of which approximately 500,000 were reared on-station at Prosser under accelerated growth conditions.
5. Of which approximately 5,400 were released from SKOV pond.

Table 8. Total releases ${ }^{1}$ of summer-run Chinook by release year and release site.

Release		Stiles Pond		Nelson			Total Year
Prosser	Subyrl	Yrlng	Springs	Wapatox	Roza	Release	
2009		180,911					180,911
2010		200,747				200,747	
2011			176,364	39,406			215,770
2012	98,300			98,803			197,103
2013				88,208		48,355	136,563
2014				179,901		74,980	254,881
2015	55,000			99,600		122,848	277,448
2016						37,000	37,000
2017	169,499			44,000		75,000	244,499
2018				50,000	100,000	75,000	74,000
2019	581,000				806,000		

1. All fish released as subyearlings unless otherwise noted.

For smolt migration years 2000 to present, annual abundance estimates of juvenile smolts migrating downstream at Prosser Dam averaged 219,400 wild/natural spring Chinook, 329,700 CESRF-origin spring Chinook, 44,000 wild/natural-origin coho, and 262,800 hatchery-origin coho (Table 9). These are the years for which our data and methods are considered most reliable. Juvenile passage estimates for earlier years
are provided below under "Status and Trend of Juvenile Productivity"; however, the reader should be aware that we have less confidence in these data because we have refined data collection protocols and passage estimation methods over time. As the majority of fall Chinook smolt migrants are unmarked hatchery-origin fish, we provide only the gross abundance indices below under "Status and Trend of Juvenile Productivity". The reader is cautioned to pay particular attention to the factors complicating estimates of juvenile abundance and productivity described under "Status and Trend of Juvenile Productivity".

Table 9. Estimated smolt passage at Prosser Dam for Yakima Basin wild/natural and hatchery-origin spring Chinook and coho.

Brood Year	Smolt Migr. Year	Spring Chinook		Coho	
		Wild/	Hatchery	Wild/	
		Natural	(CESRF)	Natural	Hatchery
1998	2000	199,416	303,688	37,359	331,503
1999	2001	148,460	281,256	40,605	134,574
2000	2002	467,359	366,950	19,859	155,814
2001	2003	308,959	154,329	9,092	139,135
2002	2004	169,397	290,950	18,787	148,810
2003	2005	134,859	236,443	31,631	204,728
2004	2006	133,238	300,508	8,298	204,602
2005	2007	99,341	351,359	18,772	260,455
2006	2008	120,013	265,485	40,170	416,708
2007	2009	237,228	415,923	23,858	496,594
2008	2010	220,950	382,878	33,408	341,145
2009	2011	304,322	442,564	22,908	333,891
2010	2012	258,106	391,446	17,667	244,503
2011	2013	365,486	372,079	56,947	483,122
2012	2014	263,266	408,222	159,642	337,988
2013	2015	125,150	332,715	20,757	134,084
2014	2016	185,442	403,938	227,163	233,374
2015	2017	208,929	273,248	12,031	108,570
2016	2018	131,489	290,644	38,451	299,535
2017	2019	175,427	319,579	41,696	246,178
	Mean	212,842	329,210	43,955	262,766

Status and Trend of Juvenile Migration Survival to McNary Dam

Methods: For all species, releases of PIT tagged smolts provided a means to estimate smolt survival to McNary Dam. For most releases, PIT-tag detectors were located in or near the exit(s) from the release sites (monitoringresources.org 1558) and allowed estimation of the number of PIT-tagged fish leaving the release sites. To estimate the survival of smolts detected leaving the release sites that eventually pass McNary Dam, the proportion of PIT-tagged smolts detected leaving the release sites that were later detected at McNary Dam was divided by McNary Dam's detection efficiency. The estimated detection efficiency was the number of smolts detected passing dams
downstream of McNary that were previously detected passing McNary divided by the total number of smolts passing the downstream dams, whether or not the smolts were previously detected at McNary. Our methods are described in detail in Appendix C and are generally consistent with Sandford and Smith (2002) and with monitoringresources.org methods 623 and 1536. We used weighted logistic or weighted least squares analysis of variance to analyze differences in survival metrics and indices between various release sites, years and treatments. Additional detail, results and discussion are provided in Appendices D (spring Chinook), E (coho), and F (summer-run Chinook). There were no PIT-tagged releases of fall-run Chinook in 2019; the latest results for this species were presented in Appendix G of Fiander et al. (2019).

Results and Discussion:

For spring Chinook, we compared survivals to McNary Dam of CESRF hatchery-and natural-origin PIT-tagged smolts released into the Roza Dam bypass and migrating downstream of Roza Dam contemporaneously on or after March 16. This date was selected because CESRF fish were not allowed to begin volitional emigration from the acclimation sites until March 15. Approximately 81% of natural-origin spring Chinook smolts PIT-tagged and released at Roza since 1999 migrated downstream of Roza Dam prior to March 16 (derived using queries of PTAGIS database 7/12/2013). Natural and hatchery-origin smolts contemporaneously migrating past Roza from March 16 on are referred to as "late" migrants.

Survival from Roza Dam to McNary Dam was better for late-migrating natural-origin relative to hatchery-origin spring Chinook smolts and for late-migrating relative to early-migrating natural-origin smolts (Figure 11; Appendix D). The pooled mean survival estimate for migration years 1999-2019 was significantly higher for the natural-origin smolts (Figure 11A).

For coho, we estimated survival from acclimation site release to McNary Dam based on life stage, brood source, location, and timing of the releases (Appendix E). The average survival probability of Coho Salmon smolts from the release sites to McNary Dam in 2019 was $14.27 \pm 2.64 \%$, which was lower than both the 2017 estimate ($29.06 \pm 3.4 \%$) and 2018 estimate ($24.51 \pm 3.2 \%$), but higher than the 2015 estimate $(10.12 \pm 1.14 \%)$. Fish released at the Prosser site had higher ($25.19 \% \pm 2.85 \%$) survival compared to releases at all other locations. The survival rate was higher for the Yakima-stock releases ($17.51 \pm 0.8 \%$), followed by Eagle Creek- stock release ($15.04 \pm 2.4 \%$) and Washougal-stock release ($8.49 \pm 1.6 \%$). For the parr-release group, the survival rate of the group was less than the survival rate of the smolt-release group, however the inter-annual variation of the survival rates among these years was similar to that for smolt-releases.

Figure 11. Box plot showing the 20-year average survival probabilities of natural-origin (Natural) and hatchery-origin (Hatchery) spring Chinook Salmon smolt (S. Pandit, Appendix D). A. is the comparison of Late hatchery- and natural-origin smolt; and B. is the comparison between Early- and Late-migrating natural-origin Smolt.

Juvenile survival rates to McNary Dam for summer-run Chinook varied by year over migration years from 2010 through 2019 (Figure 12). The highest average annual survival rate was in $2011(40.15 \% \pm 1.94 \%)$ and the lowest was in 2015 $(0.73 \% \pm 0.47 \%)$. For 2019, the average survival rate from the combined release locations to McNary Dam was $7.22 \% \pm 1.35 \%$, which was higher than 2018's overall survival rate $(2.58 \% \pm 0.41 \%)$. The relationship between the average of May and June river flow measured below Prosser Dam and the annual survival rate (release location to McNary Dam from 2009 through 2019) was strong and statistically significant ($\mathrm{r}^{2}=0.45, \mathrm{p}=0.03$) indicating that survival rate was a function of river flow in May and June. Higher flow in these months results in higher survival of juvenile Summer Chinook outmigrants. We also found that the relationship of size to survival rate from Prosser to McNary dams was similar for April and May releases, but that releases in June depressed the Prosser-to-McNary survival rate over the entire range of fish sizes. A complete report of our study of juvenile outmigration survival of Yakima Basin Summer Chinook to Prosser and McNary dams is provided in Appendix F.

Figure 12. Average annual survival rate (release to McNary Dam) of juvenile Summer Chinook smolts migrating from 2010 through 2019 (S. Pandit, Appendix F).

The data indicate that there are substantial sources of juvenile mortality limiting survival of smolts migrating from release sites in the Yakima River basin. The YKFP is working with partners in multiple forums to implement habitat restoration and water resource management projects that address factors limiting survival and productivity (see Yakima Subbasin, Recovery, and Integrated plans).

Status and Trend of Juvenile Productivity (smolt-to-adult returns)

Methods:

Smolt abundance passage estimates at Prosser and the methods used to derive them were described above. For spring Chinook, adult return estimates to the Yakima River mouth were derived using Prosser and Roza adult abundance and harvest data (described in other sections of this report and in Appendix B) and run reconstruction techniques (Appendix B). For coho, we used Prosser adult abundance.

Adult fall Chinook returning to the Yakima Basin consist of hatchery-origin returns from releases at and above Prosser Dam and natural-origin returns from fish spawning naturally in the Yakima River. Due to fiscal, physical, logistical, and policy considerations, only a small proportion of hatchery-origin releases have been externally marked. Therefore, it is impossible at present to know the origin of unmarked adult fall Chinook counted at Prosser. Additional marking is proposed for hatchery-origin releases as part of the Master Plan (Yakama Nation 2019). To derive rough smolt-to-adult return indices for fall Chinook, aggregate (marked and unmarked
combined) smolt passage estimates for the age-3, -4 , and -5 components for a given return year were averaged and the aggregate adult passage estimate for that return year was divided by this average smolt passage estimate. For example, the "Prosser Average Smolts" for adult return year 1988 is the average of marked and unmarked Prosser smolt estimates for juvenile migration years 1983-1985.

We also queried the PTAGIS database for PIT-tagged summer- and fall-run Chinook and Coho that were released in the Yakima Subbasin in recent years and produced McNary Dam juvenile (smolt) to Bonneville Dam adult SAR indices using juvenile detections at or downstream of McNary and adult detections at or upstream of Bonneville Dams.

Results:

Table 10. Estimated smolt passage at Chandler and smolt-to-adult return indices (Chandler smolt to Yakima R. mouth adult) for Yakima Basin wild/natural and CESRF-origin spring Chinook.

Brood Year	Smolt Migr. Year	Mean Flow ${ }^{1}$ at Prosser Dam	Estimated Smolt Passage at Chandler		$\begin{array}{r} \text { CESRF } \\ \text { smolt- } \\ \text { to-smolt } \\ \text { survival }^{3} \end{array}$	Yakima R. Mouth Adult Returns ${ }^{4}$		Smolt-to-Adult Return Index ${ }^{4}$	
			Wild/ Natural ${ }^{2}$	CESRF Total		Wild/ Natural ${ }^{2}$	CESRF Total	Wild/ Natural ${ }^{2}$	CESRF Total
1982	1984	4134	381,857			6,753		1.8\%	
1983	1985	3421	146,952			5,198		3.5\%	
1984	1986	3887	227,932			3,932		1.7\%	
1985	1987	3050	261,819			4,776		1.8\%	
1986	1988	2454	271,316			4,518		1.7\%	
1987	1989	4265	76,362			2,402		3.1\%	
1988	1990	4141	140,218			5,746		4.1\%	
1989	1991		109,002			2,597		2.4\%	
1990	1992	1960	128,457			1,178		0.9\%	
1991	1993	3397	92,912			544		0.6\%	
1992	1994	1926	167,477			3,790		2.3\%	
1993	1995	4882	172,375			3,202		1.9\%	
1994	1996	6231	218,578			1,238		0.6\%	
1995	1997	12608	52,028			1,995		3.8\%	
1996	1998	5466	491,584			21,151		4.3\%	
1997	1999	5925	584,016	187,669	48.6\%	12,855	8,670	2.2\%	4.6\%
1998	2000^{5}	4946	199,416	303,688	51.5\%	8,240	9,782	4.1\%	3.2\%
1999	2001	1321	148,460	281,256	37.1\%	1,764	864	1.2\%	0.3\%
2000	2002	5015	467,359	366,950	44.0\%	11,434	4,819	2.4\%	1.3\%
2001	2003	3504	308,959	154,329	41.7\%	8,597	1,251	2.8\%	0.8\%
2002	2004	2439	169,397	290,950	34.8\%	3,743	2,557	2.2\%	0.9\%
2003	2005	1285	134,859	236,443	28.7\%	2,746	1,020	2.0\%	0.4\%
2004	2006	5652	133,238	300,508	38.3\%	2,802	4,482	2.1\%	1.5\%
2005	2007	4551	99,341	351,359	40.9\%	4,295	5,004	4.3\%	1.4\%
2006	2008	4298	120,013	265,485	41.3\%	6,004	10,577	5.0\%	4.0\%
2007	2009	5784	237,228	415,923	53.9\%	7,952	7,604	3.4\%	1.8\%
2008	2010	3592	220,950	382,878	45.1\%	7,385	8,036	3.3\%	2.1\%
2009	2011	9414	304,322	442,564	53.1\%	3,766	3,606	1.2\%	0.8\%
2010	2012	8556	258,106	391,446	49.3\%	6,602	5,592	2.6\%	1.4\%
2011	2013	4875	365,486	372,079	48.4\%	7,343	4,160	2.0\%	1.1\%
2012	2014	4923	263,266	408,222	50.9\%	3,969	1,932	1.5\%	0.5\%
2013	2015	1555	125,150	332,715	51.4\%	3,415	3,139	2.7\%	0.9\%
2014	2016	5765	185,442	403,938	58.9\%	$1,800^{6}$	2,864 ${ }^{6}$	1.0\% ${ }^{6}$	0.7\% ${ }^{6}$
2015	$2017{ }^{6}$	7804	208,929	273,248	41.7\%	816^{6}	1,320 ${ }^{6}$	$0.4 \%{ }^{6}$	0.5\% ${ }^{6}$
2016	$2018{ }^{6}$	5652	131,489	290,644	43.4\%				
2017	$2019{ }^{6}$	2476	175,427	319,579	45.0\%				

1. Mean flow (cfs) approaching Prosser Dam March 29-July 4 of juvenile migration year. No data available for migration year 1991. In high flow years (flows at or > 5000 cfs) operation of the Chandler smolt sampling facility may be precluded during portions of the outmigration. Data courtesy of U.S. BOR hydromet.
2. Aggregate of Upper Yakima, Naches, and American wild/natural populations.
3. Estimated smolt-to-smolt (release from upper Yakima River acclimation sites to Chandler) survival for CESRF juveniles.
4. Includes combined age- 3 through age-5 returns. CESRF adult returns and smolt-to-adult survival values are understated relative to wild/natural values since these figures are not adjusted for differential harvest rates in mark selective fisheries in marine and lower Columbia River fisheries.
5. Available data were not sufficient to estimate juvenile flow-entrainment and passage of wild/natural fish.
6. Data for most recent year are preliminary; return data do not include age-5 adult fish.

Table 11. Average combined hatchery- and natural-origin smolt counts at Prosser for fish returning at age-3, -4 , and -5, combined adult returns to Prosser Dam of all age classes, and estimated Prosser smolt-to-adult return indices for Yakima River fall-run Chinook for adult return years 1988-2019.

Adult	Prosser Return	Prosserer Total	Prosser Smolt-to-Adult Return
Year	Smolts ${ }^{1}$	Adults	Index (SAR)
1988	$1,029,429$	224	0.02%
1989	$1,469,019$	670	0.05%
1990	$1,664,378$	1,504	0.09%
1991	$1,579,989$	971	0.06%
1992	$1,811,088$	1,612	0.09%
1993	$2,034,865$	1,065	0.05%
1994	$1,976,301$	1,520	0.08%
1995	$1,329,664$	1,322	0.10%
1996	$1,023,053$	1,392	0.14%
1997	$1,097,032$	1,120	0.10%
1998	$1,533,093$	1,148	0.07%
1999	$1,786,511$	1,896	0.11%
2000	$1,716,156$	2,293	0.13%
2001	$1,867,966$	4,311	0.23%
2002	$1,946,676$	6,241	0.32%
2003	$2,108,238$	4,875	0.23%
2004	$2,653,056$	2,947	0.11%
2005	$2,707,132$	1,942	0.07%
2006	$2,724,824$	1,528	0.06%
2007	$2,312,562$	1,132	0.05%
2008	$2,450,308$	2,863	0.12%
2009	$2,353,675$	2,972	0.13%
2010	$2,118,702$	2,888	0.14%
2011	$1,780,670$	2,718	0.15%
2012	$1,806,572$	4,477	0.25%
2013	$1,939,754$	7,706	0.40%
2014	$2,411,076$	7,792	0.32%
2015	$2,476,483$	7,380	0.30%
2016	$2,436,111$	5,355	0.22%
2017	$2,348,973$	1,613	0.07%
2018	$2,527,520$	763	0.03%
2019	$2,544,821$	691	0.03%
Mean	$1,986,428$	2,717	0.13%

[^1]Table 12. Preliminary estimates of Prosser-to-Prosser smolt-to-adult survival (SAR) indices for adult returns from hatchery- and natural-origin coho for the Yakima reintroduction program, juvenile migration years 2000-2018.

Juvenile Migration Year	Hatchery-origin			Natural-origin		
	Chandler	Prosser	SAR	Chandler	Prosser	SAR
	Smolts ${ }^{\text {a }}$	Adults ${ }^{\text {b }}$	Index	Smolts ${ }^{\text {a }}$	Adults ${ }^{\text {b }}$	Index
2000	331,503	3,546	1.1\%	37,359	1,432	3.8\%
2001	134,574	166	0.1\%	40,605	309	0.8\%
2002	155,814	669	0.4\%	19,859	1,523	7.7\%
2003	139,135	505	0.4\%	9,092	1,820	20.0\%
2004	148,810	2,418	1.6\%	18,787	472	2.5\%
2005	204,728	2,898	1.4\%	31,631	1,562	4.9\%
2006	204,602	2,404	1.2\%	8,298	1,049	12.6\%
2007	260,455	4,131	1.6\%	18,772	459	2.4\% ${ }^{\text {c }}$
2008	416,708	8,835	2.1\%	40,170	982	2.4\% ${ }^{\text {c }}$
2009	496,594	5,153	1.0\%	23,858	573	2.4\% ${ }^{\text {c }}$
2010	341,145	7,216	2.1\%	33,408	802	$2.4 \%^{\text {c }}$
2011	333,891	4,948	1.5\%	22,908	550	$2.4 \%^{\text {c }}$
2012	244,503	2,703	1.1\%	17,667	424	2.4\%
2013	483,122	24,178	5.0\%	56,947	1,082	1.9\%
2014	337,988	2,943	0.9\%	159,642	362	0.2\%
2015	134,084	3,280	2.4\%	20,757	103	0.5\%
2016	233,374	2,693	1.2\%	227,163	1,162	0.5\%
2017	108,570	2,083	1.9\%	12,031	125	1.0\%
2018	299,535	3,566	1.2\%	38,451	301	0.8\%
Mean	263,639	4,439	1.5\%	44,074	794	$2.9 \%{ }^{\text {d }}$

${ }^{\text {a }}$ Yakama Nation estimates of coho smolt passage at Chandler.
${ }^{\mathrm{b}}$ Yakama Nation estimates of age-3 coho returns to Prosser Dam for this juvenile migration cohort.
${ }^{c}$ Average estimate derived from PIT-tag detections of Taneum Creek natural coho for juvenile migration years 2009-2011.
${ }^{\mathrm{d}}$ Excludes migration year 2003.

Table 13. Preliminary McNary Dam smolt to Bonneville Dam adult SAR-indices for hatchery-origin PITtagged summer and fall-run chinook released in the Yakima subbasin by brood year and life stage at release, 2006-2015 (PTAGIS query run May 6, 2019).

Brood	Subyearlings		Yearlings	
Year	Summer	Fall	Summer	Fall
2006		0.0%		8.5%
2007		2.3%		1.2%
2008	2.1%	0.5%		3.0%
2009	2.0%	1.1%		0.7%
2010	3.8%	0.0%	1.9%	1.6%
2011	1.7%	1.2%		1.6%
2012	1.3%	0.9%		
2013	1.1%	0.4%		
2014	0.0%	0.0%		
2015	0.2%	0.4%		
Pooled				
Mean	1.8%	1.1%	1.9%	1.7%

Table 14. Preliminary McNary Dam smolt to Bonneville Dam age-3 adult return (SAR) indices for hatcheryorigin PIT-tagged coho released as smolt (sm) or parr ${ }^{\text {a }}$ in Lower Yakima (LY), Naches (Na), and Upper Yakima (UY) mainstem or tributary areas, brood years 2003-2014 (PTAGIS queries run April 16, 2019).

	LY_sm	Na_sm	UY_sm	Na_parr	UY_parr
2003	3.78%	6.14%	2.92%		
2004	2.28%	3.16%	3.67%	1.09%	
2005	3.11%	3.31%	2.36%	1.41%	1.96%
2006	9.76%	6.81%	4.17%	5.52%	7.84%
2007	8.16%	2.84%	4.35%	0.52%	3.16%
2008	4.10%	7.59%	8.80%	5.84%	8.30%
2009	0.20%	1.89%	3.37%	1.99%	3.20%
2010	1.67%	1.80%	1.76%	0.98%	3.23%
2011	6.57%	7.15%	11.64%	6.11%	10.49%
2012	1.15%	1.48%	2.58%	1.01%	2.59%
2013	3.35%	2.33%	4.91%		3.03%
2014	0.66%	3.01%	3.05%	3.73%	6.74%
Average	3.73%	3.96%	4.46%	2.82%	5.05%
Geomean	2.46%	3.40%	3.85%	2.03%	4.33%

${ }^{\text {a }}$ PIT-tagged fish released as parr in brood year 2003, 2004 (Upp. Yak.), and 2013 (Naches) experienced very poor $(<1 \%)$ survival to McNary Dam as juvenile smolts and were omitted from this analysis.

Discussion:

Calculation of smolt-to-adult survival rate indices for Yakima Basin anadromous salmonids are complicated by the following factors:

1) Smolt accounting at Prosser is based on statistical expansion of Chandler smolt trap sampling data using available PIT-detection and flow data and estimated Chandler entrainment rates. Chandler smolt passage estimates are prepared primarily for the purpose of comparing relative marked versus unmarked passage estimates and not for making survival comparisons. While these Chandler smolt passage estimates represent the best available data, there may be a high degree of error associated with
these estimates due to inherent complexities, assumptions, and uncertainties in the statistical expansion process. Therefore, these estimates are subject to revision.
2) Large numbers of Yakima Basin salmonid releases (all CESRF spring Chinook) are adipose-fin clipped and subjected to higher harvest rates than unmarked wild/natural fish in marine and Columbia River mark-selective fisheries. No adjustments have yet been made in the above SAR estimates to account for differential harvest rates in these mark-selective fisheries.
3) Due to issues such as water diversion permitting, size required for tagging, and allowing sufficient time for acclimation, release time for many hatchery-origin juveniles (including all CESRF spring Chinook) may be delayed relative to their wild counterparts. For example, spring Chinook from the CESRF are not allowed to volitionally migrate until at least March 15 of their smolt outmigration year; however, juvenile sampling observations at Roza Dam indicate that a substantial number of wild/natural juveniles migrate downstream during the summer, fall, and winter months prior to their smolt outmigration year. Analysis of juvenile migrant PIT detections at Roza Dam (PTAGIS queries run 7/12/2013) indicated that approximately 81% of natural-origin spring Chinook migrated downstream of Roza in the fall or winter as juveniles (before CESRF fish would have the opportunity). Comparison of SAR data for non-contemporaneously migrating juveniles may be invalid.

Given these complicating factors, Tables 10-14 present available smolt-to-adult survival indices for Yakima River spring and summer/fall Chinook and coho. Because of the complexities noted above, these data are useful for analysis of trends but should not be used as direct citations of, or for comparisons of marked and unmarked, smolt-to-adult survival rates. The reader is encouraged to contact Yakama Nation technical staff to discuss these and other issues prior to any use of these data or any other estimation of Yakima Basin SARs that may be available through data obtained from public web sites such as RMPC, PTAGIS, DART, FPC or others.

Substantial juvenile mortality of subyearling releases of summer- and fall-run Chinook occurs in the Yakima River between their release sites and McNary Dam (Neeley 2012b). Strategies have been proposed to address limiting factors (YSFWPB 2004) and improve survival of these releases (Yakama Nation 2019). As these strategies are implemented, we expect SARs for summer- and fall-run Chinook to improve substantially from the estimates provided in Table 11 (Yakama Nation 2019). Additional discussion and results for Yakima Basin spring Chinook SARs are presented in Appendix B.

Status and Trend of Spatial Distribution (Redd Counts)

Methods: Regular foot and/or boat surveys (monitoringresources.org methods 30, $131,285,1508$) were conducted within the established geographic range for each species (this is increasing for coho as acclimation sites are located upriver and as the run increases in size). Redds were individually marked during each survey and carcasses were sampled to collect egg retention, scale sample, sex, and body length information and to check for possible experimental marks. River conditions vary from year to year and preclude complete accounting, especially for fall Chinook and Coho. Other agencies (WDFW, Pacific Northwest National Laboratory, and private contractors) have also conducted foot, boat, or aerial surveys for fall Chinook redds in the Yakima River Basin and we have attempted to incorporate available information from those surveys here.

Results:

Figure 13. Redd Counts upstream of Prosser Dam in the Yakima River Basin by species, 1981-present.

Table 15. Yakima Basin spring Chinook redd counts and distribution, 1981 - present.

Year	Upper Yakima River System				Naches River System				
	Mainstem ${ }^{1}$	Cle Elum		Total	American	Naches ${ }^{1}$	Bumping	Little Naches	Total
1981	237	57	0	294	72	64	20	16	172
1982	610	30	0	640	11	25	6	12	54
1983	387	15	0	402	36	27	11	9	83
1984	677	31	0	708	72	81	26	41	220
1985	795	153	3	951	141	168	74	44	427
1986	1,716	77	0	1,793	464	543	196	110	1,313
1987	968	75	0	1,043	222	281	133	41	677
1988	369	74	0	443	187	145	111	47	490
1989	770	192	6	968	187	200	101	53	541
1990	727	46	0	773	143	159	111	51	464
1991	568	62	0	630	170	161	84	45	460
1992	1,082	164	0	1,246	120	155	99	51	425
1993	550	105	1	656	214	189	88	63	554
1994	226	64	0	290	89	93	70	20	272
1995	105	12	0	117	46	25	27	6	104
1996	711	100	3	814	28	102	29	25	184
1997	364	56	0	420	111	108	72	48	339
1998	123	24	1	148	149	104	54	23	330
1999	199	24	1	224	27	95	39	25	186
2000	3,349	466	21	3,836	54	483	278	73	888
2001	2,910	374	21	3,305	392	436	257	107	1,192
2002	2,441	275	110	2,826	366	226	262	89	943
2003	772	87	31	890	430	228	216	61	935
2004	2,985	330	129	3,444	91	348	205	75	719
2005	1,717	287	15	2,019	140	203	163	68	574
2006	1,092	100	58	1,250	136	163	115	33	447
2007	665	51	10	726	166	60	60	27	313
2008	1,191	137	47	1,375	158	165	102	70	495
2009	1,349	197	33	1,579	92	159	163	68	482
2010	2,199	219	253	2,671	173	171	168	40	552
2011	1,663	171	64	1,898	212	145	175	48	580
2012	1,276	125	69	1,470	337	196	189	89	811
2013	552	85	34	671	170	66	85	55	376
2014	962	138	53	1,153	129	65	158	27	379
2015	1,258	39	24	1,321	239	177	152	46	614
2016	512	83	22	617	149	106	74	37	366
2017	402	118	23	543	123	84	56	30	293
2018	339	13	0	352	27	56	44	1	128
2019	184	44	9	237	21	1	2	7	31
Mean	1,000	121	27	1,147	156	161	110	46	472

[^2]

Figure 14. Teanaway River Spring Chinook redd counts, 1981-2019 (vertical lines denote pre- and postsupplementation periods) and the proportion of natural-origin (NO) carcasses observed in intensive spawning ground surveys, 2002-2010.

Figure 15. Distribution of summer and fall run Chinook redds in the Yakima River Basin (above Prosser Dam) based on redd observations from 2014 to 2018.

Figure 16. Fall Chinook redd counts above and below Prosser Dam, 1961-present, for years in which surveys were conducted and data are available. Data from YN, WDFW, and Pacific Northwest National Laboratory files. Note that survey completeness is highly variable due to annual flow and turbidity conditions; survey data are partial or incomplete for most years prior to 2000.

Figure 17. Distribution of coho redds in the Yakima River Basin.

Table 16. Yakima Basin coho redd counts and distribution, 1998 - present.

	Yakima River	Naches River	Tributaries	Total
1998	53	6	193	252
1999	104		62	166
2000	142	137	67	346
2001	27	95	25	147
2002	4	23	16	43
2003	32	56	55	143
2004	33	87	150	270
2005	57	72	153	282
2006	44	76	187	307
2007	63	87	195	345
2008	49	60	242	351
2009	229	281	485	995
2010	75	276	327	678
2011	82	243	196	521
2012	148	228	172	548
2013	45	69	67	181
2014	320	86	751	1157
2015	16	0	47	63
2016	27	37	54	118
2017	92	36	177	305
2018	46	103	100	249
2019	62	80	112	254

Discussion:

Spatial distribution of spring Chinook spawners has increased as a result of acclimation site location, salmon homing fidelity and more fully seeding preferred spawning habitats (Dittman et al. 2010). Redd surveys in the Teanaway River conducted annually by Yakama Nation staff since 1981 demonstrate the benefits of reintroducing salmonids into underutilized habitat (Figure 14). The Jack Creek acclimation site began releasing CESRF spring chinook in 2000, with the first age-4 females returning from these releases in 2002. Redd counts in this tributary have increased from a pre-supplementation average of 3 redds per year to a post supplementation average of 55 redds per year. The proportion of natural-origin carcasses increased from less than one percent in 2002 (when CESRF fish first returned to the natural spawning grounds) to 42% in 2006 when the progeny of the 110 redds produced in 2002 (virtually 100% of which were produced by CESRForigin fish) returned. These data clearly indicate that naturally-spawning CESRF spring Chinook were successful in returning natural-origin adults back to the Teanaway River. However, redd counts in the Teanaway River remain at or below pre-supplementation levels in some years, including 2018, indicating that habitat factors (primarily low late-summer and fall season flows) continue to deter returning fish and these fish are likely spawning in nearby mainstem and tributary reaches more conducive to survival of progeny (Fast et al. 2015).

Fall Chinook redd distribution in the Yakima River Basin appears to be experiencing a major transition in recent years. Historical redd survey data indicates that a substantial number of fall Chinook spawned below Prosser Dam in the lower Yakima River. However, from 2003-present, an average of approximately 80 percent (range 62 to 90 percent) of surveyed fall Chinook redds have been located above Prosser Dam (Figure 16). Biologists and habitat experts in the subbasin at least partially attribute this change in spawning distribution to the invasion of water stargrass (see Wise et al. 2009) in the lower 43 miles of the Yakima River. With the reintroduction of summer run Chinook, the Yakama Nation is expanding the distribution of summer/fall run Chinook spawners and redds into the middle reaches of the Yakima Basin between the town of Wapato upstream to the confluence with the Tieton River in the Naches subbasin and to Roza Dam in the Upper Yakima subbasin (Figures 1 and 15; Yakama Nation 2012). Summer-run Chinook have now spawned naturally in these habitats since 2013 after an absence of over 40 years.

Coho redd counts and spawner distribution have increased substantially since reintroduction efforts began (Table 16 and Figure 17). Many redds in the mainstem were located intermixed with fall chinook redds, tucked under cut banks or were found in side channels. Tributary redd enumeration and identification continues to be accurate due to the fall low water levels, improving interagency cooperation, and
relatively good weather. One of the overall goals during the present implementation phase (Phase II) of the coho program is to evaluate the transition of redds from the mainstem river into historic tributaries. With the beginning of Phase II of the Coho Program we observed large increases in tributary spawning, with an annual average exceeding 200 redds counted in tributaries since 2004 (Table 16). Although, there were large numbers of potential spawners in $2014(\sim 9,000$ females), river conditions were very unfavorable for finding redds. Winter anchor ice in early December kept surveys to a minimum. This was followed by winter freshets that reduced visibility in the Naches River to the point where visibility was near zero. However, the stability of low water conditions in 2015 might have contributed to good survival of coho eggs from the 2014-2015 spawning season. The 2019 redd count was again below the recent average at 112 (Table 16). However, Coho continue to volunteer into many tributaries, and the fidelity of adults from summer parr plants has shown good results.

Adult Coho plants have also been used to evaluate the feasibility of increasing fish abundance in several tributaries. To determine the spawning success and effects on resident trout of these adult outplants, an intensive monitoring program was conducted in Taneum Creek for brood/spawn years 2007-2014. The results of this evaluation indicate that Coho spawned successfully and have the potential to produce large numbers of returning adult offspring per smolt that survive to McNary Dam as juveniles (Table 17). The total biomass of all salmonids in the stream increased and there were no discernable impacts to resident trout (Temple et al. 2012, 2017).

Table 17. Results from Taneum Creek adult out-plant study.

Year	Number of Adult Females Outplanted	Redds	Number of Juvenile coho PIT Tagged	McNary Juvenile PIT Detections	McNary Juvenile \& Adult PIT Detections	McNary JuvenileAdult SAR
2007	150	75	1,299	94		
2008	150	50	1,868	82	7	8.5\%
2009	150	130	4,515	177	4	2.3\%
2010	150	134	1,054	73	3	4.1\%
2011	150	100	743	30	4	13.3\%
2012	60	54	1,941	70		
2013	9	5	231	0		
2014	360	200	752	12		
Pooled			12,403	538	18	3.3\%

Status and Trend of Diversity Metrics

Methods:

Diversity metrics collected for the Cle Elum Supplementation and Research Facility spring Chinook program in the Upper Yakima River include parameters relating to: eggs (e.g., egg size, KD at emergence, emergence timing, etc.), juveniles (growth and survival, migration timing, fish health, etc.), and adults (size at age, sex composition, migration timing, etc.). Methods for monitoring the spring Chinook program were documented in: the YKFP Monitoring Plan (Busack et al. 1997), the project's "Supplementation Monitoring Plan" (Chapter 7 in 2005 annual report on project genetic studies), and numerous manuscripts in the published literature (see Results and References).

Diversity metrics for returning adult summer/fall Chinook and coho collected at the Prosser Dam denil fish trap include sex ratios, lengths, and weights (monitoringresources.org methods $454,1454,1548,1549,1551,4008,4041$). We also queried the PTAGIS database for PIT-tagged summer- and fall-run Chinook that were released in the Yakima Subbasin in recent years and used PIT-detection data at Bonneville Dam for upstream migrants to estimate age composition and run timing of returning fish.

Results and Discussion:

A detailed presentation of current results for the spring Chinook monitoring program (YN-collected data) are included in Appendix B of this report and are discussed in greater detail in the annual report(s) for WDFW-companion project 1995-064-25. Generally, we have detected small, but significant differences between hatchery- and natural-origin fish in some juvenile and adult traits. Results in the published literature include: Busack et al. (2007), Knudsen et al. $(2006,2008)$, Larsen et al. $(2004,2006$, 2010, 2013), and Pearsons et al. (2009).

Sex ratios, lengths, and weight data for fall Chinook and coho salmon sampled at the Prosser denil adult sampling facility from 2001-present are presented in Tables 18-21. Age composition of summer- and fall-run Chinook are presented in Table 22 and run timing in Figure 18. In addition, preliminary results of some diversity metrics relating to the effort to reestablish a natural spawning coho population in the Yakima Basin were published in Bosch et al. (2007). That study observed divergence in some diversity traits between hatchery- and natural-origin fish suggesting that some renaturalization can be detected in just a few generations after outplanting of hatcheryorigin fish in the wild.

Table 18. Sex ratio of upstream migrating fall Chinook sampled at the Prosser Dam right bank denil ladder and fish trap, 2001-present.

Return		Sample Size		Female	Female	Sample Date Range	
Year	F	J	M	Adult $\%$	Total \%	First	Last
2001	186	80	213	46.6%	38.8%	$09 / 10 / 01$	$11 / 19 / 01$
2002	389	61	512	43.2%	40.4%	$09 / 09 / 02$	$11 / 25 / 02$
2003	396	24	224	63.9%	61.5%	$09 / 07 / 03$	$11 / 17 / 03$
2004	185	40	201	47.9%	43.4%	$09 / 06 / 04$	$11 / 23 / 04$
2005	201	8	233	46.3%	45.5%	$09 / 06 / 05$	$11 / 14 / 05$
2006	107	11	84	56.0%	53.0%	$09 / 13 / 06$	$11 / 06 / 06$
2007	42	44	39	51.9%	33.6%	$09 / 10 / 07$	$11 / 06 / 07$
2008	81	23	101	44.5%	39.5%	$09 / 08 / 08$	$11 / 13 / 08$
2009	110	132	95	53.7%	32.6%	$09 / 08 / 09$	$11 / 07 / 09$
2010	239	4	162	59.6%	59.0%	$09 / 08 / 10$	$11 / 03 / 10$
2011	67	10	34	66.3%	60.4%	$09 / 07 / 11$	$11 / 09 / 11$
2012	249	109	264	48.5%	40.0%	$09 / 04 / 12$	$11 / 06 / 12$
2013	272	86	460	37.2%	33.3%	$09 / 16 / 13$	$11 / 22 / 13$
2014	681	78	725	48.4%	45.9%	$09 / 04 / 14$	$12 / 10 / 14$
2015	1047	69	1374	43.2%	42.0%	$09 / 09 / 15$	$11 / 16 / 15$
2016	158	22	128	55.2%	51.3%	$09 / 09 / 16$	$11 / 12 / 16$
2017	122	67	66	64.9%	47.8%	$09 / 13 / 17$	$12 / 05 / 17$
2018	78	23	114	40.6%	36.3%	$09 / 12 / 18$	$11 / 05 / 18$
2019	36	7	22	62.1%	55.4%	$09 / 22 / 19$	$11 / 15 / 19$

Table 19. Sample size (N), mean fork and mid-eye to hypural plate (MEH) lengths (cm), and weights (pounds) of upstream migrating fall Chinook sampled at the Prosser Dam right bank denil ladder and fish trap, 2001present.

Run	Females					Males (excluding Jacks)			
Year	N	Fork	POH	Weight	N	Fork	POH	Weight	
2001	186	72.7	60.1	11.0	213	71.5	57.8	9.3	
2002	389	78.4	63.9	13.5	512	76.1	60.2	12.1	
2003	396	83.4	68.5	15.6	224	83.7	67.0	16.3	
2004	185	82.3	67.8	15.1	201	73.9	60.0	11.2	
2005	201	80.5	66.3	14.2	233	75.1	60.6	11.5	
2006	107	81.5	66.3	15.6	84	81.3	64.6	15.3	
2007	42	79.9	64.4	14.8	39	72.8	56.8	11.7	
2008	81	70.1	56.5	9.8	101	67.8	54.0	8.9	
2009	110	74.1	57.8	11.2	95	69.4	52.5	9.6	
2010	239	73.3	57.8	11.3	162	70.9	54.7	9.7	
2011	67	76.5	60.4	12.4	34	74.2	57.7	11.3	
2012	249	70.1	53.3	9.5	264	66.4	49.6	7.9	
2013	272	72.5	56.1	10.1	460	69.8	52.9	8.7	
2014	681	76.1	60.8	11.9	725	69.0	53.2	8.6	
2015	1047	76.2	59.5	11.4	1374	71.4	54.8	9.2	
2016	158	75.3	59.5	9.7	128	71.6	55.3	8.1	
2017	122	74.6	58.8	10.8	66	73.9	57.1	10.4	
2018	78	72.3	54.4	9.6	114	67.2	48.9	7.5	
2019	36	70.2	55.3	8.7	22	68.4	54.2	7.9	
Mean		75.8	60.4	11.9		72.3	56.4	10.3	

Table 20. Sex ratio of upstream migrating coho sampled at the Prosser Dam right bank denil ladder and fish trap, 2001-present.

Return		Sample Size		Female		Female	Sample Date Range	
Year	F	J	M	Adult $\%$	Total $\%$	First	Last	
2001	1147	44	1024	52.8%	51.8%	$09 / 11 / 01$	$11 / 22 / 01$	
2002	72	201	71	50.3%	20.9%	$09 / 11 / 02$	$11 / 25 / 02$	
2003	473	89	452	51.1%	46.6%	$09 / 11 / 03$	$11 / 21 / 03$	
2004	586	49	509	53.5%	51.2%	$09 / 07 / 04$	$11 / 16 / 04$	
2005	531	146	405	56.7%	49.1%	$09 / 13 / 05$	$11 / 15 / 05$	
2006	826	97	586	58.5%	54.7%	$09 / 17 / 06$	$11 / 19 / 06$	
2007	676	34	538	55.7%	54.2%	$09 / 11 / 07$	$11 / 20 / 07$	
2008	666	930	514	56.4%	31.6%	$09 / 08 / 08$	$12 / 04 / 08$	
2009	1644	76	1576	51.1%	49.9%	$09 / 09 / 09$	$11 / 20 / 09$	
2010	999	35	673	59.7%	58.5%	$09 / 08 / 10$	$11 / 19 / 10$	
2011	907	12	776	53.9%	53.5%	$09 / 16 / 11$	$11 / 17 / 11$	
2012	1156	108	961	54.6%	52.0%	$09 / 08 / 12$	$11 / 17 / 12$	
2013	523	146	528	49.8%	43.7%	$09 / 20 / 13$	$11 / 22 / 13$	
2014	4302	135	3668	54.0%	53.1%	$09 / 03 / 14$	$12 / 23 / 14$	
2015	656	67	683	49.0%	46.7%	$09 / 13 / 15$	$12 / 09 / 15$	
2016	310	101	249	55.5%	47.0%	$09 / 13 / 16$	$11 / 16 / 16$	
2017	694	132	752	48.0%	44.0%	$09 / 13 / 17$	$12 / 19 / 17$	
2018	343	318	308	52.7%	35.4%	$09 / 06 / 18$	$11 / 05 / 18$	
2019	758	28	692	52.3%	51.3%	$09 / 04 / 19$	$12 / 31 / 19$	
			Mean	53.5%	47.1%			

Table 21. Sample size (N), mean fork and mid-eye to hypural plate (MEH) lengths (cm), and weights (pounds) of upstream migrating coho sampled at the Prosser Dam right bank denil ladder and fish trap, 2001-present.

Run	Females					Males (excluding Jacks)		
Year	N	Fork	POH	Weight	N	Fork	POH	Weight
2001	1147	65.4	53.7	6.7	1024	65.6	52.4	6.5
2002	72	68.1	54.9	8.5	71	69.4	54.0	8.1
2003	473	65.3	52.9	7.0	452	65.7	51.4	6.8
2004	586	68.8	56.4	8.0	509	67.8	53.9	7.4
2005	531	67.5	54.9	8.0	405	67.6	53.5	7.8
2006	826	71.6	58.2	10.0	586	71.3	55.8	9.4
2007	676	66.3	52.1	7.0	538	65.5	49.9	6.6
2008	666	69.9	56.7	9.6	516	69.8	54.6	9.0
2009	1644	68.1	52.4	7.9	1576	67.2	49.7	7.2
2010	999	69.7	54.2	8.7	673	68.5	51.5	7.8
2011	907	68.6	53.7	8.2	776	68.5	51.7	7.7
2012	1156	64.3	49.5	6.8	961	62.6	46.4	6.0
2013	523	66.2	51.9	6.9	528	64.0	48.4	5.9
2014	4302	65.6	52.6	7.0	3668	63.5	49.8	6.1
2015	656	63.5	50.1	6.0	683	61.9	47.5	5.2
2016	310	66.9	52.7	6.9	249	67.4	51.6	6.4
2017	694	64.5	49.6	6.4	752	63.6	47.8	5.9
2018	343	66.6	51.0	6.8	308	66.0	49.2	6.4
2019	758	64.8	49.7	5.7	692	63.7	47.7	5.2
Mean		66.9	53.0	7.5		66.3	50.9	6.9

Table 22. Age composition of returning hatchery-origin PIT-tagged summer and fall-run chinook released in the Yakima subbasin as subyearling or yearling fish (data from PTAGIS query run May 1, 2019).

Brood	Age at Return				
Year	2	3	4	5	6
Summer Chinook Subyearlings					
2008	12.5\%	12.5\%	50.0\%	25.0\%	0.0\%
2009	5.4\%	16.3\%	63.6\%	14.7\%	0.0\%
2010	0.2\%	27.5\%	61.4\%	10.6\%	0.2\%
2011	0.0\%	12.1\%	67.5\%	20.4\%	0.0\%
2012	1.0\%	50.0\%	40.8\%	8.2\%	0.0\%
2013	5.6\%	11.1\%	77.8\%	5.6\%	0.0\%
Mean	4.1\%	21.6\%	60.2\%	14.1\%	0.0\%
Fall Chinook Subyearlings					
2007	9.7\%	47.9\%	35.8\%	6.6\%	
2008	13.3\%	53.3\%	33.3\%	0.0\%	
2009	18.9\%	40.5\%	32.4\%	8.1\%	
2010	0.0\%	66.7\%	16.7\%	16.7\%	
2011	11.6\%	34.9\%	50.0\%	3.5\%	
2012	9.7\%	61.1\%	26.4\%	2.8\%	
Mean	10.6\%	50.7\%	32.4\%	6.3\%	
Summer Chinook Yearlings					
$2010{ }^{1}$	13.6\%	31.2\%	44.2\%	3.9\%	0.6\%
Fall Chinook Yearlings					
2006	96.4\%	0.0\%	3.6\%	0.0\%	0.0\%
2007	63.2\%	16.2\%	8.8\%	11.8\%	0.0\%
2008	30.9\%	36.2\%	27.1\%	5.8\%	0.0\%
2009	20.4\%	19.4\%	40.8\%	19.4\%	0.0\%
2010	39.4\%	26.8\%	27.8\%	6.1\%	0.0\%
2011	6.4\%	16.7\%	57.1\%	14.7\%	5.1\%
Mean	42.8\%	19.2\%	27.5\%	9.6\%	0.9\%

${ }^{1} 10$ of $154(6.5 \%)$ of detections occurred about 90 days post-release in adult ladders at Bonneville Dam and were assumed to be age- 1 returns. However, only 2 of these 10 were confirmed as upstream detections based on later detections at dams upstream of Bonneville. The other 8 detections at Bonneville could have been late-migrating juveniles.

Figure 18. Adult return timing at Prosser Dam of PIT-tagged summer- and fall-run Chinook reared at the Marion Drain and Prosser Hatcheries and released as subyearlings, pooled for return years 2009-2018.

Habitat Monitoring

While the majority of YKFP habitat activities in the Yakima Basin are addressed in a separate project (1997-051-00), we are monitoring stream sediment loads associated with the operation of dams and other anthropogenic factors (e.g. logging, agriculture and road building) under this contract as sediment loads can affect survival of salmonids (see description and references here).

Status and Trend of Fine Sediment

Methods: Representative gravel samples (McNiel core samples, monitoring resources 1504) were collected from various reaches in the Little Naches and Upper Yakima Rivers in the fall of 2019. Each sample was analyzed to estimate the percentage of fine or small particles present $(<0.85 \mathrm{~mm})$. The Washington State Timber, Fish, and Wildlife program established guidelines that specify the impacts that estimated sedimentation levels can have on salmonid egg-to-smolt survival. These impact guidelines will inform future analyses of "extrinsic" factors on natural production in the Yakima Basin.

Results and Discussion:

Little Naches

A total of 106 McNiel core samples were collected and processed from 9 spawning reaches in the Little Naches drainage this past year. Pyramid Creek has not been sampled since 2009 when the main road going into this reach was decommissioned. Other means to access this sampling site is needed. With this year's monitoring work, the data set for the Little Naches drainage now covers a time period of 35 years for the two historical reaches, and 28 years for the expanded sampling area that includes several tributary streams.

The average percent fine sediment less than 0.85 mm for the entire Little Naches drainage in 2019 was 10.3% which, although higher than the low observed in 2015, is still below the watershed average observed every year from 1992-2008 (Figure 19). The overall trend remains downward and similar trends can be seen when looking at individual reach conditions over the longer term monitoring period since 1992.

The overall average fine sediment found in spawning substrate remains relatively low and should lessen mortality on incubating eggs and alevins. The reduced rate of fine sediment found can be partially attributed to less anthropogenic disturbance occurring in the watershed in recent years, other than recreational activity. Timber harvest activity and road building has been minimal for several years.

Landowners have also improved roads and trails to reduce sediment delivery. Further, enhanced stream protection measures have been instituted through the Northwest Forest Plan and the Central Cascades Habitat Conservation Plan for over 20 years. These factors have likely helped reduce fine sediment inputs to the stream system. However recreational activity, such as dispersed camping sites and off-road vehicle use near streams, continues to be a concern. Sediment delivery, bank erosion, and loss of riparian vegetation from recreational use have been observed in some localized areas.

Figure 19. Overall Fine Sediment ($<0.85 \mathrm{~mm}$) Trends with 95% confidence bounds in the Little Naches River Drainage, 1992-2019.

South Fork Tieton

One reach on the South Fork Tieton River (in the vicinity of Minnie Meadows) has been sampled in the past by the U.S. Forest Service. To the best of our knowledge this reach has not been sampled since 2015. This stream reach typically receives significant bull trout spawning activity and the monitoring efforts provide valuable information on their spawning conditions. Average fine sediment in this reach was 8.9% in 2015, matching the previous low observed in 1999, and is well below the mean for sediment levels for the 17 years that were sampled (Figure 20).

Upper Yakima

A total of 60 samples were collected and processed from the Upper Yakima River drainage this past year (5 reaches, 12 samples from each reach). The same reaches (Stampede Pass, Easton, Camelot to Ensign Ranch, Elk Meadows, and Cle Elum) have been sampled annually for the past 23 years. The 23 -year trend in average percent fine sediment less than 0.85 mm for the combined Upper Yakima drainage remains downward, although observed fine sediments the past three years have been at or above the average observed since 2009 (Figure 21).

Figure 20. Fine Sediment Trends in the South Fork Tieton River, 1999-2015. Note: Data for 2007 were collected from only 1 Riffle. Data courtesy of U.S. Forest Service.

Figure 21. Overall average percent fine sediment ($<0.85 \mathrm{~mm}$) in spawning gravels of the Upper Yakima River, 1997-2019.

Summary

We continue to observe a general decreasing trend in average fine sediment levels in the Little Naches and Upper Yakima drainages. Increases observed since 2015 in both drainages could mean that we are experiencing some effect from the large fires in recent years. Overall, the generally low rates of fine sediment should be conducive for egg and alevin survival and should favor salmonid spawning success.

The results of the USFS sampling in the South Fork Tieton River have also been low over a 17 -year sampling period. These conditions should be favorable for early life history survival of bull trout.

Detailed field data including additional tables and graphs for samples collected in the upper Yakima and Naches basins can be obtained from Jim Matthews, fisheries biologist for the Yakama Nation (matj@yakamafish-nsn.gov).

Harvest Monitoring

Marine and Mainstem Columbia Fisheries

Methods: We evaluated recoveries of coded-wire tags (CWTs) and PIT tags in out-of-basin fisheries using queries of regional mark information system (RMIS) and PIT Tag Information System (PTAGIS) databases. We coordinated with agencies responsible for harvest management (WDFW, ODFW, USFWS, CRITFC, etc.) to estimate the harvest of target stocks. We reviewed reports produced annually by the Pacific Fisheries Management Council (marine) and the U.S.v Oregon Technical Advisory Committee (mainstem Columbia) to evaluate estimated harvest or
exploitation rates on comparable stocks in these fisheries.

For spring Chinook, additional information was employed that is not readily available for fall Chinook and coho. Standard run reconstruction techniques (Appendix B) were employed to derive estimates of harvest from the Columbia River mouth to the Yakima River mouth for spring Chinook. Data from databases maintained by the U.S. v Oregon Technical Advisory Committee were used to obtain harvest rate estimates downstream of the Yakima River for the aggregate Yakima River spring Chinook population and to estimate passage losses from Bonneville through McNary reservoirs. These data, combined with the Prosser Dam counts and estimated harvest below Prosser, were used to derive a Columbia River mouth run size estimate and Columbia River mainstem harvest estimate for Yakima spring Chinook.

Results:

Table 23. Marine and freshwater recoveries of CWTs from brood year 1997-2014 releases of spring Chinook from the CESRF as reported to the Regional Mark Information System (RMIS) 04 Dec 2019.

	Brood			Observed CWT Recoveries		Expanded CWT Recoveries		
Year	Marine	Fresh	Marine $\%$	Marine	Fresh	Marine \%		
1997	5	56	8.2%	8	321	2.4%		
1998	2	53	3.6%	2	228	0.9%		
1999		2	0.0%		9	0.0%		
2000		14	0.0%		34	0.0%		
2001		1	0.0%		1	0.0%		
2002		7	0.0%		36	0.0%		
2003		4	0.0%		10	0.0%		
2004	2	154	1.3%	15	526	2.8%		
2005	2	96	2.0%	2	304	0.7%		
2006	14	328	4.1%	16	1160	1.4%		
2007	8	145	5.2%	13	1139	1.1%		
2008	5	245	2.0%	7	1634	0.4%		
2009	4	91	4.2%	7	588	1.2%		
2010	4	164	2.4%	9	948	0.9%		
2011	5	186	2.6%	5	1030	0.5%		
2012	4	73	5.2%	2	273	0.7%		
2013	9	65	12.2%	20	534	3.6%		
$2014{ }^{1}$	4	68	5.6%	8	542	1.5%		

1. Reporting of CWT recoveries to the RMIS database typically lags actual fisheries by one to two years. Therefore, CWT recovery data for brood year 2014 are considered preliminary or incomplete.

Table 24. Estimated run size, harvest, and harvest rates of Yakima Basin spring Chinook in Columbia River mainstem and terminal area fisheries, 1983-present.

Year	Columbia R. Mouth Run Size	Col. R. Mouth to BON Harvest	BON to McNary Harvest	Yakima R. Mouth Run Size	Yakima River Harvest	Columbia Basin Harvest Summary			Col. Basin Harvest Rate	
						Total	Wild	CESRF	Total	Wild
1983	2,460	118	113	1,441	84	316	316	0	12.8\%	12.8\%
1984	3,911	135	290	2,658	289	714	714	0	18.3\%	18.3\%
1985	5,276	192	197	4,560	865	1,254	1,254	0	23.8\%	23.8\%
1986	13,624	282	858	9,439	1,340	2,479	2,479	0	18.2\%	18.2\%
1987	6,204	97	420	4,443	517	1,034	1,034	0	16.7\%	16.7\%
1988	5,718	366	442	4,246	444	1,252	1,252	0	21.9\%	21.9\%
1989	8,981	214	743	4,914	747	1,704	1,704	0	19.0\%	19.0\%
1990	6,990	354	514	4,372	663	1,531	1,531	0	21.9\%	21.9\%
1991	4,675	185	315	2,906	32	533	533	0	11.4\%	11.4\%
1992	6,233	103	405	4,599	345	853	853	0	13.7\%	13.7\%
1993	5,155	44	337	3,919	129	510	510	0	9.9\%	9.9\%
1994	2,265	88	126	1,302	25	239	239	0	10.6\%	10.6\%
1995	1,410	1	86	666	79	166	166	0	11.8\%	11.8\%
1996	5,909	6	320	3,179	475	801	801	0	13.6\%	13.6\%
1997	5,224	3	379	3,173	575	957	957	0	18.3\%	18.3\%
1998	2,889	3	165	1,903	188	356	356	0	12.3\%	12.3\%
1999	4,174	4	212	2,781	604	820	820	0	19.6\%	19.6\%
2000	28,825	58	1,824	19,101	2,458	4,340	4,214	126	15.1\%	15.1\%
2001	32,610	980	4,566	24,157	4,630	10,177	5,862	4,314	31.2\%	29.3\%
2002	25,751	1,300	3,333	15,828	3,108	7,740	2,946	4,794	30.1\%	25.2\%
2003	10,454	291	1,069	7,231	440	1,799	1,097	702	17.2\%	16.1\%
2004	24,644	1,041	2,716	16,847	1,679	5,436	3,166	2,269	22.1\%	17.5\%
2005	13,579	361	1,145	9,605	474	1,980	1,581	399	14.6\%	13.7\%
2006	12,457	318	1,191	6,600	600	2,108	1,230	878	16.9\%	15.2\%
2007	5,311	177	539	4,460	279	995	496	499	18.7\%	16.4\%
2008	13,269	1,273	2,479	9,311	1,532	5,284	1,629	3,655	39.8\%	28.6\%
2009	14,389	1,271	1,695	11,423	2,353	5,319	1,571	3,748	37.0\%	27.1\%
2010	19,676	1,728	3,755	13,782	1,741	7,224	1,897	5,327	36.7\%	25.7\%
2011	23,940	1,127	2,373	18,535	4,380	7,880	2,883	4,997	32.9\%	24.3\%
2012	17,622	871	1,914	12,626	3,320	6,105	2,518	3,587	34.6\%	27.8\%
2013	15,815	932	1,783	10,623	2,653	5,368	2,256	3,111	33.9\%	27.3\%
2014	16,985	703	1,927	11,857	2,171	4,801	1,936	2,865	28.3\%	21.2\%
2015	11,759	466	1,228	9,838	815	2,509	1,308	1,200	21.3\%	16.3\%
2016	10,412	467	1,277	7,292	444	2,189	1,150	1,039	21.0\%	17.8\%
2017	12,483	504	1,186	7,553	1,272	2,962	993	1,969	23.7\%	15.3\%
2018	6,302	251	698	3,739	548	1,497	486	1,011	23.8\%	17.2\%
$2019{ }^{1}$	3,677	66	156	2,250	40	263	89	174	7.1\%	6.0\%
Mean	11,747	469	1,241	8,074	1,209	2,918	1,546	1,373	21.3\%	18.3\%

1. Preliminary.

Figure 22. Distribution of coded-wire tag recoveries of Yakima Basin summer/fall run Chinook releases in marine, mainstem Columbia River, and Yakima Basin fisheries. Data retrieved from the regional mark information system (RMIS) for brood year 1997-2007 recoveries.

Recovery data for Yakima River-origin coho are presently limited because few fish have been coded wire-tagged until recent years. We will continue to collect and analyze CWT-recovery data from regional databases and will report this information in the future. 'All H Analyzer' (AHA) modeling for Master Planning purposes assumed that natural- and hatchery-origin Yakima River coho have an exploitation rate of approximately 40 and 60 percent, respectively (Yakama Nation 2019). These estimates include coho caught in marine, Columbia River and Yakima River fisheries.

Discussion:

Based on available CWT information, harvest managers have long assumed that Columbia River spring Chinook are not harvested in any abundance in marine fisheries as their ocean migration does not generally overlap either spatially or temporally with the occurrence of marine fisheries (TAC 1997). Harvest recoveries of CESRF spring Chinook as reported to RMIS to date appear to confirm this, as marine harvest apparently accounts for only about $0-3 \%$ of the total harvest of Yakima Basin spring Chinook (Table 23). Adult returns of spring Chinook from the CESRF appear to be making substantial contributions to Columbia Basin fisheries (Table 24).

Yakima Basin summer/fall Chinook are harvested in marine fisheries from Alaska to southern Oregon, and in Columbia River fisheries from the mouth to the Hanford Reach (Figure 22). Approximately 71% of harvest recoveries from Yakima Basin fall Chinook releases for brood years 1997-2007 occurred in marine (44\%) and mainstem Columbia (27%) fisheries. Out-of-basin harvest rates have not been estimated
specifically for Yakima Basin summer/fall run Chinook, but the 1982-89 brood year average ocean fisheries exploitation rate for mid-Columbia River summer/fall Chinook was 39%, with a total exploitation rate of 68% estimated for the same years (PSC 1994). Chapman et al. (1994) estimated that the 1975-87 brood year mean exploitation rate for fall Chinook released from Priest Rapids Hatchery was 64%. Harvest rates of these stocks in U.S. fisheries since the mid-1990s have been reduced due to Endangered Species Act (ESA) management concerns as these stocks are intermixed with ESA-listed Snake River fall Chinook populations (NMFS 1999a-d and 2000a-c). It is assumed that Yakima River summer/fall run Chinook are harvested at the same rate in these fisheries as other mid-Columbia River summer/fall Chinook stocks.

Yakima Subbasin Fisheries

Methods: The two co-managers, Yakama Nation and WDFW, are responsible for monitoring their respective fisheries in the Yakima River. Each agency employs fish monitors dedicated to creel surveys and/or fisher interviews at the most utilized fishing locations and/or boat ramps. From these surveys, standard techniques are employed to expand fishery sample data for total effort and open areas and times to derive total harvest estimates. Fish are interrogated for various marks. Methods are consistent with monitoringresources.org methods 404 and 960.

Results:

Table 25. Spring Chinook harvest in the Yakima River Basin, 1983-present.

Year	Tribal		Non-Tribal		River Totals			Harvest Rate ${ }^{1}$
	CESRF	Natural	CESRF	Natural	CESRF	Natural	Total	
1983		84		0		84	84	5.8\%
1984		289		0		289	289	10.9\%
1985		865		0		865	865	19.0\%
1986		1,340		0		1,340	1,340	14.2\%
1987		517		0		517	517	11.6\%
1988		444		0		444	444	10.5\%
1989		747		0		747	747	15.2\%
1990		663		0		663	663	15.2\%
1991		32		0		32	32	1.1\%
1992		345		0		345	345	7.5\%
1993		129		0		129	129	3.3\%
1994		25		0		25	25	1.9\%
1995		79		0		79	79	11.9\%
1996		475		0		475	475	14.9\%
1997		575		0		575	575	18.1\%
1998		188		0		188	188	9.9\%
1999		604		0		604	604	21.7\%
2000	53	2,305		100	53	2,405	2,458	12.9\%
2001	572	2,034	1,252	772	1,825	2,806	4,630	19.9\%
2002	1,373	1,207	492	36^{2}	1,865	1,243	3,108	20.6\%
2003	134	306	0	0	134	306	440	6.3\%
2004	289	712	569	109^{2}	858	820	1,679	11.0\%
2005	46	428	0	0	46	428	474	5.4\%
2006	246	354	0	0	246	354	600	9.5\%
2007	123	156	0	0	123	156	279	6.5\%
2008	521	414	586	11^{2}	1,107	426	1,532	17.8\%
2009	1,089	715	541	8^{2}	1,630	722	2,353	19.4\%
2010	345	194	1,154	48^{2}	1,499	241	1,741	13.2\%
2011	1,361	1,261	1,579	$179{ }^{2}$	2,940	1,440	4,380	24.4\%
2012	1,220	1,302	735	63^{2}	1,955	1,364	3,320	27.5\%
2013	846	975	786	46^{2}	1,632	1,021	2,653	25.9\%
2014	576	715	826	54^{2}	1,402	769	2,171	19.2\%
2015	121	271	385	38^{2}	506	309	815	8.7\%
2016	103	185	132	24^{2}	235	209	444	6.4\%
2017	217	201	750	$104{ }^{2}$	967	305	1,272	17.8\%
2018	154	115	259	20^{2}	413	136	548	15.2\%
2019	24	16	0	0	24	16	40	1.8\%
Mean	493	608	529	79	1,021	613	1,126	13.3\%

1. Harvest rate is the total Yakima Basin harvest as a percentage of the Yakima River mouth run size.
2. Includes estimate of post-release mortality of unmarked fish.

Table 26. Estimated fall Chinook return, escapement, and harvest in the Yakima River, 1998-2019. Data from WDFW and YN databases.

Escapement									
	Total Return		Above Prosser		Below Prosser		WA Recreational Harvest		
Year	Adult	Jack	Adult	Jack	Adult	Jack	Adult	Jack	Rate
1998	1,743	106	1,064	84	645	22	34	0	1.8\%
1999	4,056	43	1,876	20	2,046	23	134	0	3.3\%
2000	4,557	1,138	1,371	922	2,931	194	255	22	4.9\%
2001	5,886	869	3,651	660	1,293	151	942	58	14.8\%
2002	13,369	211	6,146	95	4,923	116	2,300	0	16.9\%
2003	10,092	193	4,796	79	3,874	73	1,422	41	14.2\%
2004	5,825	271	2,862	85	2,231	140	732	46	12.8\%
2005	3,121	45	1,920	22	491	7	710	16	22.9\%
2006	2,299	67	1,499	29	363	10	437	28	19.7\%
2007	1,318	460	892	240	194	26	232	194	24.0\%
2008	3,403	208	2,739	124	137	17	527	67	16.4\%
2009	3,315	772	2,381	591	424	106	510	75	14.3\%
2010	3,474	176	2,763	125	270	12	441	39	13.2\%
2011	3,325	705	2,318	400	470	81	537	224	18.9\%
2012	5,553	1,468	3,751	963	1098	211	704	294	14.2\%
2013	13,005	1,541	8,537	995	1936	194	2,532	352	19.8\%
2014	12,839	1,371	8,302	1,003	2,969	302	1,568	66	11.5\%
2015	15,533	769	8,644	559	5,224	156	1,665	54	10.5\%
2016	7,982	735	5,688	585	1,372	119	922	31	10.9\%
2017	3,116	399	1,927	278	719	105	470	16	13.8\%
2018	1,739	147	1,137	76	397	46	205	25	12.2\%
2019	1,420	161	869	78	406	21	145	62	13.1\%

Table 27. Estimated Coho return, escapement, and harvest in the Yakima River, 1999-2019. Data from WDFW and YN databases.

Escapement									
	Total Return		Prosser Dam		Hatchery Denil		WA Recreational Harvest		
Year	Adult	Jack	Adult	Jack	Adult	Jack	Adult	Jack	Rate
1999	3,906	91	3,852	91			54	0	1.4\%
2000	4,444	1,841	4,390	1,826			54	15	1.1\%
2001	5,032	68	4,978	68			54	0	1.1\%
2002	515	343	475	343			40	0	4.7\%
2003	2,192	162	2,192	162			0	0	0.0\%
2004	2,367	74	2,325	64			42	10	2.1\%
2005	2,897	225	2,890	225			7	0	0.2\%
2006	4,478	175	4,335	175	125	0	18	0	0.4\%
2007	3,461	64	3,153	60	300	4	8	0	0.2\%
2008	4,636	1,917	3,890	1,809	700	58	46	50	1.5\%
2009	9,843	873	8,517	573	1300	300	26	0	0.2\%
2010	5,776	567	4,811	183	915	384	50	0	0.8\%
2011	8,073	171	6,424	121	1594	50	55	0	0.7\%
2012	5,511	264	4,298	164	1200	100	13	0	0.2\%
2013	3,173	848	2,290	395	837	412	46	41	2.2\%
2014	25,368	584	20,997	427	4263	157	108	0	0.4\%
2015	3,314	300	2,210	105	1095	195	9	0	0.2\%
2016	3,383	374	1,693	188	1690	186	0	0	0.0\%
2017	3,920	274	3,051	222	804	34	65	18	2.0\%
2018	2,145	815	1,599	420	518	365	28	30	2.0\%
2019	3,918	107	2,503	54	1361	46	54	7	1.5\%

Discussion:

Adult returns of spring Chinook from the CESRF have substantially increased fishing opportunity for all fishers in the Yakima Basin (Table 25) and returned recreational fisheries to the Basin after a 40 -year absence. This has contributed to improved relationships between all the Basin's stakeholders and increased opportunities for collaboration.

Recreational fishers enjoy a successful annual fall Chinook fishery situated primarily near the mouth of the Yakima River (Table 26). Tribal fishers harvest a substantial, but unquantified number of Yakima Basin-destined fall Chinook (Figure 22) and coho in commercial gillnet fisheries in the Zone 6 fishing area. Because of the quantity and relatively higher quality of fall Chinook and coho available to tribal fishers in Zone 6 Columbia and Klickitat River fisheries, Yakima River tribal harvest is typically at or near zero even though regulations allowing fall season fisheries in the Yakima River are propagated annually by the Yakama Nation.

Hatchery Research

Effect of Artificial Production on the Viability of Natural Fish Populations

WDFW is addressing some critical uncertainties (see Columbia River Basin Research Plan and Critical Uncertainties for the Columbia River Basin Fish and Wildlife Program) related to genetic and ecological interactions under project 1995-064-25. We are working jointly with WDFW to address the following additional fish propagation uncertainties:
1.2. Can hatchery production programs meet adult production and harvest goals (integrated and segregated) while protecting naturally spawning populations?
1.4. What is the magnitude of any demographic benefit or detriment to the production of natural-origin juveniles and adults from natural spawning of hatchery-origin supplementation adults?
1.5. What are the range, magnitude and rates of change of natural spawning fitness of integrated (supplemented) populations, and how are these related to management rules including the proportion of hatchery fish permitted on the spawning grounds, and the proportion of natural origin adults in the hatchery broodstock?

Methods:

The YKFP began a spring Chinook salmon hatchery program at the CESRF near Cle Elum on the upper Yakima River (river kilometer 297, measuring from the confluence with the Columbia River; Figures 1 and 23) in 1997. This program is a supplementation effort targeting the upper Yakima River population and is designed to test whether artificial propagation can be used to increase natural production and harvest opportunities while limiting ecological and genetic impacts (RASP 1992). It is an integrated hatchery program (Mobrand et al. 2005) because only natural-origin brood-stock are used and returning hatchery-origin adults are allowed to spawn in the wild. The program employs "best practice" hatchery management principles (see Cuenco et al. 1993, Mobrand et al. 2005) including reduced pond densities, strict disease management protocols, random brood-stock selection, and factorial mating (Busack and Knudsen 2007) to maximize effective population size. Fish are reared at the central facility, but released from three acclimation sites located near the central facility at: Easton approximately 25 km upstream of the central facility, Clark Flat about 25 km downstream of the central facility, and Jack Creek about 12 km upstream from the Teanaway River's confluence with the Yakima River (Figure 23). The CESRF collected its first spring Chinook brood-stock in 1997, released its first fish in 1999, and age-4 adults have been returning since 2001. The first generation of offspring of CESRF and wild fish spawning in the wild returned as adults in 2005. The program uses the adjacent, un-supplemented Naches River population as an environmental and wild control system.

To evaluate demographic benefits for spring Chinook, we compared redd count and natural-origin adult return data for the supplemented Upper Yakima and unsupplemented (control) Naches populations using a Before/After Control/Impact (BACI) analysis (Stewart-Oaten et al. 1986; Smith et al. 1993). For redd counts, the before period was defined as 1981 to 2000 and the after period as 2001 to present (hatchery-origin age-4 adults first returned to integrate with natural-origin fish on the natural spawning grounds in 2001). The first natural-origin returns of age-4 fish from these integrated population redds did not occur until 2005 , so the pre- and postsupplementation (before/after) periods for natural-origin return evaluation were defined as 1982 to 2004 and 2005 to present, respectively. The spring Chinook findings described below were published in Fast et al. (2015). We are working with WDFW to incorporate additional out-of-basin control populations in this evaluation and these results will be considered for publication at a later date.

To evaluate fitness parameters for an integrated spring Chinook population, we used methods described in Knudsen et al. (2008), Schroder et al. (2008, 2010, and 2012) and Waters et al. (2015; discussed further below under Hatchery Reform). For coho, we conducted preliminary evaluation of both demographic benefits and some fitness parameters using methods described in Bosch et al. (2007).

Figure 23. Map of the Yakima River Basin, Cle Elum Supplementation and Research Facility (CESRF) locations, and timeline of the spring Chinook supplementation program.

Results:

Figure 24. Spring Chinook redd counts in the supplemented Upper Yakima (red bar) relative to the unsupplemented Naches (control; blue bar) for the pre- (1981-2000) and post-supplementation (2001-2019) periods.

Figure 25. Natural-Origin returns of Spring Chinook in the supplemented Upper Yakima (red bar) relative to the un-supplemented Naches (control; blue bar) for the pre- (1982-2004) and post-supplementation (20052019) periods.

Discussion:

Supplementation has increased spring Chinook redd abundance in the Upper Yakima relative to the Naches control system (Figure 24). Redd counts in the postsupplementation period (2001-2019) increased in the supplemented Upper Yakima ($+82 \%$; $\mathrm{P}=0.026$) but the change observed in the un-supplemented Naches control system relative to the pre-supplementation period (1981-2000) was not significant $(+25 \% ; \mathrm{P}=0.308)$. As noted above, spatial distribution of spring Chinook has also increased as a result of supplementation with dramatic increases in redd abundance observed in the Teanaway River (Figure 14) in some years.

Changes in mean natural-origin return abundance in the post-supplementation period (2005-2019) relative to the pre-supplementation period (1982-2004) were not significant in either the supplemented upper Yakima River (-1.4%; $\mathrm{P}=0.96$; Figure 25) or the unsupplemented Naches River system (-23.2%; $\mathrm{P}=0.36$; Figure 25). We have already noted that limiting factors appear to be inhibiting natural productivity (see status and trend of adult productivity) throughout the Yakima Basin.

With respect to spring Chinook fitness parameters we found the following. The relationships between reproductive traits and body length were not significantly
altered by a single generation of hatchery exposure. However, because hatchery females had smaller body sizes, the distributions of linked traits, such as total gamete mass and fecundity, differed by as much as 0.6 SD , probably resulting in some fitness loss. Our data support the idea that a single generation of state-of-the-art conservation hatchery propagation can produce fish with reproductive traits similar to those of wild fish, given comparable body size (Knudsen et al. 2008). No differences were detected in the egg deposition rates of wild and hatchery origin females, but pedigree assignments based on microsatellite DNA showed that the eggs deposited by wild females survived to the fry stage at a 5.6% higher rate than those spawned by hatchery-origin females (Schroder et al. 2008). Behavior and breeding success of wild and hatchery-origin males were found to be comparable (Schroder et al. 2010). Large anadromous males produced 89%, jacks 3%, yearling precocious 7%, and sub-yearling precocious 1% of the fry in our tests suggesting that large anadromous males generate most of the fry in natural settings when half or more of the males present on a spawning ground use this life history strategy (Schroder et al 2012). For additional detail on Spring Chinook findings, see Fast et al. (2015). Finally, in addition to the relative reproductive success (RRS) results reported by Schroder et al. (2008 and 2010) for artificial spawning channel studies, we are also working with our project collaborators at WDFW and CRITFC to evaluate RRS for all integrated hatchery- and natural-origin spawners above Roza Dam for brood years 2007-2011 (see https://www.cbfish.org/Document.mvc/Viewer/P159280 for the latest progress report on this project). We expect to complete genotyping for this work this year and hope to publish findings in 2021. Preliminary results for just the 2007 brood year were reported by CRITFC at the 2017 Science and Management conference and are encouraging: a demographic boost from the CESRF program of 2.2 X with only jacks showing statistically significant differences in RRS between hatchery-reared and natural-origin fish spawning naturally.

The YKFP is presently studying the release of over 1.0 million coho smolts annually from acclimation sites in the Naches and Upper Yakima subbasins. These fish are a combination of in-basin production from brood-stock collected in the vicinity of Prosser Dam plus out-of-basin stock generally reared at Willard or Eagle Creek National Fish Hatcheries and moved to the Yakima Subbasin for final rearing and release. Monitoring of these efforts to re-introduce a sustainable, naturally spawning coho population in the Yakima Basin have indicated that coho returns averaged over 5,300 fish from 1997-2019 (an order of magnitude improvement from the average for years prior to the project) including estimated returns of wild/natural coho averaging over 800 fish annually since 2001 (Figure 4). Coho re-introduction research has demonstrated that hatchery-origin coho, with a legacy of as many as 10 to 30 generations of hatchery-influence, can reestablish a naturalized population after as few as 3 to 5 generations of outplanting in the wild (Bosch et al. 2007). The project is
working to further develop a locally adapted brood-stock and to establish specific release sites and strategies that optimize natural reproduction and survival.

Effectiveness of Hatchery Reform

Hatcheries have long been a part of the fisheries landscape in the Pacific Northwest with programs originally designed to provide abundant returns for harvest in river ecosystems that were becoming increasingly exploited to serve human needs (Lichatowich 1999). Historically, hatchery programs were designed to release a specified number of juveniles from a central facility, and adult survivors, after providing many fish for harvest during their marine and freshwater migrations, would return to swim-in ladders and adult holding ponds at that same facility to spawn successive generations. Over the past two decades or more, such programs have been the subject of much scientific study regarding risks, such as domestication, they pose to natural populations if these fish spawn in the wild.

The concepts of supplementation and hatchery reform, where hatchery programs could be (re)designed to serve conservation as well as harvest purposes, first began to appear in regional discussions and the literature in the late 1980s and early 1990s (e.g, RASP 1992; Cuenco et al. 1993). In Mobrand et al. (2005) and Paquet et al. (2011), the Hatchery Scientific Review Group (HSRG) described in more scientific detail several principles that should guide integrated (conservation-oriented) hatchery programs which purposefully allow fish to spawn in the wild (note that virtually all of the HSRG recommendations were designed into the integrated CESRF program described above). The HSRG reports also recommended that traditional, harvestoriented hatchery programs should be segregated as much as possible from natural populations to minimize risks by limiting the number of returning fish that escape to natural spawning grounds.

YKFP efforts to monitor and evaluate hatchery reform focus on the CESRF spring Chinook program which was designed explicitly for this purpose from its inception (BPA 1996). To the extent that is practical, we will evaluate similar metrics for the summer/fall run Chinook and coho programs and publish those results in future reports as the Master Plan (Yakama Nation 2019) is implemented and the programs mature over time.

In addition to the integrated (supplementation-S) hatchery program described above for the CESRF, this facility also introduced a segregated "hatchery control" (HC) program in 2002 as recommended by independent scientific review. To protect the integrity of the integrated program evaluation described above, returning HC line fish were either harvested or trapped and removed at the Roza Adult Monitoring Facility
(RAMF); no HC line fish were allowed to escape to the spawning grounds (determination of fish origin was based on a differential marking strategy for S and HC fish; unmarked fish were presumed wild). CESRF-project scientists hypothesized that HC-line fish, which use only returning hatchery-origin fish as brood source, would increasingly diverge in phenotypic and genetic characteristics from wild (WC or wild control) fish with increasing generations of hatchery influence, whereas S-line fish, which use only wild or natural-origin fish for brood source, would remain relatively close in characteristics to wild fish (Figure 26). These hypothetical outcomes were based on hatchery reform theory which suggests that, by using only wild or natural-origin parents to spawn successive generations of fish in the hatchery environment, mean fitness of an integrated population in the natural environment can be maintained relatively close to that of a wild population (Mobrand et al. 2005).

Figure 26. Hypothetical outcomes of trait divergence (domestication effects) over time for a segregated (hatchery-control or HC) line of fish, compared to an integrated (supplementation or S) line of fish and a wild (wild-control or WC) line of fish (D. Fast, Yakama Nation).

This section reports on our efforts to evaluate the effectiveness of hatchery reform measures implemented in the CESRF program.

Methods:

Methods for enumerating natural- and CESRF-origin fish at Roza Dam were described above (Status and Trend of adult abundance) and in Knudsen et al. (2006).

Methods for evaluating genetic differentiation between the wild founding, integrated, and segregated populations at the CESRF were described in Waters et al. (2015).

A recently developed parameter to monitor the mean fitness of an integrated population in the natural environment is called Proportionate Natural Influence (PNI). PNI is an approximation of the rate of gene flow between the natural environment and the hatchery environment (Busack et al. 2008). The equation describing PNI is

$$
\mathrm{PNI}=\frac{\mathrm{pNOB}}{\mathrm{pNOB}+\mathrm{pHOS}}
$$

where pNOB is the proportion of natural-origin brood-stock and pHOS is the proportion of hatchery-origin spawners. We evaluated PNI for the CESRF program using a pNOB value of 1.0 as only natural-origin fish were used for the integrated program's broodstock.

Results and Discussion:

For CESRF integrated program return years 2001-2019, PNI averaged 65% while pHOS averaged 52.9% (Table 28). As stated in the introduction to this report and in the final Environmental Impact Statement for the Yakima Fisheries Project (BPA 1996), one of the explicit purposes of the project is to test the assumption that new artificial propagation or hatchery reform techniques (Cuenco et al. 1993, Mobrand et al. 2005) can be used to increase natural production without causing significant impacts to existing natural populations. Therefore, it has always been the intent of this project to purposely allow integrated hatchery-origin fish to escape to the natural spawning grounds, i.e., we intentionally maintained a relatively high pHOS rate. Even with a high pHOS relative to recommendations, PNI for the CESRF integrated program remained in the "low hatchery influence for conservation of natural populations" category described by the HSRG (Paquet et al. 2011).

The project will continue to monitor PNI considering factors such as: policy input regarding controlling the number and types of fish allowed to escape to natural spawning areas, meeting overall production goals of the project, guidance from the literature relative to percentage of hatchery fish on the spawning grounds with fitness loss, considerations about what risk is acceptable in a project designed to evaluate impacts from that risk, and the numerous risk containment measures already in place in the project. The State of Washington is using mark-selective fisheries in the lower Columbia River and, when possible, in the lower Yakima River in part as a tool to manage escapement proportions. In 2011, the project implemented an effort to transfer some returning hatchery-origin CESRF adults from Roza Dam to Lake Cle

Elum for the purpose of returning marine derived nutrients and salmon to the watersheds that feed the lake. These measures will also increase PNI in the major spawning areas of the Upper Yakima Basin. Additional adaptive management measures will be considered when and if monitoring and evaluation indicates a need.

Table 28. Escapement (Roza Dam counts less brood-stock collection and harvest above Roza) of natural(NoR) and hatchery-origin (HoR) spring Chinook to the upper Yakima subbasin, 1982 - present.

Year	Wild/Natural (NoR)			CESRF (HoR)			$\begin{array}{ll} \\ \text { Adults } & \begin{array}{c}\text { Total } \\ \text { Jacks }\end{array}\end{array}$		Total	pHOS ${ }^{1}$	PNI ${ }^{1}$
	Adults	Jacks	Total	Adults	Jacks	Total					
1982			1,146								
1983			1,007								
1984			1,535								
1985			2,331								
1986			3,251								
1987			1,734								
1988			1,340								
1989			2,331								
1990			2,016								
1991			1,583 ${ }^{2}$								
1992			3,009								
1993			1,869								
1994			563								
1995			355								
1996			1,631								
1997	1,141	43	1,184								
1998	369	18	387								
1999	498	468	966								
2000	10,491	481	10,972		688	688	10,491	1,169	11,660	5.9\%	
2001	4,454	297	4,751	6,065	982	7,047	10,519	1,279	11,798	59.7\%	62.6\%
2002	1,820	89	1,909	6,064	71	6,135	7,884	160	8,044	76.3\%	56.7\%
2003	394	723	1,117	1,036	1,105	2,141	1,430	1,828	3,258	65.7\%	60.3\%
2004	6,536	671	7,207	2,876	204	3,080	9,412	875	10,287	29.9\%	77.0\%
2005	4,401	175	4,576	627	482	1,109	5,028	657	5,685	19.5\%	83.7\%
2006	1,510	121	1,631	1,622	111	1,733	3,132	232	3,364	51.5\%	66.0\%
2007	683	161	844	734	731	1,465	1,417	892	2,309	63.4\%	61.2\%
2008	988	232	1,220	2,157	957	3,114	3,145	1,189	4,334	71.9\%	58.2\%
2009	1,843	701	2,544	2,234	2,260	4,494	4,077	2,961	7,038	63.9\%	61.0\%
2010	2,436	413	2,849	4,524	1,001	5,525	6,960	1,414	8,374	66.0\%	60.2\%
2011	3,092	926	4,018	3,162	1,404	4,566	6,254	2,330	8,584	53.2\%	65.3\%
2012	2,359	191	2,550	2,661	265	2,926	5,020	456	5,476	53.4\%	65.2\%
2013	1,708	678	2,386	1,587	840	2,427	3,295	1,518	4,813	50.4\%	66.5\%
2014	3,099	685	3,784	2,150	794	2,944	5,249	1,479	6,728	43.8\%	69.6\%
2015	3,357	163	3,520	1,779	167	1,946	5,136	330	5,466	35.6\%	73.7\%
2016	2,070	266	2,336	1,198	705	1,903	3,268	971	4,239	44.9\%	69.0\%
2017	1,135	194	1,329	1,328	660	1,988	2,463	854	3,317	59.9\%	62.5\%
2018	500	33	533	1,033	233	1,266	1,533	266	1,799	70.4\%	58.7\%
2019	311	80	391	802	260	1,062	1,113	340	1,453	73.1\%	57.8\%
Mean ${ }^{3}$	2,400	340	2,739	2,297	696	2,878	4,297	945	5,242	52.9\%	65.0\%

1. Proportionate Natural Influence equals Proportion Natural-Origin Brood-stock (PNOB; 1.0 as only NoR fish are used for supplementation line brood-stock) divided by PNOB plus Proportion Hatchery-Origin Spawners (PHOS).
2. This is a rough estimate since Roza counts are not available for 1991.
3. For NoR columns, mean of 1997-present values. For all other columns, mean of 2001-present values.

Both the CESRF integrated and segregated programs have now proceeded for several generations and we can evaluate actual outcomes relative to the hypothetical outcomes given in Figure 26 above. Results were presented in Waters et al. (2015) and empirically demonstrate that using managed gene flow (i.e, using only naturalorigin fish for brood stock) reduced genetic divergence over time in the CESRF integrated (S-line) fish compared to the segregated (HC-line; hatchery-origin parents) fish (Figure 27). The actual results are remarkably consistent with the projected outcomes in Figure 25 demonstrating that there is considerable merit to the concepts behind hatchery reform. While some detractors of hatchery supplementation choose to highlight the differences the CESRF program has found between hatchery and natural-origin fish such as those documented in Knudsen et al. (2006 and 2008), it is important to note that integrated hatchery-origin fish were never expected to be identical to wild fish (Figure 26), but rather similar enough to increase demographic abundance of natural spawners while minimizing risk, which is exactly what the results to date for this project demonstrate (Fast et al. 2015; Koch et al. 2017). Additional evaluation is required before definitive answers to key biological cost and benefit questions relative to using this type of management over the long-term will be known with scientific certainty (Fraser 2008). The YKFP is continuing its collaboration with University of Washington and NOAA scientists to further evaluate and associate genetic divergence results from Waters et al. (2015) with the phenotypic trait analyses in Knudsen et al. (2006 and 2008).

Figure 27. Estimated genetic divergence (variation) for integrated (INT blue), segregated (SEG red), and wild founder (black) spring Chinook in the CESRF program after 4 parental-generations of the hatchery program ($\mathbf{P} 1=\mathbf{1 9 9 8}, F 1=2002, F 2=2006, F 3=2010, F 4=2014$; updated from Figure 4 in Waters et al. 2015).

Additional information and results from the CESRF program are provided in Appendix B and in Fast et al. (2015).

Predation Management and Predator Control

Avian Predation Index

Avian predators are capable of significantly depressing smolt production. The loss of wild spring Chinook salmon juveniles to various types of avian predators has long been suspected as a significant constraint on production and could limit the success of supplementation. Therefore, a long-standing objective of the YKFP has been to monitor, evaluate, and index the impact of avian predation on annual salmon and steelhead smolt production in the Yakima Subbasin. Accurate methods of indexing avian predation across years have been developed.

Methods:

River Reach Surveys

The spring river surveys included six river reaches (Table 29) and were generally consistent with avian point count methods described in monitoringmethods.org method 1151. The survey accounts for coverage of approximately 70 miles of the lower portion of the Yakima River.

Table 29. Avian predation river reach survey start and end locations and total reach length.

Survey Name	River Mile Start	River Mile End	Survey Distance
Parker	107.0	93.8	13.2
Granger-Emerald	85.3	66.5	18.8
Mabton- Prosser	60.6	48.5	12.1
Below Prosser	46.4	36.6	9.7
Chandler Power Plant -Benton	36.6	30.2	6.5
Below Horn Rapids-Van Giesen	16.8	9.4	7.4

All river reach surveys were conducted by a two-person team from a 16 -foot drift boat or 12-foot raft. Surveys began between 8:00 am and 9:00 am and lasted between 2 to 6 hours depending upon the length of the reach and the water level. All surveys were conducted while actively rowing the drift boat or raft downstream to decrease
the interval of time required to traverse the reach. One person rowed the boat while the other person recorded piscivorous birds encountered.

Table 30. Yakima River Avian Predators.

Common Name	Scientific Name	Acronym
Common Merganser	Mergus merganser	COME
American White Pelican	Pelecanus erythrorhynchos	AWPE
California Gull	Larus californicus	GULL
Ring-billed Gull	Larus delawarensis	GULL
Belted Kingfisher	Ceryle alcyon	BEKI
Great Blue Heron	Ardea herodias	GBHE
Double-crested Cormorant	Phalacrocorax auritus	DCCO
Black-crowned Night-Heron	Nycticorax nycticorax	BCHE
Forster's Tern	Sterna forsteri	FOTE
Great Egret	Ardea alba	GREG
Hooded Merganser	Lophodytes cucullatus	HOME
Bald Eagle	Haliaeetus leucocephalus	BAEA
Osprey	Pandion haliaetus	OSPR
Caspian Tern	Sterna caspia	CATE

All birds detected visually or aurally were recorded, including time of observation, species, and sex and age if distinguishable. Leica 10x42 binoculars were used to help observe birds. All piscivorous birds encountered on the river were recorded at the point of initial observation. Most birds observed were only mildly disturbed by the presence of the survey boat and were quickly passed. Navigation of the survey boat to the opposite side of the river away from encountered birds minimized escape behaviors. If the bird attempted to escape from the survey boat by moving down river a note was made that the bird was being pushed. Birds being pushed were usually kept in sight until passed by the survey boat. If the bird being pushed down river moved out of sight of the survey personnel, a note was made, and the next bird of the same species/age/sex to be encountered within the next 1000 meters of river was assumed to be the pushed bird. If a bird of the same species/age/sex was not encountered in the subsequent 1000 meters, the bird was assumed to have departed the river or passed the survey boat without detection, and the next identification of a bird of the same species/age/sex was recorded as a new observation.

Avian Predator Hotspot Surveys

Two "hotspots" of avian predators have been identified within the Lower Yakima River (Figure 28). These "hotspots" consist of an area below the Chandler fish bypass outfall pipe and below Wanawish Dam. To include data about these hotspots weekly bird counts will be conducted at each of these "hotspots" by YN personnel and BOR personnel. Data will be single day counts of piscivorous birds during the early morning.

Acclimation Site Surveys

Three Spring Chinook acclimation sites in upper Yakima River (Clark Flat, Jack Creek, and Easton) were surveyed for piscivorous birds from 2004 through 2018 (Figure 1). Surveys were conducted between January 23 and June 10, though dates varied for each site. Three surveys were conducted at the Spring Chinook sites each day, at 8:00 am, 12:00 noon, and 4:00 pm. Surveys were conducted on foot. All piscivorous birds within the acclimation facility, along the length of the artificial acclimation stream, and 50 meters above and 150 meters below the acclimation stream outlet, into the main stem of the Yakima River or its tributaries, were recorded.

Figure 28. Avian Predator Survey Locations.

Results and Discussion:

River Reach Surveys

Thirteen different piscivorous bird species were observed on the Yakima River. These included: American White Pelican, Bald Eagle, Black-crowned Night Heron, Belted Kingfisher, Caspian Tern, Common Merganser, Double-crested Cormorant, Forster's Tern, Great Egret, Great Blue Heron, Gull species (California and Ringbill), Hooded Merganser, and Osprey. With the exception of the Forster's Tern, 12 of the species have been observed in most survey years. Graph Data (Figure 29) for river reach surveys represents Avian Predator totals by reach of the lower Yakima River (surveys below Wapato Dam). The total avian predators in the Parker Reach by week are represented in (Figure 30) and numbers increased as river flows decreased. The avian predator counts within the Parker, Granger, Below Prosser, Benton, and Lower Yakima reaches are represented in the bar graphs by their survey acronyms (Figures 31-35).

The Osprey, Great Blue Heron, Common Merganser, and Belted Kingfisher were observed within all six reaches in 2019 while American White Pelicans and Double Crested Cormorants have also been observed in these six reaches in prior years. Common Mergansers were the most abundant Avian Predators in the upper surveyed reaches of the river. The abundance of the Common Merganser in the upper Yakima River in 2019 and all previous years monitored suggest they are the top avian predator for the upper river while American White Pelicans are dominant at Parker and Granger (Figures 31-32).

Gull numbers in the lower Yakima River decreased in 2016 and this trend continued into 2018. In 2019, gulls were again abundant showing increased numbers below Prosser Dam and in the Benton reach at the end of May and in June. Double Crested Cormorants numbers remained consistent in 2019. DCCO numbers remain a concern due to nest takeover of Great Blue Heron Rookeries in various areas along the Yakima River along their high capacity for consuming salmon smolts. Monitoring of the Double Crested Cormorant on the river and in rookeries will be a priority in upcoming years as the Army Corp of Engineers culls and removes breeding habitat at the estuary of the Columbia River in efforts to reduce juvenile salmon predation. These actions may result in displacement and searching out of new habitat for the Cormorants and lead to impacts on salmon in other rivers and basins. The American White Pelican numbers remain consistently high in the lower Yakima River. In the Yakima River pelicans can be seen in groups of over 100 in the Wapato Reach of the river along the borders of the Yakama Indian Reservation.

Figure 29. Avian Predator Totals by Reach.

Figure 30. Parker Reach Total Avian Predators by Week.

Figure 31. Parker Reach Avian Predator Species Counts.

Figure 32. Granger Reach Avian Predator Species Counts.

Figure 33. Below Prosser Avian Predator Species Counts.

Figure 34. Benton Reach Avian Predator Species Counts.

Figure 35. Lower Yakima Reach Avian Predator Species Counts.

Hotspot Surveys

Avian predator surveys were conducted at the Chandler fish bypass pipe (river mile ~ 46; Figure 36) and Wanawish Dam (river mile ~18.5; Figure 37) hotspots. In 2019 there was an increase in avian predators at both hotspot locations. At Chandler the species diversity stayed the same, where at Wanawish dam there was a decrease in diversity. Only three species were observed at Wanawish in 2019, American White Pelican, Double Crested Cormorant, and Gulls.

Figure 36. Avian Predator Counts at Chandler "hotspot".

Figure 37. Avian Predator Counts at Wanawish Dam "hotspot".

Acclimation Sites Surveys

At the three Spring Chinook salmon acclimation sites in the upper Yakima River and its tributaries piscivorous bird surveys were conducted over a 3-5 month period in the winter and spring of 2019. The most common species of birds observed at acclimation sites were Bald Eagle, Belted Kingfisher, Common Merganser, Great Blue Heron, Great Egret, and Osprey. Using the assumption that birds frequenting
acclimation ponds are only consuming acclimating juvenile salmon, an average consumption rate can be determined. The average consumption rate can be calculated using the average number of birds at each site, daily energy requirements of the birds and the average size of juvenile salmon.

It was estimated that these bird species together consumed 786 juvenile Chinook at Clark Flat (Table 31). Great Blue Herons had the highest consumption rate, consuming 545 juvenile Chinook. At Easton, it was estimated that 375 juvenile Chinook were consumed. Great Blue Herons and Bald Eagles had the highest consumption rates. Great Blue Herons consumed 122 juvenile Chinook and Bald Eagles consumed 188 juvenile Chinook. Only Belted Kingfishers and Common Mergansers were observed at Jack Creek. It was estimated that they consumed 151 juvenile Chinook. Common Mergansers consumed 137 juvenile Chinook. In 2018, these bird species together consumed 950 juvenile Chinook at Clark Flat, 339 juvenile Chinook at Easton and 961 juvenile Chinook at Jack Creek.

Table 31. Estimated consumption in 2019 by Avian species at three spring Chinook Salmon acclimation sites. 2019 SPRING CHINOOK ACCLMMATION STTES CLARK FLAT

	AVG. \# OF BIRDS	\# FISH EATEN BY SPECIES	\% OF FISH EATING BY SPECIES	\% OF TOTAL FISH EATEN BY SITE
BAEA	0.015224359	57	7	0.023337223
BEKI	0.303685897	111	14	0.045446171
COME	0.004807692	14	2	0.005731949
GBHE	0.212339744	545	69	0.223136605
GREG	0.008012821	7	1	0.002865975
OSPR	0.024038462	52	7	0.021290098
TOTAL	0.568108974	786	100	0.321808021
EASTON				
	AVG. \# OF BIRDS	\# FISH EATEN BY SPECIES	\% OF FISH EATING BY SPECIES	\% OF TOTAL FISH EATEN BY SITE
BAEA	0.050595238	188	50	0.080529093
COME	0.007936508	22	6	0.009423617
GBHE	0.047619048	122	33	0.052258241
OSPR	0.01984127	43	11	0.018418888
TOTAL	0.125992063	375	100	0.16062984
JACK CREEK				
	AVG. \# OF BIRDS	\# FISH EATEN BY SPECIES	\% OF FISH EATING BY SPECIES	\% OF TOTAL FISH EATEN BY SITE
BEKI	0.056818182	14	9	0.006006418
COME	0.071969697	137	91	0.058777093
TOTAL	0.128787879	151	100	0.064783512

Fish Predation Index and Predator Control

Fish predators are also capable of significantly depressing smolt production. Thus the YKFP has a long-established objective to monitor, evaluate, and manage the impact of piscivorous fish on annual smolt production of Yakima Subbasin salmon and
steelhead. By indexing the mortality rate of upper Yakima spring Chinook attributable to piscivorous fish in the lower Yakima River, the contribution of in-basin predation to variations in hatchery- and natural-origin spring Chinook smolt-to-adult survival rate can be deduced.

Based on YKFP and WDFW studies of piscivorous fish in the Yakima River Basin (Fritts and Pearsons 2004, 2006, 2008), it was determined that management of the piscivorous fish populations in the area is necessary to improve survival of juvenile salmonids. Initial steps were taken in 2009 to identify locations that would be suitable for a multi-pass removal population study. In early 2010, the YKFP began initial study checks to determine management and study goals for piscivorous fish. Presence and absence of piscivorous fish was determined through electro-fishing various sections of the Yakima River to determine temporal and spatial trends of each species of piscivorous fish. On March 1, 2013, the Washington Fish and Wildlife Commission adopted numerous changes to sport fishing rules, including the elimination of catch restrictions for non-native predators.

Methods:

Data was collected on piscivorous fish from six electrofishing sites within the Yakima River (Figure 38). Sites were sampled via boat electrofishing through time to assess spatial and temporal patterns of fish abundance and distribution. Each sampling segment was defined by river features of dams and boat launches. The partitioned sample locations consist of four ten mile surveys, one four-mile survey, and one six mile survey (Table 32). Total river mile distance of the combined Yakima River surveys is 50 miles. Survey locations were marked by GPS unit (Garmin GPSmap 78; Garmin International, Olathe, Kansas). After marking sampling reaches, we sample weekly beginning April 2nd and ending June 22nd (dates may vary depending on river stage). (Fish Predators Schei, monitoring methods 47), (Predator Reduction Mclellan, monitoring methods 438).

Sampling was conducted using three different types of vessels and electrofisher; 1. For five of the Yakima River surveys sampling were conducted using a Smith Root SR16H Electrofishing boat equipped with the 7.5 GPP electrofishing unit powered by a $6,000-\mathrm{W}$ Kohler boat generator in; 2. For the Yakima River survey below Prosser sampling was conducted with a 13 foot raft equipped with a smith root $1.5-\mathrm{KVA}$ electrofisher powered by Honda EU2000i generator; 3. For the survey in the McNary pool sampling was conducted with a 16 foot aluminum jet boat equipped with a Smith Root VVP-15B electrofisher powered by a Honda EM3500S generator. Electrofishing settings were adjusted to continuous DC for an output of approximately 700 V and 9-12 A. Invasive species monitoring for the Yakima River will be used as an aid
for tracking changes in fish populations and abundance as the area experiences global climate change.

Figure 38. Fish Predator Survey Locations.
Table 32. Fish Predator Survey River Miles and Distances.

Survey Name	River Mile Start	River Mile End	Survey Distance Miles
Parker	106.1	96.1	10
Granger	85.3	75.3	10
Above Prosser	52.4	48.4	4
Below Prosser	46.4	40.4	6
Benton	31.1	21.1	10
Lower Yakima	13.8	3.8	10

Sampling was conducted continuously along river margins when possible. As river stage changes, limiting access to areas within survey segments, continuous electrofishing was not always possible. The start and endpoints of shocker operation within the segment at low river stages was marked, resulting in discontinuous, marked subsegments of electrofisher operation within each survey area.

Data collected during each sampling event consisted of:

- Water Temperature, Dissolved Oxygen, Specific Conductivity gathered by a HACH 30qd water multi-meter
- Water Turbidity gathered by a HACH TSS Handheld Instrument
- River CFS gathered from Bureau of Reclamation gaging stations
- Electrode start and end times
- Numbers and species (Table 33) of all fish observed and their size class greater than or less than 100 mm

At the start of each sampling event a small group of fish were caught and examined to insure that electro-fishing settings were not causing visible injuries. To further insure injuries to fish were minimized, sampling procedures by the National Marine Fisheries Service, "Guidelines for Electrofishing Waters Containing Salmonids Listed under the Endangered Species Act," were followed.
Table 33. Yakima River Fish Species (Note: Spring Chinook and Coho total counts are combined in results as $\mathbf{S P + C O}$).

Family	Common Name	Scientific Name	Acronym
Salmonidae:			
	Steelhead/Rainbow trout	Oncorhynchus mykiss	STH
	Coho Salmon	Oncorhynchus kisutch	COHO*
	Chinook Salmon	Oncorhynchus tshawytscha	SPCK/FACK*
	Mountain Whitefish	Prosopium williamsoni	WT
Cyprinidae:			
	Chiselmouth	Acrocheilus alutaceus	CH
	Carp	Cyprinus carpio	CP
	Peamouth	Mylocheilus caurinus	PEA
	Speckled Dace	Rhinichthys osculus	SPDA
	Northern Pikeminnow	Ptychocheilus oregonensis	NPM
	Redside Shiner	Richardsonius balteatus	SH
Catostomidae:			
	Sucker	Catostomus columbianus	SK
		Catostomus catostomus	
Ictaluridae:			
	Brown Bullhead	Ameiurus nebulosus	BRCT
	Channel Catfish	Ictalurus punctatus	CHCT
Centrarchidae:			
	Pumpkin Seed	Lepomis gibbosus	PKSC
	Blue Gill	Lepomis macrochirus	BG
	Smallmouth Bass	Micropterus dolomieui	SMB
	Large Mouth Bass	Micropterus salmoides	LMB
	Black Crappie	Pomoxis nigromaculatus	CRAP
Percidae:			
	Walleye	Stizostedion vitreum vitreum	WALLEYE
	Yellow Perch	Perca flavescens	YP
Cottidae:			
	Sculpin	Cottus bairdi	SC
Clupeidae:			
	Shad	Alosa sapidissima	SHAD

Results and Discussion:

During surveys of 2018 to 2019 the highest abundance of non-native fish predators were found in the lower reaches of the Yakima River (Figure 39). Piscivorous fish were identified in all 6 survey reaches of the Yakima River. Smallmouth Bass and Channel Catfish were the fish predators found in the highest abundance. These two predators are often considered to be the top salmon predators in the lower Yakima River.

Northern Pike Minnow are the dominant piscivorous fish in the upper portion of the 2019 surveyed reaches of Yakima River (reaches above Prosser Dam). They were the fish predator found in the highest abundance in this area during electro-fishing surveys of 2019. Fish counts for all species observed during the 2019 surveys are given for all reaches in figures 40 through 45.

Figure 39. Fish Predator Counts by Reach and Species.

Figure 40. Parker Reach Fish Counts by Species.

Figure 41. Granger Reach Fish Counts by Species.

Figure 42. Above Prosser Dam Fish Counts by Species.

Figure 43. Below Prosser Dam Fish Counts by Species.

Figure 44. Benton Reach Fish Counts by Species.

Figure 45. Lower Yakima Reach Fish Counts by Species.

Large amounts of introduced fish predators inhabit the Lower Yakima River. Predator numbers tend to increase as time progresses in the spring and summer. Increases in predator abundance in 2019 showed significant correlation with increasing date (Figure 46). These increases also correspond with increasing water temperatures and decreasing river flows.

Figure 46. Total Count of Fish Predators below Prosser Dam.

Smallmouth Bass (SMB) have been found to exhibit a spike in abundance during their spawning periods in the Lower Yakima River. Spawning for Smallmouth Bass is typically between April 1 and July 1. This time period coincides with juvenile salmonid outmigration. This timing provides a readily available prey source for the adult spawning bass and their young recruits. Catch and catch per unit effort for adult Smallmouth Bass begins to rise in the May and June survey periods (Figure 47) as Smallmouth Bass migrate from the Columbia River into the Yakima River to spawn. A rise in catch in adults also correlates with a rise in Yakima River water temperature (Figure 48).

The rise and fall of SMB relative abundance may correlate with the water year of 2015 which produced extremely low flows and high water temperatures and the subsequent high water year in 2016, 2017, and 2018. It is the increase in water temperature in the lower Yakima River which is thought to create productive habitat for SMB. Overall
years there is increased catch success during the late summer and fall months and electro-fishing efforts are increased to maximize catch for managing numbers of SMB in the lower Yakima River. Current efforts to increase salmon populations target SMB populations for management in hopes to increase survival of juvenile salmon outmigration.

Figure 47. Adult Smallmouth Bass Totals by Reach.

Figure 48. Adult and Juvenile Smallmouth Bass Total below Prosser Dam.

Adaptive Management and Lessons Learned

As noted extensively throughout this report, this project is a collaborative effort involving many agencies, boards, and individuals. As such, project coordination and review of project standards and protocols occurs continually amongst tribal, state, federal, and local entities during normal day-to-day operations of the project. Project results are communicated broadly through the annual science and management conference, technical reports and peer-reviewed journal publications (see references and project-related publications), and via several related web sites described in Appendix A.

We support the principles established in Mobrand et al. (2005) and Paquet et al. (2011) that hatchery programs should be well-defined, scientifically defensible, and use informed decision making tools including adaptive management. Many of these principles were initially published in Cuenco et al. (1993) including specific recommended decision criteria, management protocols, release strategies, and risk management strategies for hatchery programs. We designed a number of these protocols and strategies into the CESRF program and they are clearly contributing to
the results documented here for the Upper Yakima River Basin spring Chinook populations.

Results to date from Yakama Nation supplementation and research efforts in the Yakima River Basin indicate several lessons that may be of broader application on the regional scale.

1. We need to be realistic. Can or should we expect to see "self-sustaining natural populations" in river systems that have been highly altered from their historical state due to ever-increasing human demands on shared resources? In the highly altered systems we live and work in today, hatchery programs provide a necessary means to ameliorate some of the effects of human population growth and development.
2. We need to be honest. Hatchery programs are not the cause of poor productivity. The historical record is replete with documentation (see Dompier 2005) that the region knew exactly what it was doing to natural salmon productivity when development of the region began to intensify with implementation of the Federal Columbia River Power System as early as the 1930s.
3. We need to be patient. Hatchery reform is a relatively new concept and results for longer term 20-25 year efforts such as the Idaho Supplementation Studies (ISS; Venditti et al. 2017) and CESRF program (Fast et al. 2015) are only now becoming available. These programs empirically support the idea that hatchery reform principles can provide the expected benefits.
4. While hatchery supplementation has demonstrated increases in natural production (increased redd and juvenile abundance), supplementation by itself cannot and was never intended to increase natural productivity. To accommodate expanding human population growth and resource demand, it is imperative that we continue and even increase habitat restoration actions to ensure that sufficient spawning and rearing habitat remains available to all naturally spawning fish.
5. Every subbasin, species, and study is unique, so we should not be surprised to see differing results from the many studies of hatchery effects that are ongoing. Researchers need to continue efforts to better understand the root causes of poor natural productivity and the extent to which hatchery programs effect productivity.
6. Evaluation of hatchery programs should include evaluation of environmental and other factors so that hatchery effects are properly reported.
7. Hatchery programs should be regularly evaluated at the local level using expertise across disciplines to collaboratively and iteratively develop appropriate solutions that address the unique problems and limiting factors encountered in each subbasin or tributary that hosts a hatchery program. In the Yakima Basin, this is achieved with the annual Yakima Basin Aquatic Science and Management Conference, and we use the results to evaluate existing goals, objectives, and strategies and to adaptively manage projects in response to new information.

References and Project-related Publications

Beckman, B.R., D.A. Larsen, B. Lee-Pawlak, and W.W. Dickhoff. 1998. Relation of Fish Size and Growth Rate to Migration of Spring Chinook Salmon Smolts. North American Journal of Fisheries Management 18:537-546.
Beckman, B.R., D.A. Larsen, C. Sharpe, B. Lee-Pawlak, C.B. Schreck, and W.W. Dickhoff. 2000. Physiological Status of Naturally Reared Juvenile Spring Chinook Salmon in the Yakima River: Seasonal Dynamics and Changes Associated with Smolting. Transactions of the American Fisheries Society 129:727-753.
Beckman, B.R. and D.A. Larsen. 2005. Upstream Migration of Minijack (Age-2) Chinook Salmon in the Columbia River: Behavior, Abundance, Distribution, and Origin. Transactions of the American Fisheries Society 134:1520-1541.

Beckman, B.R., B. Gadberry, P. Parkins, and D.A. Larsen. 2008. The Effect of Yakima River Spring Chinook Salmon Sire Life History Type on Emergence Timing and Size of Progeny. Transactions of the American Fisheries Society 137:1285-1291.

Bosch, W.J. 2004. The promise of hatchery-reared fish and hatchery methodologies as tools for rebuilding Columbia Basin salmon runs: Yakima Basin overview. American Fisheries Society Symposium 44:151-160.
Bosch, W.J., T.H. Newsome, J.L. Dunnigan, J.D. Hubble, D. Neeley, D.T. Lind, D.E. Fast, L.L. Lamebull, and J.W. Blodgett. 2007. Evaluating the Feasibility of Reestablishing a Coho Salmon Population in the Yakima River, Washington. North American Journal of Fisheries Management 27:198-214.
BPA (Bonneville Power Administration). 1996. Yakima Fisheries Project. Final Environmental Impact Statement. Bonneville Power Administration. Washington Department of Fish and Wildlife. Yakama Indian Nation. January, 1996. DOE/EIS-0169. DOE/BP-2784. Portland, OR.

Busack, C., T. Pearsons, C. Knudsen, S. Phelps, Washington Department of Fish and Wildlife, B. Watson, M. Johnston, Yakama Nation, U.S. Department of Energy, Bonneville Power Administration, Division of Fish and Wildlife. 1997. Yakima

Fisheries Project spring Chinook supplementation monitoring plan. Project Number 195-065, Contract Number DE-BI79-1996 BPA64878. https://pisces.bpa.gov/release/documents/documentviewer.aspx?doc=64878-1
Busack, C. and C.M. Knudsen. 2007. Using factorial mating designs to increase the effective number of breeders in fish hatcheries. Aquaculture 273:24-32.
Busack, C., C.M. Knudsen, G. Hart, and P. Huffman. 2007. Morphological Differences Between Adult Wild and First-Generation Hatchery Upper Yakima River Spring Chinook Salmon. Transactions of the American Fisheries Society 136:1076-1087.
Busack, C, P. Hulett, T. Pearsons, J. Tipping and J. B. Scott, Jr. 2008. Chapter 4 Artificial production. in J. B. Scott, Jr. and W. T. Gill, editors. Oncorbynchus mykiss: Assessment of Washington State's Steelhead populations and programs. Washington Department of Fish and Wildlife, Olympia, Washington. (https://wdfw.wa.gov/publications/00150/wdfw00150.pdf).
Chapman, D., and eight co-authors. 1994. Status of summer/fall Chinook salmon in the Mid-Columbia Region. Don Chapman Consultants, Boise, ID. 412 pp.
Clune, T. and D. Dauble. 1991. The Yakima/Klickitat Fisheries Project: A Strategy for Supplementation of Anadromous Salmonids. Fisheries 16: 28-34.
CRITFC (Columbia River Inter-Tribal Fish Commission). 1995. Wy-Kan-Ush-Mi Wa-Ksih-Wit (Spirit of the Salmon). Columbia River Anadromous Fish Restoration Plan of the Nez Perce, Umatilla, Warm Springs and Yakama Tribes. Portland, OR.
Cuenco, M.L., T.W.H. Backman, and P.R. Mundy. 1993. The use of supplementation to aid in natural stock restoration. Pages 269-293 in J.G. Cloud and G.H. Thorgaard, editors. Genetic conservation of salmonid fishes. Plenum Press, New York.
Currens, K.P., and C.A. Busack. 1995. A framework for assessing genetic vulnerability. Fisheries 20:24-31.

Dittman, A.H., D. May, D.A. Larsen, M.L. Moser, M. Johnston, and D. Fast. 2010. Homing and spawning site selection by supplemented hatchery- and natural-origin Yakima River spring Chinook salmon. Transactions of the American Fisheries Society 139:1014-1028.
Dompier, D. W. 2005. The Fight of the Salmon People: Blending Tribal Tradition with Modern Science to Save Sacred Fish. Xlibris Corporation, www.Xlibris.com.
Evans, A.F. and N.J. Hostetter. 2012. Systemwide evaluation of avian predation on juvenile salmonids from the Columbia River based on recoveries of Passive Integrated Transponder tags. Transactions of the American Fisheries Society 141:975-989.

Fast, D.E., D. Neeley, D.T. Lind, M.V. Johnston, C.R. Strom, W.J. Bosch, C.M. Knudsen, S.L. Schroder, and B.D. Watson. 2008. Survival Comparison of Spring Chinook Salmon Reared in a Production Hatchery under Optimum Conventional and Seminatural Conditions. Transactions of the American Fisheries Society 137:1507-1518.

Fast, D.E., W.J. Bosch, M.V. Johnston, C.R. Strom, C.M. Knudsen, A.L. Fritts, G.M. Temple, T.N. Pearsons, D.A. Larsen, A.H. Dittman, and D. May. 2015. A Synthesis of Findings from an Integrated Hatchery Program after Three Generations of Spawning in the Natural Environment. North American Journal of Aquaculture 77:377-395.
Fiander, W., D.E. Fast, and W.J. Bosch (editors). 2019. Yakima-Klickitat Fisheries Project Monitoring and Evaluation - Yakima Subbasin, Final Report for the performance period May/2018-April/2019, Project number 1995-063-25, 275 electronic pages.
Fraser, D. J. 2008. How well can captive breeding programs conserve biodiversity? A review of salmonids. Evolutionary Applications, 1:535-586.
Fritts, A.L., and T.N. Pearsons. 2004. Smallmouth bass predation on hatchery and wild salmonids in the Yakima River, Washington. Transactions of the American Fisheries Society 133:880-895.
Fritts, A.L. and T.N. Pearsons. 2006. Effects of Predation by Nonnative Smallmouth Bass on Native Salmonid Prey: the Role of Predator and Prey Size. Transactions of the American Fisheries Society 135:853-860.
Fritts, A.L., J.L. Scott, and T.N. Pearsons. 2007. The effects of domestication on the relative vulnerability of hatchery and wild spring Chinook salmon to predation. Canadian Journal of Fisheries and Aquatic Sciences 64:813-818.

Fritts, A.L., and T.N. Pearsons. 2008. Can nonnative smallmouth bass, Micropterus dolomieu, be swamped by hatchery fish releases to increase juvenile Chinook salmon, Oncorbynchus tshanytscha, survival? Environmental Biology of Fishes 83:485-494.

Greene, C.H., B.A. Block, D. Welch, G. Jackson, G.L. Lawson, E.L. Rechisky. 2009. Advances in conservation oceanography: New tagging and tracking technologies and their potential for transforming the science underlying fisheries management. Oceanography. Vol. 22, no. 1, pp 210-223.

Ham, K.D., and T.N. Pearsons. 2000. Can reduced salmonid population abundance be detected in time to limit management impacts? Canadian Journal of Fisheries and Aquatic Sciences 57:17-24.

Ham, K.D., and T.N. Pearsons. 2001. A practical approach for containing ecological risks associated with fish stocking programs. Fisheries 25(4):15-23.

Hiebert, S., L.A. Helfrich, D.L. Weigmann, and C. Liston. 2000. Anadromous Salmonid Passage and Video Image Quality under Infrared and Visible Light at Prosser Dam, Yakima River, Washington. North American Journal of Fisheries Management 20:827-832.
Hubble J., T. Newsome, and J. Woodward. 2004. Yakima Coho Master Plan. Prepared by Yakama Nation in cooperation with Washington State Department of Fish and Wildlife. September 2004. Yakima Klickitat Fisheries Project, Toppenish, WA.

Independent Scientific Advisory Board (ISAB). 2015. Density Dependence and its Implications for Fish Management and Restoration Programs in the Columbia River Basin. Northwest Power and Conservation Council, Portland, OR. Available at: http://www.nwcouncil.org/media/7148891/isab2015-1.pdf.
Independent Scientific Review Panel (ISRP). 2011. Retrospective Report 2011. Northwest Power and Conservation Council, Portland, OR. Available at: http://www.nwcouncil.org/library/isrp/isrp2011-25.pdf.
Johnson, C.L., G.M. Temple, T.N. Pearsons, and T.D. Webster. 2009. An Evaluation of Data Entry Error and Proofing Methods for Fisheries Data. Transactions of the American Fisheries Society 138:593-601.
Kiffney, P.M., E.R. Buhle, S.M. Naman, G.R. Pess, and R.S. Klett. 2014. Linking resource availability and habitat structure to stream organisms: an experimental and observational assessment. Ecosphere, 5(4):39. Available at: http://www.esajournals.org/doi/pdf/10.1890/ES13-00269.1.
Knudsen, C.M., S.L. Schroder, C.A. Busack, M.V. Johnston, T.N. Pearsons, W.J. Bosch, and D.E. Fast. 2006. Comparison of Life History Traits between FirstGeneration Hatchery and Wild Upper Yakima River Spring Chinook Salmon. Transactions of the American Fisheries Society 135:1130-1144.

Knudsen, C.M., S.L. Schroder, C. Busack, M.V. Johnston, T.N. Pearsons, and C.R. Strom. 2008. Comparison of Female Reproductive Traits and Progeny of FirstGeneration Hatchery and Wild Upper Yakima River Spring Chinook Salmon. Transactions of the American Fisheries Society 137:1433-1445.

Knudsen, C.M., M.V. Johnston, S.L. Schroder, W.J. Bosch, D.E. Fast, and C.R. Strom. 2009. Effects of passive integrated transponder tags on smolt-to-adult recruit survival, growth, and behavior of hatchery spring Chinook salmon. North American Journal of Fisheries Management 29:658-669.
Larsen, D.A., B.R. Beckman, K.A. Cooper, D. Barrett, M. Johnston, P. Swanson, and W.W. Dickhoff. 2004. Assessment of High Rates of Precocious Male Maturation in a Spring Chinook Salmon Supplementation Hatchery Program. Transactions of the American Fisheries Society 133:98-120.

Larsen, D.A., B.R. Beckman, C.R. Strom, P.J. Parkins, K.A. Cooper, D.E. Fast, and W.W. Dickhoff. 2006. Growth Modulation Alters the Incidence of Early Male Maturation and Physiological Development of Hatchery-Reared Spring Chinook Salmon: A Comparison with Wild Fish. Transactions of the American Fisheries Society 135:1017-1032.

Larsen, D.A., B.R. Beckman, and K.A. Cooper. 2010. Examining the Conflict between Smolting and Precocious Male Maturation in Spring (Stream-Type) Chinook Salmon. Transactions of the American Fisheries Society 139:564-578.

Larsen, D.A., D.L. Harstad, C.R. Strom, M.V. Johnston, C.M. Knudsen, D.E. Fast, T.N. Pearsons, and B.R. Beckman. 2013. Early Life History Variation in Hatcheryand Natural-Origin Spring Chinook Salmon in the Yakima River, Washington. Transactions of the American Fisheries Society 142:2, 540-555.

Lichatowich, J., L. Mobrand, L. Lestelle, and T. Vogel. 1995. An approach to the diagnosis and treatment of depleted Pacific Salmon populations in Pacific Northwest watersheds. Fisheries 20:10-18.

Lichatowich, J.A. 1999. Salmon Without Rivers: A History of the Pacific Salmon Crisis. Washington D.C. Island Press.
Loeffel, R. E., and H. O. Wendler. 1968. Review of the Pacific coast chinook and coho salmon resources with special emphasis on the troll fishery. Prepared by the U.S. working group of the Informal Committee on Chinook and Coho, 107 p. (Available from Oregon Department of Fish and Wildlife, P.O. Box 59, Portland, OR 97207.)
Major, W.W. III, J.M. Grassley, K.E. Ryding, C.E. Grue, T.N. Pearsons, D.A. Tipton, and A.E. Stephenson. 2005. Abundance and consumption of fish by California gulls and ring-billed gulls at water and fish management structures within the Yakima River, Washington. Waterbirds 28:366-377.
Martin, S.W., J.A. Long, and T.N. Pearsons. 1995. Comparison of survival, gonad development, and growth between rainbow trout with and without surgically implanted dummy radio transmitters. North American Journal of Fisheries Management 15:494-498.
McElhany, P., M. H. Ruckelhaus, M. J. Ford, T. C. Wainwright and E. P. Bjorkstedt. 2000. Viable salmonid populations and the recovery of evolutionarily significant units. U. S. Department of Commerce, NOAA Technical Memorandum NMFS-NWFSC-42, 156 pp. Available at: http://docs.lib.noaa.gov/noaa_documents/NMFS/NWFSC/TM_NMFS_NWFSC/TM_NMFS_NWFSC_42.pdf
McMichael, G.A. 1993. Examination of electrofishing injury and short-term mortality in hatchery rainbow trout. North American Journal of Fisheries Management 13:229-233.

McMichael, G.A., C.S. Sharpe, and T.N. Pearsons. 1997. Effects of residual hatcheryreared steelhead on growth of wild rainbow trout and spring chinook salmon. Transactions of the American Fisheries Society 126:230-239.

McMichael, G.A., and T.N. Pearsons. 1998. Effects of wild juvenile spring chinook salmon on growth and abundance of wild rainbow trout. Transactions of the American Fisheries Society 127:261-274.
McMichael, G.A., A.L. Fritts, and T.N. Pearsons. 1998. Electrofishing injury to stream salmonids: injury assessment at the sample, reach, and stream scales. North American Journal of Fisheries Management 18:894-904.
McMichael, G.A., T.N. Pearsons, and S.A. Leider. 1999. Behavioral interactions among hatchery-reared steelhead smolts and wild Oncorbynchus mykiss in natural streams. North American Journal of Fisheries Management 19:948-956.
McMichael, G.A., T.N. Pearsons, and S.A. Leider. 1999. Minimizing ecological impacts of hatchery-reared juvenile steelhead trout on wild salmonids in a Yakima Basin watershed. Pages 365-380 in E.E. Knudson, C.R. Steward, D.D. MacDonald, J.E. Williams, and D.W. Reiser editors. Sustainable fisheries management: Pacific salmon. CRC Press, Boca Raton, FL.

McMichael, G.A. and T.N. Pearsons. 2001. Upstream movement of residual hatchery steelhead into areas containing bull trout and cutthroat trout. North American Journal of Fisheries Management 21:517-520.
Milbrink, G., T. Vrede, L.J. Tranvik, and E. Rydin. 2011. Large-scale and long-term decrease in fish growth following the construction of hydroelectric reservoirs. Canadian Journal of Fisheries and Aquatic Sciences, 68:2167-2173.
Mobrand, L.E., J. Barr, L. Blankenship, D.E. Campton, T.T.P. Evelyn, T.A. Flagg, C.V.W. Mahnken, L.W. Seeb, P.R. Seidel, and W.W. Smoker. 2005. Hatchery Reform in Washington State: Principles and Emerging Issues. Fisheries 30:11-23.
Murdoch, A.R., P.W. James, and T.N. Pearsons. 2005. Interactions between rainbow trout and bridgelip suckers spawning in a small Washington stream. Northwest Science 79: 120-130.

Neeley, D. 2010. 2009 Annual Report: Chandler Certification for Yearling Outmigrating Spring Chinook Smolt. Appendix D in Sampson, Fast, and Bosch, Yakima/Klickitat Fisheries Project Monitoring and Evaluation, Final Report for the Performance Period May 1, 2009 through April 30, 2010. Yakama Fisheries, Toppenish, WA.

Neeley, D. 2012a. Prosser-Passage Estimation Issues. Appendix F in Sampson, Fast, and Bosch, Yakima/Klickitat Fisheries Project Monitoring and Evaluation, Final Report for the Performance Period May 1, 2011 through April 30, 2012. Yakama Fisheries, Toppenish, WA.

Neeley, D. 2012b. 2011 Annual Report: Smolt-to-smolt survival to McNary Dam of Yakima fall and summer Chinook. Appendix G in Sampson, Fast, and Bosch, Yakima/Klickitat Fisheries Project Monitoring and Evaluation, Final Report for the Performance Period May 1, 2011 through April 30, 2012. Yakama Fisheries, Toppenish, WA.

NMFS. 1999a. Endangered Species Act - Section 7 Consultation - Supplemental Biological Opinion and Incidental Take Statement. The Pacific Coast Salmon Plan and Amendment 13 to the Plan. NMFS, Protected Resources Division. April 28, 1999.39 pp. + attachment.

NMFS. 1999b. Endangered Species Act - Reinitiation of Section 7 Consultation Biological Opinion and Incidental Take Statement. The Fishery Management Plan for Commercial and Recreational Fisheries off the Coasts of Washington, Oregon, and California of the Pacific Fishery Management Council. NMFS. Sustainable Fisheries Division. April 30, 1999. 46 pp.
NMFS 1999c. Endangered Species Act - Reinitiated Section 7 Consultation - Approval of the Pacific Salmon Treaty by the U.S. Department of State and Management of the Southeast Alaska Salmon Fisheries Subject to the Pacific Salmon Treaty. NMFS, Protected Resources Division. November 9, 1999. 90 p. + figures.
NMFS. 1999d. Endangered and threatened species; threatened status for three Chinook salmon Evolutionarily Significant Units (ESUs) in Washington and Oregon, and endangered status for one Chinook salmon ESU in Washington. Federal Register 64: 56 (March 24, 1999) 14308-14328. Available at: http://www.nwr.noaa.gov/ESA-Salmon- Listings/Salmon-Populations/Federal-Register-Notices.cfm.
NMFS. 2000a. Endangered Species Act - Reinitiated Section 7 Consultation - Effects of Pacific coast ocean and Puget Sound salmon fisheries during the 2000-2001 annual regulatory cycle. NMFS, Protected Resources Division. April 28, 2000. 99 pp.

NMFS. 2000b. Endangered Species Act - Reinitiated Section 7 Consultation Biological Opinion and Incidental Take Statement. Effects of Pacific Coast Salmon Plan on California Central Valley spring-run Chinook, and California coastal Chinook salmon. NMFS, Protected Resources Division. April 28, 2000. 31 pp.
NMFS. 2000c. RAP - A risk assessment procedure for evaluating harvest mortality on Pacific Salmonids. Sustainable Fisheries Division, NMFS, Northwest Region and Resource Utilization and Technology Division, NMFS, Northwest Fisheries Science Center. May 23, 2000. 33 p.

Northwest Power and Conservation Council. Columbia River Basin Fish and Wildife Program 2017 Research Plan, Pre-publication version. Available online: https://www.nwcouncil.org/media/7491163/2017-4.pdf. Portland, Oregon.

NRC (National Research Council). 1996. Upstream: Salmon and society in the Pacific Northwest. National Academy Press, Washington D.C.

Paquet, P. J., T. Flagg, A. Appleby, J. Barr, L. Blankenship, D. Campton, M. Delarm, T. Evelyn, D. Fast, J. Gislason, P. Kline, D. Maynard, L. Mobrand, G. Nandor, P. Seidel, and S. Smith. 2011. Hatcheries, Conservation, and Sustainable FisheriesAchieving Multiple Goals: Results of the Hatchery Scientific Review Group's Columbia River Basin Review. Fisheries 36:11, 547-561.
Pearsons, T.N., and A.L. Fritts. 1999. Maximum size of chinook salmon consumed by juvenile coho salmon. North American Journal of Fisheries Management 19:165-170.

Pearsons, T.N., and C.W. Hopley. 1999. A practical approach for assessing ecological risks associated with fish stocking programs. Fisheries 24(9):16-23.

Pearsons, T.N. 2002. Chronology of ecological interactions associated with the lifespan of salmon supplementation programs. Fisheries 27(12):10-15.

Pearsons, T.N., S.R. Phelps, S.W. Martin, E.L. Bartrand, and G.A. McMichael. 2007. Gene flow between resident and anadromous rainbow trout in the Yakima Basin: Ecological and genetic evidence. Pages 56-64 in R. K. Schroeder and J. D. Hall, editors. Redband trout: resilience and challenge in a changing landscape. Oregon Chapter, American Fisheries Society, Corvallis, Oregon.
Pearsons, T.N. and G.M. Temple. 2007. Impacts of Early Stages of Salmon Supplementation and Reintroduction Programs on Three Trout Species. North American Journal of Fisheries Management 27:1-20.

Pearsons, T.N., A.L. Fritts, and J.L. Scott. 2007. The effects of hatchery domestication on competitive dominance of juvenile spring Chinook salmon. Canadian Journal of Fisheries and Aquatic Sciences 64:803-812.
Pearsons, T.N., D.D. Roley, and C.L. Johnson. 2007. Development of a carcass analog for nutrient restoration in streams. Fisheries 32:114-124.

Pearsons, T.N. 2008. Misconception, reality, and uncertainty about ecological interactions and risks between hatchery and wild salmonids. Fisheries 33:278-290.
Pearsons, T.N., C.L. Johnson, B.B. James, and G.M. Temple. 2009. Abundance and Distribution of Precociously Mature Male Spring Chinook Salmon of Hatchery and Natural Origin in the Yakima River. North American Journal of Fisheries Management 29:778-790.

Pearsons, T.N. and G.M. Temple. 2010. Changes to Rainbow Trout Abundance and Salmonid Biomass in a Washington Watershed as Related to Hatchery Salmon Supplementation. Transactions of the American Fisheries Society 139:502-520.

Pearsons, T.N. 2010. Operating Hatcheries within an Ecosystem Context Using the Adaptive Stocking Concept. Fisheries 35:23-31.

Pacific Salmon Commission (PSC). 1994. Pacific Salmon Commission Joint Chinook Technical Committee 1993 annual report. Pacific Salmon Commission. Report Chinook (94)-1, 121 p. + app. (Available from Pacific Salmon Commission, 6001155 Robson St., Vancouver, B.C. V6E 1B5.)

RASP (Regional Assessment of Supplementation Planning). 1992. Supplementation in the Columbia River Basin, Parts 1-5. Report DOE/BP 01830-11, Bonneville Power Administration.

Rechisky, E.L., D.W. Welch, A.D. Porter, M.C. Jacobs, A. Ladouceur. 2009. Experimental measurement of hydrosystem-induced delayed mortality in juvenile Columbia River spring Chinook salmon using a large-scale acoustic array. Canadian Journal of Fisheries and Aquatic Sciences 66: 1019-1024.

Ricker, W.E. 1975. Computation and interpretation of biological statistics of fish populations. Bulletin of the Fisheries Research Board of Canada 191:382.
Salafsky, N., R. Margoluis, and K. Redford. 2001. Adaptive management: A tool for conservation practitioners. Washington, D.C. Biodiversity Support Program. Available at: http://www.fosonline.org/wordpress/wpcontent/uploads/2010/06/AdaptiveManagement'Tool.pdf
Sandford, B.P. and S.G. Smith. 2002. Estimation of smolt-to-adult return percentages for Snake River Basin anadromous salmonids, 1990-1997. Journal of Agricultural, Biological, and Environmental Statistics 7:243-263.

Schroder, S.L., C.M. Knudsen, T.N. Pearsons, T.W. Kassler, S.F. Young, C.A. Busack, and D.E. Fast. 2008. Breeding Success of Wild and First-Generation Hatchery Female Spring Chinook Salmon Spawning in an Artificial Stream. Transactions of the American Fisheries Society, 137:1475-1489.
Schroder, S.L., C.M. Knudsen, T.N. Pearsons, T.W. Kassler, S.F. Young, E.P. Beall, and D.E. Fast. 2010. Behavior and Breeding Success of Wild and FirstGeneration Hatchery Male Spring Chinook Salmon Spawning in an Artificial Stream. Transactions of the American Fisheries Society, 139:989-1003.

Schroder, S.L., C.M. Knudsen, T.N. Pearsons, T.W. Kassler, E.P. Beall, S.F. Young, and D.E. Fast. 2012. Breeding Success of four male life history types of spring Chinook Salmon spawning in an artificial stream. Environmental Biology of Fishes, 94:231-248.

Smith, E.P., D.R. Orvos, and J. Cairns, Jr. 1993. Impact assessment using the before-after-control-impact (BACI) model: concerns and comments. Canadian Journal of Fisheries and Aquatic Sciences 50:627-637.

Stewart-Oaten, A., W.W. Murdoch, and K.R. Parker. 1986. Environmental impact assessment: pseudoreplication in time? Ecology: 67:929-940.
TAC (United States versus Oregon Technical Advisory Committee). 1997. 1996 All Species Review, Columbia River Fish Management Plan. August 4, 1997. Columbia River Inter-Tribal Fish Commission, Portland, Oregon.
Temple, G.M. and T. N. Pearsons. 2006. Evaluation of the recovery period in markrecapture population estimates of rainbow trout in small streams. North American Journal of Fisheries Management 26:941-948.

Temple, G.M., and T.N. Pearsons. 2007. Electrofishing: Backpack and Driftboat. Pages 95-132 in D. L. Johnson and 6 editors. Salmonid Field Protocol Handbook. American Fisheries Society, Bethesda, Maryland. (Protocols Handbook Chapter 3).

Temple, G.M., T. Newsome, T.D. Webster, and S.W. Coil. 2012. Interactions between rainbow trout and reintroduced coho salmon in Taneum Creek, Washington. Chapter 2 in Ecological interactions between non-target taxa of concern and hatchery supplemented salmon, Annual Report to BPA. Available at: https://pisces.bpa.gov/release/documents/documentviewer.aspx?doc=P128686
Temple, G.M., T. Newsome, T.D. Webster, and S.W. Coil. 2017. Evaluation of Rainbow Trout Abundance, Biomass, and Condition Following Coho Salmon Reintroduction in Taneum Creek, Washington. Northwest Science 91:54-68.
Tiffan, K.F., P.G. Wagner, K.S. Wolf, and P.A. Hoffarth. 2009. Application of the SHOALS survey system to fisheries investigations in the Columbia River. In J.M. Bayer and J.L. Schei, (eds.). PNAMP Special Publication: Remote Sensing Applications for Aquatic Resource Monitoring, Pacific Northwest Aquatic Monitoring Partnership, Cook, WA. Chapter 5, p. 35-42.
USACE (United States Army Corps of Engineers). 2014. Double-crested Cormorant Management Plan to Reduce Predation of Juvenile Salmonids in the Columbia river Estuary, Draft Environmental Impact Statement. United States Army Corps of Engineers, Portland, Oregon. Available online at: http://www.nwp.usace.army.mil/Portals/24/docs/announcements/EIS/DRAFT DoubleCrested Cormorant Plan Reduce Predation Columbia River Estuary EIS.pdf
Venditti, D.A.,R.N. Kinzer, K.A. Apperson, B. Barnett, M. Belnap, T. Copeland, M.P. Corsi, and K. Tardy. 2017. Effects of hatchery supplementation on abundance and productivity of natural-origin Chinook salmon: two decades of evaluation and implications for conservation programs. Canadian Journal of Fisheries and Aquatic

Sciences, https://doi.org/10.1139/cjfas-2016-0344. See also: https://nwcouncil.app.box.com/s/gsolcxk9nv1w3897am4th5nl7xe6108g.
Waters, C.D., J.J. Hard, M.S.O. Brieuc, D.E. Fast, K.I. Warheit, R. Waples, C.M. Knudsen, W.J. Bosch, and K.A. Naish. 2015. Effectiveness of managed gene flow in reducing genetic divergence associated with captive breeding. Evolutionary Applications 8:956-971. DOI: 10.1111/eva.12331.
Welch, D.W., E.L. Rechisky, M.C. Melnychuk, A.D. Porter, C.J. Walters, S. Clements, B.J. Clemens, R.S. McKinley, C. Schreck. 2008. Survival of migrating salmon smolts in large rivers with and without dams. PLoS Biology Vol. 6, Issue 10, p e265, doi:10.1371/journal.pbio. 0060265.

Wise, D.R., M.L. Zuroske, K.D. Carpenter, and R.L. Kiesling. 2009. Assessment of Eutrophication in the Lower Yakima River Basin, Washington, 2004-07: U.S. Geological Survey Scientific Investigations Report 2009-5078, 108 p.

Wright, S. G. 1970. Size, age, and maturity of coho salmon in Washington's ocean troll fishery. Wash. Dep. Fish., Fish. Res. Papers 3(2):63-71.

Yakama Nation. 2019. Revised Master Plan for Yakima Subbasin Summer-and FallRun Chinook, Coho Salmon and Steelhead. Confederated Tribes and Bands of the Yakama Nation. Toppenish, WA. September 2019.

Yakama Subbasin Fish and Wildlife Planning Board (YSFWPB). 2004. Final Draft Yakima Subbasin Plan, May 28, 2004 and Management Plan Supplement Yakima Subbasin Plan, November 26, 2004. Yakima, Wa. Available at: http://www.ybfwrb.org/recovery-planning/subbasin-plan/

APPENDICES

A. Use of Data and Products
B. Summary of Data Collected by the Yakama Nation relative to Yakima River Spring Chinook Salmon and the Cle Elum Spring Chinook Supplementation and Research Facility
C. 2019 Annual Chandler Certification for Yearling Out-migrating Spring Chinook Smolt
D. Survival to McNary Dam for PIT-tagged Spring Chinook Salmon smolts released at Roza Dam from 1999--2019
E. Coho juvenile outmigration (Smolt-to-Smolt) survival study of the Yakima Basin from 1999-2019
F. Juvenile Outmigration Survival study of Yakima Basin Summer Chinook Smolts to Prosser and McNary Dams, 2009-2019

Appendix A: Use of Data \& Products

All data and findings should be considered preliminary until results are published in the peer-reviewed literature.

Where will you post or publish the data your project generates?

Fish Passage Center

Yakama Nation Fisheries website
RMIS - Regional Mark Information System
StreamNet Database
cbfish.org
PTAGIS Website
Washington State SaSI
A system has been developed that serves Yakima Basin adult abundance and trap sampling (requires login) data for the Prosser and Roza data sets. This system can be accessed at: https://www.yakamafish-nsn.gov/fish-data.

Describe the accessibility of the data and what the requirements are to access them?

- Prosser and Roza dam daily count and trap sample (requires login) data https://www.yakamafish-nsn.gov/fish-data.
- Integration of PIT and CWT release and recovery data with PTAGIS, RMIS, and Fish Passage Center databases
- Production and support of data bases necessary to support BPA quarterly and annual reports (e.g., PISCES, available via CBfish.org)
- Production and support of data bases necessary to support NPCC project proposals (available via CBfish.org)
Additional data is available in the main body and other appendices of this report and by email contact through the data managers (Yakima Basin, contact Bill Bosch, bill bosch@yakama.com; Klickitat Basin, contact Michael Babcock, mbabcock@ykfp.org). Project data managers continue to participate in the Coordinated Assessments process to develop pilot exchange templates for adult and juvenile abundance and productivity parameters. However, we continue to believe that the best way to prioritize our data management work load is to develop databases to store the status and trend data we have been collecting over many years as well as the web tools necessary to access these data in downloadable format. The system we have developed to share Prosser and Roza dam daily count and trap sample data is an example of the progress we are making towards this end.

Appendix B

Summary of Data Collected by the Yakama Nation relative to
Yakima River Spring Chinook Salmon and the Cle Elum Spring Chinook Supplementation and Research Facility

2019 Annual Report
May 29, 2020
Prepared by:
Bill Bosch
Yakima/Klickitat Fisheries Project
Yakama Nation Fisheries
760 Pence Road
Yakima, WA 98908

Prepared for:
Bonneville Power Administration
P.O. Box 3621

Portland, OR 97208
Project Numbers: 1995-063-25
Contract Numbers: 56662 REL 185

Acknowledgments

Monitoring and evaluation efforts for the Cle Elum Supplementation and Research Facility (CESRF) and Yakima River spring Chinook salmon are the result of a cooperative effort by many individuals from a variety of agencies including the Yakama Nation Fisheries Program (YN), the Washington Department of Fish and Wildlife (WDFW), the United States Fish and Wildlife Service (USFWS), the National Oceanic and Atmospheric Administration Fisheries department (NOAA Fisheries) as well as some consultants and contractors.

The core project team includes the following individuals: Dave Fast, Mark Johnston, Bill Bosch, David Lind, Paul Huffman, Joe Hoptowit, and a number of technicians from the YN; Charles Strom and a number of assistants from the CESRF; Anthony Fritts, Gabe Temple, Christopher Johnson, and a number of assistants from the WDFW; Curt Knudsen from Oncorh Consulting and Doug Neeley from IntSTATS Consulting; Sharon Lutz and assistants from the USFWS; and Don Larsen, Andy Dittman, and assistants from NOAA Fisheries. The technicians and assistants are too numerous and varied to mention each by name (and risk leaving some out). However, their hard work in the field is the source of much of the raw data needed to complete this report. We sincerely appreciate their hard work and dedication to this project.

We would especially like to thank former members of the Yakima/Klickitat Fisheries Project, Bruce Watson, Joel Hubble, Bill Hopley, Todd Pearsons, Steve Schroder, and Craig Busack. These individuals put in countless hours of hard work during the planning, design, and implementation of this project. Their contributions helped to lay a solid foundation for this project and our monitoring and evaluation efforts. Dan Barrett (retired) served as the manager of the CESRF from 1997-2002. He helped to lay a solid foundation for the critical work done day in and day out at the Cle Elum facility.

We also need to recognize and thank the Yakama Nation and WDFW for their continued support, and the Columbia River Inter-Tribal Fish Commission, the University of Idaho, the Pacific States Marine Fisheries Commission, Mobrand, Jones, and Stokes, and Central Washington University for their many contributions to this project including both recommendations and data services.

This work is funded by the Bonneville Power Administration (BPA) through the Northwest Power and Conservation Council's (NPCC) Fish and Wildlife Program. Michelle O'Malley is BPA's contracting officer and technical representative (COTR) for this project. David Byrnes and Patricia Smith preceded Michelle in this position and contributed substantially to the project over the years.

Abstract

Historically, the return of spring Chinook salmon (Oncorhynchus tshawytscha) to the Yakima River numbered about 200,000 fish annually (BPA, 1990). Spring Chinook returns to the Yakima River averaged fewer than 3,500 fish per year through most of the 1980s and 1990s (less than 2% of the historical run size).

In an attempt to reverse this trend the Northwest Power and Conservation Council (formerly the Northwest Power Planning Council, NPPC) in 1982 first encouraged Bonneville Power Administration (BPA) to "fund the design, construction, operation, and maintenance of a hatchery to enhance the fishery for the Yakima Indian Nation as well as all other harvesters" (NPPC 1982). After years of planning and design, an Environmental Impact Statement (EIS) was completed in 1996 and the CESRF was authorized under the NPCC's Fish and Wildlife Program with the stated purpose being "to test the assumption that new artificial production can be used to increase harvest and natural production while maintaining the long-term genetic fitness of the fish population being supplemented and keeping adverse genetic and ecological interactions with non-target species or stocks within acceptable limits". The CESRF became operational in 1997. This project is co-managed by the Yakama Nation and the Washington Department of Fish and Wildlife (WDFW) with the Yakama Nation as the lead entity.

This report documents data collected from Yakama Nation tasks related to monitoring and evaluation of the CESRF and its effect on natural populations of spring Chinook in the Yakima Basin through 2017. This report is not intended to be a scientific evaluation of spring Chinook supplementation efforts in the Yakima Basin. Rather, it is a summary of methods and data (additional information about methods used to collect these data may be found in the main section of this annual report) relating to Yakima River spring Chinook collected by Yakama Nation biologists and technicians from 1982 (when the Yakama Nation fisheries program was implemented) to present. Data summarized in this report include:

- Adult-to-adult returns
- Annual run size and escapement
- Adult traits (e.g., age composition, size-at-age, sex ratios, migration timing, etc.)
- CESRF reproductive statistics (including fecundity and fish health profiles)
- CESRF juvenile survival (egg-to-fry, fry-to-smolt, smolt-to-smolt, and smolt-toadult)
- CESRF juvenile traits (e.g., length-weight relationships, migration timing, etc.)
- Harvest impacts

The data presented here are, for the most part, "raw" data and should not be used without paying attention to caveats associated with these data and/or consultation with project biologists. No attempt is made to explain the significance of these data in this report as this is left to more comprehensive reports and publications produced by the project. Data in this report should be considered preliminary until published in the peer reviewed literature.

Table of Contents

Abstract i
List of Tables iii
List of Figures v
List of Appendices v
Introduction 1
Program Objectives 1
Facility Descriptions 1
Yakima River Basin Overview 2
Adult Salmon Evaluation 3
Broodstock Collection and Representation 3
Natural- and Hatchery-Origin Escapement 5
Adult-to-adult Returns 7
Age Composition 14
Sex Composition 20
Size at Age 25
Migration Timing 33
Spawning Timing 35
Redd Counts and Distribution 36
Homing 37
Straying 38
CESRF Spawning and Survival 39
Female BKD Profiles 42
Fecundity 43
Juvenile Salmon Evaluation 44
Food Conversion Efficiency 44
Length and Weight Growth Profiles 45
Juvenile Fish Health Profile 46
Incidence of Precocialism 46
Smolt Outmigration Timing 49
Smolt-to-Smolt Survival 50
Smolt-to-Adult Survival 51
Harvest Monitoring 61
Yakima Basin Fisheries 61
Marine Fisheries 63
Literature Cited 65

List of Tables

Table 1. Counts of wild/natural spring Chinook (including jacks), brood collection, andbrood representation of wild/natural run at Roza Dam, 1997 - present.4
Table 2. Escapement (Roza Dam counts less brood stock collection and harvest above Roza) of natural- (NoR) and hatchery-origin (HoR) spring Chinook to the upper Yakima subbasin, 1982 - present. 6
Table 3. Yakima River spring Chinook run (CESRF and wild, adults and jacks combined) reconstruction, 1989-present. 8
Table 4. Adult-to-adult productivity indices for upper Yakima wild/natural stock. 9
Table 5. Adult-to-adult productivity indices for Naches River wild/natural stock 10
Table 6. Adult-to-adult productivity indices for American River wild/natural stock 11
Table 7. Adult-to-adult productivity indices for Naches/American aggregate (wild/natural) population. 12
Table 8. Adult-to-adult productivity for Cle Elum SRF spring Chinook. 13
Table 9. Percentage by sex and age of American River wild/natural spring Chinook carcasses sampled on the spawning grounds and sample size (n), 1986-present. 15
Table 10. Percentage by sex and age of Naches River wild/natural spring Chinook carcasses sampled on the spawning grounds and sample size (n), 1986-present. 16
Table 11. Percentage by sex and age of upper Yakima River wild/natural spring Chinook carcasses sampled on the spawning grounds and sample size (n), 1986-present. 17
Table 12. Percentage by sex and age of upper Yakima River CESRF spring Chinook carcasses sampled on the spawning grounds and sample size (n), 2001-present. 18
Table 13. Percentage by sex and age of upper Yakima River wild/natural spring Chinook collected for brood stock at Roza Dam and sample size (n), 1997-present. 19
Table 14. Percentage by sex and age of upper Yakima River CESRF spring Chinook collected for research or brood stock at Roza Dam and sample size (n), 2001- present. 19
Table 15. Percent of American River wild/natural spring Chinook carcasses sampled on the spawning grounds by age and sex, 1986-present. 21
Table 16. Percent of Naches River wild/natural spring Chinook carcasses sampled on the spawning grounds by age and sex, 1986-present. 22
Table 17. Percent of Upper Yakima River wild/natural spring Chinook carcasses sampled on the spawning grounds by age and sex, 1986-present. 23
Table 18. Percent of upper Yakima River CESRF spring Chinook carcasses sampled on the spawning grounds by age and sex, 2001-present. 24
Table 19. Percent of upper Yakima River wild/natural spring Chinook collected for brood stock at Roza Dam by age and sex, 1997-present. 24
Table 20. Percent of Upper Yakima River CESRF spring Chinook collected for research or brood stock at Roza Dam by age and sex, 2001-present 25
Table 21. Counts and mean mid-eye (MEHP) or post-orbital (POHP) to hypural plate lengths (cm) of American River wild/natural spring Chinook from carcasses sampled on the spawning grounds by sex and age, 1986-present. 26
Table 22. Counts and mean mid-eye (MEHP) or post-orbital (POHP) to hypural plate lengths (cm) of Naches River wild/natural spring Chinook from carcasses sampled on the spawning grounds by sex and age, 1986-present. 27
Appendix B. Yakima River / CESRF Spring Chinook Salmon - Yakama Nation Data Summary 2019 Annual Report, May 29, 2020 iii

$$
\begin{aligned}
& \text { Table 23. Counts and mean mid-eye (MEHP) or post-orbital (POHP) to hypural plate } \\
& \text { lengths }(\mathrm{cm}) \text { of upper Yakima River wild / natural spring Chinook from carcasses } \\
& \text { sampled on the spawning grounds by sex and age, 1986-present............................ } 28
\end{aligned}
$$

Table 24. Counts and mean post-orbital to hypural plate (POHP) lengths (cm) of upper Yakima River CESRF spring Chinook from carcasses sampled on the spawning grounds by sex and age, 2001-present. 29
Table 25. Counts and mean post-orbital to hypural plate (POHP) lengths (cm) of upper Yakima River wild/natural spring Chinook from carcasses sampled at the CESRF prior to spawning by sex and age, 1997-present 29
Table 26. Counts and mean post-orbital to hypural plate (POHP) lengths (cm) of upper
Yakima River CESRF spring Chinook from carcasses sampled at the CESRF prior to spawning by sex and age, 2001-present. 30
Table 27. Counts and mean post-orbital to hypural plate (POHP) lengths (cm) of upper
Yakima River wild/natural spring Chinook from fish sampled at Roza Dam by sex ${ }^{1}$ and age, 1997-present. 30
Table 28. Counts and mean post-orbital to hypural plate (POHP) lengths (cm) of upper Yakima River CESRF spring Chinook from fish sampled at Roza Dam by sex ${ }^{1}$ and age, 2001-present. 31
Table 29. Comparison of 5%, median (50%), and 95% passage dates of wild/natural and CESRF adult spring Chinook (including jacks) at Roza Dam, 1997-Present. 34
Table 30. Median spawn ${ }^{1}$ dates for spring Chinook in the Yakima Basin. 35
Table 31. Yakima Basin spring Chinook redd count summary, 1981 - present. 36
Table 32. Estimated number of PIT- and CWT-tagged CESRF fish not returning to the Yakima River Basin (strays), and marked fish sampled during spawner surveys in the Naches Basin, per number of returning fish, brood years 1997-present. 38
Table 33. Cle Elum Supplementation and Research Facility spawning and survival statistics (NoR brood only), 1997 - present. 40
Table 34. Cle Elum Supplementation and Research Facility spawning and survival statistics (HoR brood only), 2002 - present. 41
Table 35. Mean fecundity by age of adult females (BKD rank < 6) spawned at CESRF, 1997-present. 43
Table 36. Mean food conversion (lbs fed/lbs gained) of CESRF juveniles by brood year and growth month, 1997 - present. 44
Table 37. Mean BKD rank of juvenile fish sampled at CESRF acclimation sites by broodyear, 1997-present..Error! Bookmark not defined.
Table 38. CESRF total releases by brood year, treatment, and acclimation site. 48
Table 39. CESRF average pond densities at release by brood year, treatment, and acclimation site. 49
Table 40. Estimated smolt passage at Chandler and smolt-to-adult return indices (Chandler smolt to Yakima R. mouth adult) for Yakima Basin wild/natural and CESRF-origin spring Chinook. 54
Table 41. Estimated wild/natural smolt-to-adult return rates (SAR) based on adult detections of PIT tagged fish. Roza tagged smolts to Bonneville Dam adult returns. Footnotes follow Table 42. 55
Table 42. Estimated CESRF smolt-to-adult return rates (SAR) based on adult detections of PIT tagged fish. Roza tagged smolts to Bonneville Dam adult returns 56
Appendix B. Yakima River / CESRF Spring Chinook Salmon - Yakama Nation Data Summary 2019 Annual Report, May 29, 2020 iv
Table 43. Overall wild/natural smolt-to-adult return rates (SAR) based on juvenile and adult detections of fish PIT-tagged and released at Roza Dam (Table B. 74 in McCann et al. 2018). McNary smolts to Bonneville Dam adult returns. For 2010 and 2014 migration years, few if any wild smolts were PIT-tagged at Roza. 57
Table 44. Overall CESRF smolt-to-adult return rates (SAR) based on juvenile and adult detections of PIT tagged fish (Table B. 78 in McCann et al. 2018). McNary smolts to Bonneville Dam adult returns 58
Table 45. Estimated release-to-adult survival of PIT-tagged CESRF fish (CESRF tagged smolts to Bonneville and Roza Dam adult returns). 58
Table 46. Estimated release-to-adult survival of non-PIT-tagged CESRF fish (CESRF tagged smolts to Roza Dam adult returns). 60
Table 47. Spring Chinook harvest in the Yakima River Basin, 1985-present. 61
Table 48. Estimated run size, harvest, and harvest rates of Yakima Basin spring Chinook in Columbia River mainstem and terminal area fisheries, 1985-present. 62
Table 49. Marine and freshwater recoveries of CWTs from brood year 1997-2013 releases of spring Chinook from the CESRF as reported to the Regional Mark Information System (RMIS) 06 Nov, 2018. 63
List of Figures
Figure 1. Yakima River Basin. 2
Figure 2. Mean spring Chinook run timing and broodstock collection at Roza Dam, 2009-2018 3
Figure 3. Proportionate passage timing at Roza Dam of wild/natural and CESRF adult spring Chinook (including jacks), 2009-2018. 33
Figure 4. Proportion of wild/natural females spawned at CESRF by BKD rank, 1997 - present 42
Figure 5. Mean length (cm) of "standard growth treatment (Hi)" CESRF juveniles by brood year and growth month, 1997 - present 45
Figure 6. Mean Weight (fish/lb) of "standard growth treatment (Hi)" CESRF juveniles by brood year and growth month, 1997 - present. 45
Figure 7. Mean flow approaching Prosser Dam versus mean estimated smolt passage at Prosser of aggregate wild/natural and CESRF spring Chinook for outmigration years 1999-2018 50
Figure 8. Marine recovery locations of coded-wire-tagged CESRF spring Chinook, recovery years 2008-2012. 64
List of Appendices
Appendix A. Tag and Release Information by Cle Elum Pond Id, Brood Years 2006- 2017. 67

Introduction

Program Objectives

The CESRF was authorized in 1996 under the NPCC's Fish and Wildlife Program with the stated purpose being "to test the assumption that new artificial production can be used to increase harvest and natural production while maintaining the long-term genetic fitness of the fish population being supplemented and keeping adverse genetic and ecological interactions with non-target species or stocks within acceptable limits". The CESRF became operational in 1997. The experimental design calls for a total release of 810,000 smolts annually from each of three acclimation sites associated with the facility (see facility descriptions). To minimize risk of over-collecting brood stock and to maintain lower pond rearing densities, the YKFP policy group took action in 2011 to reduce the release target to 720,000 smolts for brood collection purposes. Female percentage, fecundity and survival rates are expected to result in releases between 720,000 and 810,000 smolts in most years. The first program cycle (brood years 1997 through 2001) also included testing new Semi-Natural rearing Treatments (SNT) against the Optimum Conventional Treatments (OCT) of existing successful hatcheries in the Pacific Northwest. The second program cycle (brood years 2002-2004) tested whether a slower, more natural growth regime could be used to reduce the incidence of precocialism that may occur in hatchery releases without adversely impacting overall survival to adult returns. Brood years 2005-2007 tested survival using different types of feed treatment. Subsequent broods have used a standard treatment in all raceways. With guidance and input from the NPCC and the Independent Scientific Review Panel (ISRP) in 2001, the Naches subbasin population of spring Chinook was established as a wild/natural control. A hatchery control line at the CESRF was also established with the first brood production for this line collected in 2002. Please refer to the project's "Supplementation Monitoring Plan" (Chapter 7 in 2005 annual report on project genetic studies) for additional information regarding these control lines.

Facility Descriptions

Returning adult spring Chinook are monitored at the Roza adult trapping facility located on the Yakima River (Rkm 205.8). This facility provides the means to monitor every fish returning to the upper Yakima Basin and to collect adults for the CESRF program. All returning CESRF fish (adipose-clipped fish) are sampled for biological characteristics and marks and returned to the river with the exception of fish collected for broodstock, experimental sampling, and all hatchery control line fish. Through 2006, all wild/natural fish passing through the Roza trap were returned directly to the river with the exception of fish collected for broodstock or fish with metal tag detections which were sampled for marks and biological characteristics. Beginning in 2007, all wild/natural fish were sampled (as described above) and tissue samples were collected for a "Whole Population" Pedigree Study of Upper Yakima Spring Chinook (see related project 2009-009-00).

The CESRF is located on the Yakima River just south of the town of Cle Elum (rkm 295.5). It is used for adult broodstock holding and spawning, and early life incubation and rearing. Fish are spawned in September and October of a given brood year (BY). Fish are typically ponded in March or April of BY+1. The juveniles are reared at Cle Elum, marked in October through

December of BY+1, and moved to one of three acclimation sites for final rearing in January to February of BY+2. Acclimation sites are located at Easton (ESJ, rkm 317.8), Clark Flats near the town of Thorp (CFJ, rkm 266.6), and Jack Creek (JCJ, approximately 32.5 km north of Cle Elum) on the North Fork Teanaway River (rkm 10.2). Fish are volitionally released from the acclimation sites beginning on March 15 of BY +2 , with any remaining fish "flushed out" of the acclimation sites by May 15 of $\mathrm{BY}+2$. The annual production goal for the CESRF program is 720,000 to 810,000 fish for release as yearlings at $30 \mathrm{~g} / \mathrm{fish}$ or 15 fish per pound (fpp) although size-at-release may vary depending on experimental protocols (see Program Objectives).

Yakima River Basin Overview

The Yakima River Basin is located in south central Washington. From its headwaters near the crest of the Cascade Range, the Yakima River flows 344 km (214 miles) southeastward to its confluence with the Columbia River (Rkm 539.5; Figure 1).

Figure 1. Yakima River Basin.

Three genetically distinguishable populations of spring Chinook salmon exist in the Yakima basin: the American River, the Naches, and the Upper Yakima Stocks (Figure 1). The upper Yakima was selected as the population best suited for supplementation and associated evaluation and research efforts.

Local habitat problems related to irrigation, logging, road building, recreation, agriculture, and livestock grazing have limited the production potential of spring Chinook in the Yakima River basin. It is hoped that recent initiatives to improve habitat within the Yakima Basin, such as those being funded through the NPCC's fish and wildlife program, the Pacific Coastal Salmon Recovery Fund, and the Washington State salmon recovery fund, will: 1) restore and maintain natural stream stability; 2) reduce water temperatures; 3) reduce upland erosion and sediment delivery rates; 4) improve and re-establish riparian vegetation; and 5) re-connect critical habitats throughout the basin. These habitat restoration efforts should permit increased utilization of habitat by spring Chinook salmon in the Yakima basin thereby increasing fish survival and productivity.

Adult Salmon Evaluation

Broodstock Collection and Representation

One of the program's goals is to collect broodstock from a representative portion of the population throughout the run. If the total run size could be known in advance, collecting brood stock on a daily basis in exact proportion to total brood need as a proportion of total run size would result in ideal run representation. Since it is not possible to know the run size in advance, the CESRF program uses a brood collection schedule that is based on average run timing once the first fish arrive at Roza Dam. We have found that, while river conditions dictate run timing (i.e., fish may arriver earlier or later depending on flow and temperature), once fish begin to move at Roza, the pattern in terms of relative run strength over time is very similar from year to year. Thus a brood collection schedule matching normal run timing patterns was developed to assure that fish are collected from all portions of the run (Figure 2).

Figure 2. Mean spring Chinook run timing and broodstock collection at Roza Dam, 2010-2019.
Appendix B. Yakima River / CESRF Spring Chinook Salmon - Yakama Nation Data Summary 2019 Annual Report, May 29, 2020

Another program goal is to take no more than 50% of the wild/natural adult return to Roza Dam for broodstock. Given this goal and with a set brood collection schedule at Roza Dam, the project imposed a rule that no more than 50% of the fish arriving on any given day be taken for broodstock. Under-collection relative to the schedule is "carried over" to subsequent days and weeks. This allows brood collection to adjust relative to actual run timing and run strength. Performance across years with respect to these brood collection goals is given in Table 1. Since 2015, the spring Chinook return has been impeded by thermal barriers in the lower Yakima River as warmer air temperatures combined with reduced summer and fall flows have increased water temperatures. Mean daily water temperatures near Prosser (rkm 76 from the mouth of the Yakima R.) have exceeded $68^{\circ} \mathrm{F}$ on several days between June and September during these years (source U.S. BOR hydromet database). This may have caused a large number of fish to stray or be delayed in their migration above Roza Dam.

Table 1. Counts of wild/natural spring Chinook (including jacks), brood collection, and brood representation of wild/natural run at Roza Dam, 1997 - present.

Year	Trap Count	Brood Take	Brood \%	Portion of run collected: ${ }^{1}$			Portion of collection from: ${ }^{2}$		
				Early ${ }^{3}$	Middle ${ }^{3}$	Late ${ }^{3}$	Early ${ }^{3}$	Middle ${ }^{3}$	Late ${ }^{3}$
1997	1,445	261	18.1\%	26.4\%	17.6\%	17.7\%	7.3\%	83.1\%	9.6\%
1998	795	408	51.3\%	51.1\%	51.3\%	51.9\%	5.6\%	84.3\%	10.0\%
1999	1,704	738	43.3\%	44.6\%	44.1\%	35.9\%	5.6\%	86.3\%	8.1\%
2000	11,639	567	4.9\%	10.7\%	4.5\%	4.4\%	12.5\%	77.8\%	9.7\%
2001	5,346	595	11.1\%	6.9\%	11.4\%	10.7\%	3.0\%	87.7\%	9.2\%
2002	2,538	629	24.8\%	15.7\%	25.2\%	26.1\%	3.2\%	86.3\%	10.5\%
2003	1,558	441	28.3\%	52.5\%	25.9\%	36.4\%	9.5\%	77.8\%	12.7\%
2004	7,804	597	7.6\%	2.6\%	7.4\%	12.8\%	2.0\%	81.6\%	16.4\%
2005	5,086	510	10.0\%	2.2\%	9.5\%	21.9\%	1.3\%	77.0\%	21.7\%
2006	2,050	419	20.4\%	48.5\%	22.2\%	41.0\%	9.1\%	75.1\%	15.8\%
2007	1,293	449	34.7\%	25.0\%	34.4\%	60.6\%	3.2\%	80.0\%	16.9\%
2008	1,677	457	27.3\%	57.7\%	26.7\%	32.4\%	9.3\%	79.0\%	11.6\%
2009	3,030	486	16.0\%	10.0\%	14.1\%	35.9\%	3.5\%	73.9\%	22.6\%
2010	3,185	336	10.5\%	6.4\%	15.0\%	22.5\%	2.0\%	82.6\%	15.3\%
2011	4,395	377	8.6\%	11.3\%	9.2\%	21.3\%	5.6\%	73.2\%	21.2\%
2012	2,924	374	12.8\%	1.9\%	12.3\%	27.4\%	1.1\%	79.9\%	19.0\%
2013	2,784	398	14.3\%	18.5\%	13.0\%	22.0\%	9.5\%	75.1\%	15.3\%
2014	4,168	384	9.2\%	4.8\%	8.6\%	16.9\%	2.3\%	80.5\%	17.1\%
2015	3,962	442	11.2\%	3.1\%	8.2\%	40.6\%	2.0\%	59.9\%	38.1\%
2016	2,712	376	13.9\%	5.3\%	14.8\%	18.6\%	2.5\%	84.7\%	12.9\%
2017	1,711	382	22.3\%	53.6\%	19.0\%	45.4\%	11.4\%	69.9\%	18.7\%
2018	827	294	35.6\%	3.0\%	33.7\%	87.6\%	0.3\%	75.1\%	24.6\%
2019	703	312	44.4\%	48.1\%	46.3\%	29.1\%	8.3\%	84.3\%	7.3\%

1. This is the proportion of the earliest, middle, and latest running components of the entire wild/natural run which were taken for broodstock. Ideally, this collection percentage would be equal throughout the run and would match the "Brood \%".
2. This is the proportion of the total broodstock collection taken from the earliest, middle, and latest components of the entire wild/natural run. Ideally, these proportions would match the definitions for early, middle, and late given in 3.
3. Early is defined as the first 5% of the run, middle is defined as the middle 85%, and late as the final 10% of the run.

Natural- and Hatchery-Origin Escapement

While the project does not actively manage for a specific spawning escapement proportion (natural- to hatchery-origin adults), we are monitoring the proportion of natural influence (PNI; Table 2). The project will adaptively manage this parameter considering factors such as: policy input regarding surplusing of fish, meeting overall production goals of the project, guidance from the literature relative to percentage of hatchery fish on the spawning grounds with fitness loss, considerations about what risk is acceptable in a project designed to evaluate impacts from that risk, and the numerous risk containment measures already in place in the project. The State of Washington is using mark-selective fisheries in the lower Columbia River and, when possible, in the lower Yakima River in part as a tool to manage escapement proportions. In 2011, the project initiated an effort to transfer some returning hatchery-origin CESRF adults from Roza Dam to Lake Cle Elum for the purpose of returning marine derived nutrients and salmon to the watersheds that feed the lake. This effort will also increase PNI in the major spawning areas of the Upper Yakima Basin. Natural- and hatchery-origin escapement to the upper Yakima Basin is given in Table 2. Wild/natural escapement to the Naches subbasin is given in Table 3.

Table 2. Escapement (Roza Dam counts less brood stock collection and harvest above Roza) of natural(NoR) and hatchery-origin (HoR) spring Chinook to the upper Yakima subbasin, 1982 - present.

Year	Wild/Natural (NoR)			CESRF (HoR)			Adults	Total Jacks	Total	pHOS ${ }^{1}$	PNI^{1}
	Adults	Jacks	Total	Adults	Jacks	Total					
1982			1,146								
1983			1,007								
1984			1,535								
1985			2,331								
1986			3,251								
1987			1,734								
1988			1,340								
1989			2,331								
1990			2,016								
1991			1,583 ${ }^{2}$								
1992			3,009								
1993			1,869								
1994			563								
1995			355								
1996			1,631								
1997	1,141	43	1,184								
1998	369	18	387								
1999	498	468	966								
2000	10,491	481	10,972		688	688	10,491	1,169	11,660	5.9\%	
2001	4,454	297	4,751	6,065	982	7,047	10,519	1,279	11,798	59.7\%	62.6\%
2002	1,820	89	1,909	6,064	71	6,135	7,884	160	8,044	76.3\%	56.7\%
2003	394	723	1,117	1,036	1,105	2,141	1,430	1,828	3,258	65.7\%	60.3\%
2004	6,536	671	7,207	2,876	204	3,080	9,412	875	10,287	29.9\%	77.0\%
2005	4,401	175	4,576	627	482	1,109	5,028	657	5,685	19.5\%	83.7\%
2006	1,510	121	1,631	1,622	111	1,733	3,132	232	3,364	51.5\%	66.0\%
2007	683	161	844	734	731	1,465	1,417	892	2,309	63.4\%	61.2\%
2008	988	232	1,220	2,157	957	3,114	3,145	1,189	4,334	71.9\%	58.2\%
2009	1,843	701	2,544	2,234	2,260	4,494	4,077	2,961	7,038	63.9\%	61.0\%
2010	2,436	413	2,849	4,524	1,001	5,525	6,960	1,414	8,374	66.0\%	60.2\%
2011	3,092	926	4,018	3,162	1,404	4,566	6,254	2,330	8,584	53.2\%	65.3\%
2012	2,359	191	2,550	2,661	265	2,926	5,020	456	5,476	53.4\%	65.2\%
2013	1,708	678	2,386	1,587	840	2,427	3,295	1,518	4,813	50.4\%	66.5\%
2014	3,099	685	3,784	2,150	794	2,944	5,249	1,479	6,728	43.8\%	69.6\%
2015	3,357	163	3,520	1,779	167	1,946	5,136	330	5,466	35.6\%	73.7\%
2016	2,070	266	2,336	1,198	705	1,903	3,268	971	4,239	44.9\%	69.0\%
2017	1,135	194	1,329	1,328	660	1,988	2,463	854	3,317	59.9\%	62.5\%
2018	500	33	533	1,033	233	1,266	1,533	266	1,799	70.4\%	58.7\%
2019	311	80	391	802	260	1,062	1,113	340	1,453	73.1\%	57.8\%
Mean ${ }^{3}$	2,400	340	2,739	2,297	696	2,878	4,297	945	5,242	52.9\%	65.0\%

1. Proportion Natural Influence equals Proportion Natural-Origin Broodstock (pNOB; 1.0 as only NoR fish are used for supplementation line brood stock) divided by pNOB plus Proportion Hatchery-Origin Spawners (pHOS).
2. This is a rough estimate since Roza counts are not available for 1991.
3. For NoR columns, mean of 1997-present values. For all other columns, mean of 2001-present values.

Adult-to-adult Returns

The overall status of Yakima Basin spring Chinook is summarized in Table 3. Adult-to-adult return and productivity data for the various populations are given in Tables 4-8 (Means are for 1988 to present).

Table 3. Yakima River spring Chinook run (CESRF and wild, adults and jacks combined) reconstruction, 1990-present.

Year	River Mouth Run Size ${ }^{1}$			Harvest Below Prosser	Prosser Count	Harvest Above Prosser	Spawners Below Roza ${ }^{2}$	Roza Count	Roza Removals ${ }^{3}$	Est. Escapement		Redd Counts	
	Adults	Jacks	Total							Upper Y.R. ${ }^{4}$	Naches ${ }^{5}$	Upper Y.R.	Naches
1990	4,280	92	4,372	131	2,255	532	282	2,047	31	2,016	1,380	678	464
1991	2,802	104	2,906	27	2,879	5	131		40	1,583	1,121	582	460
1992	4,492	107	4,599	184	4,415	161	39	3,027	18	3,009	1,188	1,230	425
1993	3,800	119	3,919	44	3,875	85	56	1,869	0	1,869	1,865	637	554
1994	1,282	20	1,302	0	1,302	25	10	563	0	563	704	285	272
1995	526	140	666	0	666	79	9	355	0	355	223	114	104
1996	3,060	119	3,179	100	3,079	375	26	1,631	0	1,631	1,047	801	184
1997	3,092	81	3,173	0	3,173	575	20	1,445	261	1,184	1,133	413	339
1998	1,771	132	1,903	0	1,903	188	3	795	408	387	917	147	330
1999	1,513	1,268	2,781	8	2,773	596	55	1,704	738	966	418	212	186
2000	17,519	1,582	19,101	90	19,011	2,368	204	12,327	667	11,660	4,112	3,770	888
2001	21,225	2,040	23,265	1,793	21,472	2,838	286	12,516	718	11,798	5,829	3,226	1,192
2002	14,616	483	15,099	328	14,771	2,780	29	8,922	878	8,044	3,041	2,816	943
2003	4,868	2,089	6,957	59	6,898	381	83	3,842	584	3,258	2,592	868	935
2004	13,974	1,315	15,289	135	15,154	1,544	90	11,005	718	10,287	2,515	3,414	719
2005	8,059	699	8,758	34	8,724	440	28	6,352	667	5,685	1,904	2,009	574
2006	5,951	363	6,314	0	6,314	600	14	4,028	664	3,364	1,672	1,245	447
2007	2,968	1,335	4,303	10	4,293	269	13	3,025	716	2,309	986	722	313
2008	6,615	1,983	8,598	539	8,059	993	9	5,478	1,144	4,334	1,578	1,372	495
2009	7,441	4,679	12,120	1,517	10,603	836	18	8,633	1,595	7,038	1,117	1,575	482
2010	11,027	2,114	13,142	156	12,986	1,585	9	9,900	1,526	8,374	1,491	2,668	552
2011	13,398	4,561	17,960	909	17,051	3,471	0	10,520	1,936	8,584	3,060	1,898	580
2012	11,083	970	12,053	1,331	10,722	1,989	7	6,826	1,350	5,476	1,900	1,468	811
2013	7,101	3,144	10,245	1,191	9,054	1,462	171	6,053	1,240	4,813	1,369	648	376
2014	8,850	2,472	11,322	221	11,101	1,950	23	7,997	1,269	6,728	1,130	1,149	379
2015	8,795	556	9,351	83	9,268	732	0	6,433	967	5,466	2,103	1,321	614
2016	5,517	1,399	6,916	24	6,892	420	42	5,098	859	4,239	1,332	611	366
2017	5,462	1,701	7,163	122	7,041	1,150	25	4,193	876	3,317	1,673	539	293
2018	3,156	448	3,605	251	3,353	297	18	2,404	605	1,799	634	348	128
2019	1,756	466	2,222	0	2,222	40	17	2,007	554	1,453	158	234	31
Mean ${ }^{6}$	7,615	1,783	9,398	429	8,969	1,310	31	6,143	1,118	5,025	1,485	1,088	413

1. River Mouth run size is the greater of the Prosser count plus lower river harvest or estimated escapement plus all known harvest and removals.
2. Estimated as the average number of fish per redd in the upper Yakima times the number of redds between the Naches confluence and Roza Dam.
3. Roza removals include harvest above Roza, hatchery removals, and/or wild broodstock removals.
4. Estimated escapement into the upper Yakima River is the Roza count, less harvest or broodstock removals above Roza Dam except in 1991 when Upper Yakima River escapement is estimated as the (Prosser count - harvest above Prosser - Roza subtractions) times the proportion of redds counted in the upper Yakima.
5. Naches River escapement was estimated as the Prosser count, less harvest above Prosser and the Roza counts, except in 1982,1983 and 1990 when it was estimated as the upper Yakima fish/redd times the Naches redd count.
6. Recent 10 -year average (2010-2019).

Appendix B. Yakima River / CESRF Spring Chinook Salmon - Yakama Nation Data Summary
2019 Annual Report, May 29, 2020

Estimated spawners for the Upper Yakima River are calculated as the estimated escapement to the Upper Yakima plus the estimated number of spawners in the Upper Yakima between the confluence with the Naches River and Roza Dam (Table 3). Total returns are based on the information compiled in Table 3. Age composition for Upper Yakima returns is estimated from spawning ground carcass scale samples for the years 1982-1996 (Table 11) and from Roza Dam brood stock collection samples for the years 1997 to present (Table 13). Since age- 3 fish (jacks) are not collected for brood stock in proportion to the jack run size, the proportion of age-3 fish in the upper Yakima for 1997 to present is estimated using the proportion of jacks (based on visual observation) counted at Roza Dam relative to the total run size.

Table 4. Adult-to-adult productivity indices for upper Yakima wild/natural stock.

Brood Year	Estimated Spawners	Estimated Yakima R. Mouth Returns				Returns/ Spawner
		Age-3	Age-4	Age-5	Total	
1984	1,715	92	1,348	139	1,578	0.92
1985	2,578	114	2,746	105	2,965	1.15
1986	3,960	171	2,574	149	2,893	0.73
1987	2,003	53	1,571	109	1,733	0.87
1988	1,400	53	3,138	132	3,323	2.37
1989	2,466	68	1,779	9	1,856	0.75
1990	2,298	79	566	0	645	0.28
1991	1,713	9	326	22	358	0.21
1992	3,048	87	1,861	95	2,043	0.67
1993	1,925	66	1,606	57	1,729	0.90
1994	573	60	737	92	890	1.55
1995	364	59	1,036	129	1,224	3.36
1996	1,657	1,059	12,882	630	14,571	8.79
1997	1,204	621	5,837	155	6,613	5.49
1998	390	434	2,803	145	3,381	8.68
1999	1,021 ${ }^{1}$	164	722	45	930	0.91
2000	11,864	856	7,689	127	8,672	0.73
2001	12,087	775	5,074	222	6,071	0.50
2002	8,073	224	1,875	148	2,247	0.28
2003	3,341	158	1,036	63	1,257	0.38
2004	10,377	207	1,547	75	1,828	0.18
2005	5,713	293	2,630	14	2,936	0.51
2006	3,378	868	2,887	133	3,888	1.15
2007	2,322	456	3,976	65	4,498	1.94
2008	4,343	1,135	3,410	123	4,668	1.07
2009	7,056	283	2,572	109	2,964	0.42
2010	8,383	923	3,854	59	4,836	0.58
2011	8,584	832	3,908	144	4,883	0.57
2012	5,483	197	2,445	20	2,662	0.49
2013	4,984	299	1,622	36	1,957	0.39
2014	6,751	241	814	12	1,067	0.16
2015	5,466	66	620			
2016	4,281	99				
2017	3,342					
2018	1,817					
2019	1,470					
Mean	4,095	336	2,734	108	3,264	1.52

1. The mean jack proportion of spawning escapement from 1999-2019 was 0.22 (geometric mean 0.17).

Estimated spawners for the Naches/American aggregate population (Table 7) are calculated as the estimated escapement to the Naches Basin (Table 3). Estimated spawners for the individual Naches and American populations are calculated using the proportion of redds counted in the Naches Basin (excluding the American River) and the American River, respectively (see Table 31). Total returns are based on the information compiled in Table 3. Age composition for Naches Basin age-4 and age-5 returns are estimated from spawning ground carcass scale samples (see Tables 9-12). The proportion of age-3 fish is estimated after reviewing jack count (based on visual observations) data at Prosser and Roza dams. Since sample sizes for carcass surveys in the American and Naches Rivers can be very low in some years (Tables 9 and 10), it is recommended that the data in Tables 5 and 6 be used as indices only. Table 7 likely provides the most accurate view of overall productivity rates in the Naches River Subbasin.

Table 5. Adult-to-adult productivity indices for Naches River wild/natural stock.

Brood Year	Estimated Spawners	Estimated Yakima R. Mouth Returns					Returns/ Spawner
		Age-3	Age-4	Age-5	Age-6	Total	
1984	383	110	706	564	0	1,381	3.60
1985	683	132	574	396	0	1,102	1.61
1986	2,666	68	712	499	15	1,294	0.49
1987	1,162	27	183	197	0	407	0.35
1988	1,340	32	682	828	0	1,542	1.15
1989	992	28	331	306	0	665	0.67
1990	954	24	170	74	0	269	0.28
1991	706	7	37	121	57	222	0.31
1992	852	29	877	285	0	1,191	1.40
1993	1,145	45	593	372	0	1,010	0.88
1994	474	14	164	164	0	343	0.72
1995	124	40	164	251	0	455	3.66
1996	887	179	3,983	1,620	0	5,782	6.52
1997	762	207	3,081	708	0	3,996	5.24
1998	503	245	1,460	1,128	0	2,833	5.63
1999	$358{ }^{1}$	113	322	190	0	626	1.75
2000	3,862	71	2,060	215	0	2,346	0.61
2001	3,912	126	1,254	471	0	1,850	0.47
2002	1,861	59	753	153	0	965	0.52
2003	1,400	52	237	175	0	464	0.33
2004	2,197	107	875	218	0	1,199	0.55
2005	1,439	167	653	116	0	936	0.65
2006	1,163	192	838	254	0	1,283	1.10
2007	463	125	1,649	514	0	2,288	4.94
2008	1,074	414	827	290	0	1,531	1.42
2009	903	84	448	65	0	597	0.66
2010	1,024	209	653	198	0	1,059	1.03
2011	1,942	137	1,088	305	0	1,530	0.79
2012	1,110	64	419	260	0	743	0.67
2013	750	110	660	148	0	919	1.23
2014	746	142	376	13		532	0.71
2015	1,285	26	34				
2016	790	6					
2017	971						
2018	500						
2019	51						
Mean	1,151	103	840	358	3	1,334	1.61

1. The mean jack proportion of spawning escapement from 1999-2019 was 0.09.

Appendix B. Yakima River / CESRF Spring Chinook Salmon - Yakama Nation Data Summary 2019 Annual Report, May 29, 2020

Table 6. Adult-to-adult productivity indices for American River wild/natural stock.

Brood Year	Estimated Spawners	Estimated Yakima R. Mouth Returns					Returns/ Spawner
		Age-3	Age-4	Age-5	Age-6	Total	
1984	187	54	301	458	0	813	4.36
1985	337	81	149	360	0	590	1.75
1986	1,457	36	134	329	11	509	0.35
1987	567	12	71	134	0	216	0.38
1988	827	19	208	661	5	892	1.08
1989	524	11	69	113	0	193	0.37
1990	425	15	113	84	0	213	0.50
1991	414	3	5	22	0	30	0.07
1992	335	23	157	237	0	417	1.24
1993	721	8	218	405	8	639	0.89
1994	230	7	36	16	0	59	0.26
1995	98	33	32	98	0	163	1.65
1996	159	30	176	760	0	967	6.07
1997	371	13	1,543	610	0	2,166	5.84
1998	414	120	766	1,136	0	2,022	4.88
1999	61	72	99	163	0	334	5.50
2000	250	60	163	110	0	333	1.33
2001	1,917	18	364	256	0	638	0.33
2002	1,180	19	279	257	0	555	0.47
2003	1,192	23	183	440	0	646	0.54
2004	318	121	52	33	0	206	0.65
2005	464	79	173	127	0	378	0.81
2006	509	45	308	451	0	805	1.58
2007	523	57	645	493	0	1,194	2.28
2008	504	239	461	465	0	1,165	2.31
2009	213	60	143	44	0	247	1.16
2010	467	172	326	173	0	671	1.44
2011	1,118	71	646	236	0	953	0.85
2012	789	41	261	253	0	555	0.70
2013	619	76	412	53	0	542	0.88
2014	385	103	87	37		227	0.59
2015	819	7	61				
2016	542	12					
2017	703						
2018	134						
2019	107						
Mean	552	53	270	291	1	624	1.65

Table 7. Adult-to-adult productivity indices for Naches/American aggregate (wild/natural) population.

Brood	Estimated	Estimated Yakima R. Mouth Returns					
Year	Spawners	Age-3	Age-4	Age-5	Age-6	Total	Returns/ Spawner
1984	570	164	1,109	1,080	0	2,354	4.13
1985	1,020	213	667	931	0	1,811	1.77
1986	4,123	103	670	852	31	1,657	0.40
1987	1,729	39	231	400	0	669	0.39
1988	2,167	51	815	1,557	11	2,434	1.12
1989	1,517	39	332	371	0	741	0.49
1990	1,380	40	326	168	0	533	0.39
1991	1,121	10	32	144	127	314	0.28
1992	1,188	52	1,034	661	0	1,747	1.47
1993	1,865	53	603	817	17	1,489	0.80
1994	704	21	160	167	0	348	0.49
1995	223	73	201	498	0	771	3.46
1996	1,047	209	4,010	2,359	0	6,579	6.29
1997	1,133	220	4,644	1,377	0	6,241	5.51
1998	917	364	2,167	2,316	12	4,859	5.30
1999	4181	185	369	279	0	833	1.99
2000	4,112	131	2,286	346	0	2,762	0.67
2001	5,829	144	1,598	785	0	2,526	0.43
2002	3,041	78	975	443	0	1,496	0.49
2003	2,592	75	387	1,028	0	1,489	0.57
2004	2,515	227	514	232	0	973	0.39
2005	1,904	246	845	268	0	1,359	0.71
2006	1,672	237	1,120	759	0	2,117	1.27
2007	986	182	2,239	1,033	0	3,454	3.50
2008	1,578	653	1,262	803	0	2,718	1.72
2009	1,117	144	542	116	0	802	0.72
2010	1,491	381	972	412	0	1,766	1.18
2011	3,060	208	1,693	559	0	2,459	0.80
2012	1,900	105	662	540	0	1,307	0.69
2013	1,369	186	1,046	226	0	1,459	1.07
2014	1,130	245	439	49		733	0.65
2015	2,103	33	96				
2016	1,332	18					
2017	1,673						
2038	634						
2019	158	1,703	155	1,064	696	7	1,961

1. The mean jack proportion of spawning escapement from 1999-2019 was 0.09.

Estimated spawners at the CESRF are the total number of wild/natural fish collected at Roza Dam and taken to the CESRF for production brood stock. Total returns are based on the information compiled in Table 3 and at Roza dam sampling operations. Age composition for CESRF fish is estimated using scales and PIT tag detections from CESRF fish sampled passing upstream through the Roza Dam adult monitoring facility.
Table 8. Adult-to-adult productivity for Cle Elum SRF spring Chinook.

Brood Year	Estimated Spawners	Estimated Yakima R. Mouth Returns				Returns/ Spawner
		Age-3	Age-4	Age-5	Total	
1997	261	741	7,753	176	8,670	33.22
1998	408	1,242	7,939	602	9,782	23.98
1999	$738{ }^{1}$	134	714	16	864	1.17
2000	567	1,103	3,647	70	4,819	8.50
2001	595	396	845	9	1,251	2.10
2002	629	345	1,886	69	2,300	3.66
2003	441	121	800	12	932	2.11
2004	597	805	3,101	116	4,022	6.74
2005	510	1,305	3,052	21	4,378	8.58
2006	419	3,038	5,812	264	9,114	21.75
2007	449	1,277	5,174	108	6,558	14.61
2008	457	2,344	4,567	65	6,976	15.27
2009	486	461	2,663	58	3,181	6.55
2010	336	1,495	3,183	30	4,707	14.01
2011	377	1,233	2,340	34	3,607	9.57
2012	374	221	1,492	10	1,723	4.61
2013	398	802	1,993	0	2,795	7.02
2014	384	1,008	1,447	7	2,463	6.41
2015	442	314	878		1,192	2.70
2016	376	287				
2017	382					
2018	294					
2019	312					
Mean	445	934	3,120	93	4,341	7.16^{2}

1. 357 or 48% of these fish were jacks.
2. Geometric mean.

Age Composition

Comparisons of the age composition in the Roza adult monitoring facility (RAMF) samples and spawning ground carcass recovery samples show that older, larger fish are recovered as carcasses on the spawning grounds at significantly higher rates than younger, smaller fish (Knudsen et al. 2003 and Knudsen et al. 2004). Based on historical scale-sampled carcass recoveries between 1986 and 2016 (there were no carcass recoveries in 2017 or 2018), age composition of American River spring Chinook has averaged $1,44,54$, and 1 percent age- $3,-4,-5$, and -6 , respectively (Table 9). Naches system spring Chinook averaged $2,61,36$ and 0.5 percent age- $3,-4,-5$ and -6 , respectively (Table 10). The upper Yakima River natural origin fish averaged 8,88 , and 4 percent age- $3,-4$, and -5 , respectively (Table 11). While these ages are biased toward the older age classes, we believe the bias is approximately equal across populations and is a good relative indicator of differences in age composition between populations. The data show distinct differences with the American River population having the oldest age of maturation, followed closely by the Naches system and then the upper Yakima River which has significantly more age-3's, fewer age-5's and no age-6 fish.

Table 9. Percentage by sex and age of American River wild/natural spring Chinook carcasses sampled on the spawning grounds and sample size (n), 1986-present.

Return Year	Males					Females					Total			
	3	4	5	6	n	3	4	5	6	n	3	4	5	6
1986		23.8	76.2		21		8.9	86.7	4.4	45		13.6	83.3	3.0
1987		70.8	25.0	4.2	24		42.9	57.1		21		57.8	40.0	2.2
1988			100.0		1		100.0			1		33.3	66.7	
1989		39.6	60.4		48		10.0	90.0		50		24.5	75.5	
1990	2.5	25.0	72.5		40		28.3	71.7		46	1.2	26.7	72.1	
1991		23.8	76.2		42		13.3	86.7		60		17.6	82.4	
1992		71.2	23.1	5.8	52		45.8	54.2		48		59.0	38.0	3.0
1993	4.8	14.3	81.0		21		8.0	92.0		75	1.0	9.4	89.6	
1994		44.4	55.6		18		50.0	46.7	3.3	30		49.0	49.0	2.0
1995	14.3	14.3	71.4		7			100.0		13	5.0	5.0	90.0	
1996		100.0			2		83.3	16.7		6		87.5	12.5	
1997		40.0	60.0		5		22.2	64.4	13.3	45		24.0	64.0	12.0
1998		12.1	87.9		33		6.6	93.4		76		8.3	91.7	
1999		100.0			2		40.0	40.0	20.0	5		57.1	28.6	14.3
2000		66.7	33.3		15		61.5	38.5		13		64.3	35.7	
2001		65.6	34.4		90		67.9	32.1		106		67.0	33.0	
2002	1.7	53.4	44.8		58		56.4	43.6		110	0.6	55.4	44.0	
2003		8.1	91.9		74		7.9	92.1		151		8.0	92.0	
2004		100.0			3		20.0	80.0		5		50.0	50.0	
2005		64.7	35.3		17		84.0	16.0		25		76.7	23.3	
2006		61.5	38.5		13		48.6	51.4		35		52.1	47.9	
2007	10.5	31.6	57.9		19		43.8	56.3		48	3.0	40.3	56.7	
2008		8.7	91.3		23		11.9	88.1		42		10.6	89.4	
2009	30.8	69.2			13		75.0	25.0		16	13.8	72.4	13.8	
2010	6.3	56.3	37.5		16		75.0	25.0		32	2.0	69.4	28.6	
2011		40.0	60.0		10		63.2	36.8		19		58.8	41.2	
2012		50.0	50.0		14		47.8	52.2		16		48.3	51.7	
2013	11.1	11.1	77.8		9		26.9	73.1		26	2.9	22.9	74.3	
2014	5.6	77.8	16.7		18		90.9	9.1		33	2.0	86.3	11.8	
2015	7.4	74.1	18.5		27		78.3	21.7		46	2.7	76.7	20.5	
2016		28.6	71.4		14		65.4	34.6		26		52.5	47.5	
2017							rcasses	vere sam						
2018							rcasses	vere sam						
2019						1 c	sampl	due to	w run					
Mean	3.1	46.7	50.0	0.3			44.6	54.0	1.3		1.1	44.7	53.1	1.2

Table 10. Percentage by sex and age of Naches River wild/natural spring Chinook carcasses sampled on the spawning grounds and sample size (n), 1986-present.

Return Year	Males					Females					Total			
	3	4	5	6	n	3	4	5	6	n	3	4	5	6
1986	5.0	60.0	30.0	5.0	20		33.3	64.3	2.4	42	1.6	41.9	53.2	3.2
1987	5.9	76.5	11.8	5.9	17		69.0	31.0		42	1.7	71.7	25.0	1.7
1988		50.0	50.0		8	5.6	38.9	55.6		18	3.3	46.7	50.0	
1989		70.2	29.8		47		34.9	63.5	1.6	63		50.0	49.1	0.9
1990	9.1	60.6	30.3		33	10.7	57.1	32.1		28	11.1	57.1	31.7	
1991	4.3	52.2	43.5		23		13.3	86.7		45	1.5	26.5	72.1	
1992	4.0	80.0	12.0	4.0	25		70.6	29.4		34	1.7	75.0	21.7	1.7
1993		42.3	57.7		26		18.6	81.4		43		28.6	71.4	
1994		50.0	50.0		4		30.0	70.0		10		35.7	64.3	
1995		25.0	75.0		4		28.6	71.4		7		33.3	66.7	
1996		100.0			17		75.0	25.0		16		87.9	12.1	
1997	2.9	70.6	20.6	5.9	34		57.1	36.7	6.1	49	1.2	62.7	30.1	6.0
1998		29.4	70.6		17		27.9	72.1		43		30.6	69.4	
1999	12.5	62.5	25.0		8		33.3	66.7		9	5.9	47.1	47.1	
2000	1.7	94.9	3.4		59		92.2	7.8		77	0.7	93.4	5.9	
2001	1.7	72.9	25.4		59		61.0	39.0		118	0.6	65.2	34.3	
2002	2.1	78.7	19.1		47		63.3	36.7		98	0.7	66.9	32.4	
2003	7.8	25.0	67.2		64	1.1	18.9	80.0		95	3.8	21.4	74.8	
2004	7.5	87.5	5.0		40		91.3	8.7		92	2.3	89.5	8.3	
2005		81.8	18.2		11		83.8	16.2		37		83.7	16.3	
2006		61.5	38.5		13		61.5	38.5		13		61.5	38.5	
2007		75.0	25.0		4		57.9	42.1		19		60.9	39.1	
2008	36.4	45.5	18.2		11		87.0	13.0		23	11.8	73.5	14.7	
2009	7.1	71.4	21.4		14		76.9	23.1		26	2.4	73.2	24.4	
2010	4.5	90.9	4.5		22		83.3	16.7		42	2.9	85.3	11.8	
2011	11.5	80.8	7.7		26		78.9	21.1		19	6.3	81.3	12.5	
2012	11.8	41.2	47.1		17		64.4	33.3		45	4.8	58.7	36.5	
2013	15.4	53.8	30.8		13		56.3	43.8		16	6.7	56.7	36.7	
2014		86.7	13.3		15		92.3	7.7		26		90.9	9.1	
2015		100.0			10		75.0	25.0		16		84.6	15.4	
2016		25.0	75.0		4		64.3	35.7		14		57.9	42.1	
2017						No	casses	re sam						
2018						No	casses	re sam						
2019						No	casses	re sam						
Mean	4.9	64.6	29.9	0.7		0.6	57.9	41.1	0.3		2.3	61.3	36.0	0.4

Table 11. Percentage by sex and age of upper Yakima River wild/natural spring Chinook carcasses sampled on the spawning grounds and sample size (n), 1986-present.

Return Year	Males				Females				Total		
	3	4	5	n	3	4	5	n	3	4	5
1986		100.0		12		94.1	5.9	51		95.2	4.8
1987	10.8	81.5	7.7	65		77.8	22.2	126	3.7	79.1	17.3
1988	22.5	70.0	7.5	40	10.4	75.0	14.6	48	15.6	73.3	11.1
1989	0.8	93.1	6.2	130	0.4	95.5	4.1	246	0.5	94.7	4.8
1990	6.3	88.4	5.3	95	2.1	94.8	3.1	194	3.4	92.8	3.8
1991	9.1	87.3	3.6	55		89.2	10.8	111	3.0	88.6	8.4
1992	2.4	91.6	6.0	167		98.1	1.9	315	0.8	95.9	3.3
1993	4.0	90.0	6.0	50	0.9	92.0	7.1	112	1.9	91.4	6.8
1994		100.0		16		98.0	2.0	50		98.5	1.5
1995	20.0	80.0		5		100.0		12	5.6	94.4	
1996	9.1	89.6	1.3	154	0.7	98.2	1.1	282	3.7	95.2	1.1
1997		96.7	3.3	61		96.3	3.7	136		96.4	3.6
1998	14.3	85.7		21	5.3	86.8	7.9	38	8.5	86.4	5.1
1999	61.8	38.2		34		94.4	5.6	36	31.0	66.2	2.8
2000	2.8	97.2		72		100.0		219	1.0	99.0	
2001	2.7	89.2	8.1	37		83.6	16.4	122	0.6	85.0	14.4
2002	2.4	58.5	39.0	41	3.6	87.5	8.9	56	5.1	73.7	21.2
2003	60.5	39.5		38	4.3	82.6	13.0	23	39.3	55.7	4.9
2004	6.5	93.5		108	0.0	99.5	0.5	198	2.3	97.4	0.3
2005	9.2	90.0		120	1.4	97.2	1.4	214	4.2	94.7	1.2
2006	23.7	74.6		59	2.3	96.5	1.2	86	11.0	87.6	1.4
2007	17.1	82.9		76	0.9	93.8	5.4	112	7.4	89.4	3.2
2008	11.8	88.2		34	0.0	95.8	4.2	24	6.9	91.4	1.7
2009	47.7	52.3		111	2.2	95.6	2.2	45	34.6	64.7	0.6
2010	27.7	72.3		47		100.0		71	11.0	89.0	
2011	37.5	62.5		16		100.0		27	13.6	86.4	
2012	25.0	75.0		8	7.7	92.3		13	14.3	85.7	
2013						100.0		8		100.0	
2014	3.3	96.7		30		100.0		59	1.1	98.9	
2015	carcass surveys discontinued as Roza samples deemed adequate										
Mean	15.7	80.9	3.4		1.5	93.6	4.9		7.9	87.8	4.3

Appendix B. Yakima River / CESRF Spring Chinook Salmon - Yakama Nation Data Summary 2019 Annual Report, May 29, 2020

Carcasses from upper Yakima River CESRF origin fish allowed to spawn naturally have also been sampled since age-4 adults began returning in 2001. These fish averaged 13, 85 , and 1 percent age- $3,-4$, and -5 , respectively (Table 12) from 2001-2014 compared to 8,88 , and 4.3 percent respectively for their wild/natural counterparts in the upper Yakima for the same years (Table 11). The observed difference in age distribution between wild/natural and CESRF sampled on the spawning grounds may be due in part to the carcass recovery bias described above. A better comparison of age distribution between upper Yakima wild/natural and CESRF fish is from samples collected at Roza Dam which are displayed in Tables 13 and 14. However, it must be noted that jacks (age-3 males) were collected at Roza in proportion to run size from 1997 to 1999, but from 2000-present we have attempted to collect them at their mean brood representation rate (approximately 7% of the spawning population). Age- 3 females do occur rarely in the Upper Yakima population, but it is likely that the data in Table 13 slightly over-represent the proportion of age- 3 females due to human error associated with scale collection, handling, processing, and management and entry of these data.

Table 12. Percentage by sex and age of upper Yakima River CESRF spring Chinook carcasses sampled on the spawning grounds and sample size (\mathbf{n}), 2001-present.

Return Year	Males				Females				Total		
	3	4	5	n	3	4	5	n	3	4	5
2001	23.5	76.5		34	0.9	99.1		108	6.3	93.7	
2002	8.0	81.3	10.7	75		88.6	11.4	140	2.8	86.2	11.1
2003	100.0			1		100.0		1	50.0	50.0	
2004	9.5	90.5		21		98.0	2.0	51	2.8	95.8	1.4
2005	42.9	57.1		21		90.9	4.5	22	23.3	74.4	2.3
2006	26.7	73.3		15		100.0		43	6.9	93.1	
2007	66.7	33.3		6		100.0		11	23.5	76.5	
2008				0		100.0		1		100.0	
2009	60.0	40.0		5				0	60.0	40.0	
2010	28.6	71.4		7		100.0		11	11.1	88.9	
2011	37.5	62.5		16	4.5	95.5		22	18.4	81.6	
2012		100.0		4	5.3	94.7		19	4.3	95.7	
2013		100.0		1		100.0		7		100.0	
2014		100.0		20		100.0		62	1.2	98.8	
2015	carcass surveys discontinued as Roza samples deemed adequate										
Mean ${ }^{1}$	25.3	73.8	0.9		0.5	97.2	1.8		13.4	85.4	1.2

1. Excludes years where sample size <5.

Table 13. Percentage by sex and age of upper Yakima River wild/natural spring Chinook collected for brood stock at Roza Dam and sample size (n), 1997-present.

Return Year	Males				Females				Total		
	3	4	5	n	3	4	5	n	3	4	5
1997	4.5	92.0	3.4	88		94.6	5.4	111	2.0	93.5	4.5
1998	22.4	73.1	4.5	134		91.6	8.4	179	9.6	83.7	6.7
1999	71.1	26.1	2.8	425		92.6	7.4	215	48.8	47.0	4.2
2000	17.8	81.7	0.4	230		98.7	1.3	313	7.5	91.5	0.9
2001	12.4	77.4	10.3	234	0.9	90.5	8.5	328	5.7	85.2	9.2
2002	16.4	78.3	5.3	226	0.6	94.8	4.7	343	6.9	88.2	4.9
2003	27.4	60.2	12.4	201		83.3	16.7	228	12.8	72.6	14.7
2004	15.1	84.5	0.4	239	0.3	99.0	0.7	305	6.8	92.6	0.6
2005	15.5	82.3	2.2	181	0.4	97.1	2.5	276	6.3	91.2	2.4
2006	11.1	77.4	11.5	226		89.4	10.6	255	5.2	83.8	11.0
2007	13.6	74.7	11.7	162		87.8	12.2	255	5.3	82.7	12.0
2008	20.0	77.4	2.6	190		95.6	4.4	252	8.6	87.8	3.6
2009	17.4	81.2	1.4	207	0.8	96.1	3.1	258	8.2	89.5	2.4
2010	20.0	79.4	0.6	155	0.4	99.3	0.4	285	7.3	92.3	0.5
2011	18.1	81.3	0.5	182	0.8	95.3	3.8	236	8.4	89.2	2.4
2012	12.5	86.5	1.0	104		97.4	2.6	189	4.4	93.5	2.0
2013	18.0	77.6	4.3	161	0.0	96.2	3.8	183	8.4	87.5	4.1
2014	20.9	76.3	2.8	177	0.0	97.8	2.2	184	10.2	87.3	2.5
2015	9.3	89.4	1.2	161	0.0	98.7	1.3	231	3.8	94.9	1.3
2016	12.5	81.6	5.9	152	0.5	95.2	4.3	210	5.5	89.5	5.0
2017	13.7	84.9	1.4	146	1.0	97.9	1.0	194	6.5	92.4	1.2
2018	17.6	79.4	2.9	102	0.0	95.8	4.2	144	7.3	89.0	3.7
2019	13.2	86.8	0.0	76	0.7	97.3	2.0	149	4.9	93.8	1.3
Mean	18.3	77.8	3.9		0.3	94.9	4.8		8.7	86.9	4.4

Table 14. Percentage by sex and age of upper Yakima River CESRF spring Chinook collected for research or brood stock at Roza Dam and sample size (n), 2001-present.

Return Year	Males				Females				Total		
	3	4	5	n	3	4	5	n	3	4	5
2001	12.5	87.5		40		100.0		75	5.1	94.9	
2002	14.7	83.8	1.5	68		98.3	1.7	115	5.5	92.9	1.6
2003	36.1	34.7	29.2	72		61.2	38.8	67	18.7	47.5	33.8
2004	19.6	80.4		46		100.0		60	8.5	91.5	
2005	17.8	75.6	6.7	45		88.1	11.9	59	7.7	82.7	9.6
2006	18.3	80.0	1.7	60		100.0		65	8.8	90.4	0.8
2007	33.3	60.8	5.9	51		87.5	12.5	56	15.9	74.8	9.3
2008	50.0	50.0		40		100.0		56	20.8	79.2	
2009	25.4	71.2	3.4	59	1.2	97.6	1.2	84	11.2	86.7	2.1
2010	27.9	72.1		61		99.0	1.0	100	10.6	88.8	0.6
2011	21.2	72.7	6.1	66	0.9	97.2	1.9	107	8.7	87.9	3.5
2012	13.0	85.2	1.9	54		97.0	3.0	101	4.5	92.9	2.6
2013	17.9	80.6	1.5	67	1.1	96.7	2.2	92	8.2	89.9	1.9
2014	31.9	66.0	2.1	47	0.0	100.0	0.0	33	18.8	80.0	1.3
2015	33.3	66.7	0.0	27	0.0	97.9	2.1	48	12.0	86.7	1.3
2016	26.5	69.4	4.1	49	0.0	100.0	0.0	47	13.5	84.4	2.1
2017	43.6	56.4	0.0	39	0.0	100.0	0.0	66	16.2	83.8	
2018	28.9	71.1	0.0	38	0.0	100.0	0.0	38	14.5	85.5	
2019	26.3	73.7	0.0	19	3.5	96.5	0.0	57	9.2	90.8	
Mean	26.2	70.4	3.4		0.4	95.6	4.0		11.5	84.8	3.7

Appendix B. Yakima River / CESRF Spring Chinook Salmon - Yakama Nation Data Summary 2019 Annual Report, May 29, 2020

Sex Composition

In the American River, the mean proportion of males to females in wild/natural carcasses sampled on the spawning grounds from 1986-2016 was 41:59 for age-4 and 33:67 for age- 5 spring Chinook (Table 15). In the Naches River, the mean proportion of males to females was 41:59 for age-4 and 27:73 for age-5 fish (Table 16). In the upper Yakima River, the mean proportion of males to females was 33:67 for age-4 and 23:77 for age-5 fish (Table 17). Collection of carcass samples from the spawning grounds throughout the Yakima Basin did not occur in 2017 or 2018.

For upper Yakima fish collected at Roza Dam for brood stock or research purposes from 1997-2017, the mean proportion of males to females was 38:62 and 35:65 for age-4 fish from the wild/natural and CESRF populations, respectively (Tables 19 and 20). For these same samples, the mean proportion of males to females was $38: 62$ and $41: 59$ for age- 5 fish from the wild/natural and CESRF populations (excluding years with very small age-5 sample sizes), respectively (Tables 19 and 20). For adult fish, the mean proportion of males to females in spawning ground carcass recoveries was substantially lower than the ratio found at RAMF (Tables 17 and 19), indicating that sex ratios estimated from hatchery origin carcass recoveries were biased due to female carcasses being recovered at higher rates than male carcasses (Knudsen et al, 2003 and 2004). Again, despite these biases, we believe these data are good relative indicators of differences in sex composition between populations and between years.

Sample sizes for Tables 15-20 were given in Tables 9-14. As noted earlier, few age-6 fish are found in carcass surveys and those that have been found were located in the American and Naches systems. The data indicate that age- 3 females may occasionally occur in the upper Yakima and, to a lesser extent, the Naches systems.

Table 15. Percent of American River wild/natural spring Chinook carcasses sampled on the spawning grounds by age and sex, 1986-present.

Return Year	Age-3		Age-4		Age-5		Age-6	
	M	F	M	F	M	F	M	F
1986			55.6	44.4	29.1	70.9		100.0
1987			65.4	34.6	33.3	66.7	100.0	
1988			0.0	100.0	100.0	0.0		
1989			79.2	20.8	39.2	60.8		
1990	100.0		43.5	56.5	46.8	53.2		
1991			55.6	44.4	38.1	61.9		
1992			62.7	37.3	31.6	68.4	100.0	
1993	100.0		33.3	66.7	19.8	80.2		
1994			34.8	65.2	41.7	58.3		100.0
1995	100.0		100.0	0.0	27.8	72.2		
1996			28.6	71.4	0.0	100.0		
1997			16.7	83.3	9.4	90.6		100.0
1998			44.4	55.6	29.0	71.0		
1999			50.0	50.0	0.0	100.0		100.0
2000			55.6	44.4	50.0	50.0		
2001			45.0	55.0	47.7	52.3		
2002	100.0		33.3	66.7	35.1	64.9		
2003			33.3	66.7	32.9	67.1		
2004			75.0	25.0	0.0	100.0		
2005			34.4	65.6	60.0	40.0		
2006			32.0	68.0	21.7	78.3		
2007	100.0		22.2	77.8	28.9	71.1		
2008			28.6	71.4	36.2	63.8		
2009			42.9	57.1	0.0	100.0		
2010			27.3	72.7	42.9	57.1		
2011			25.0	75.0	46.2	53.8		
2012			24.1	75.9	22.6	77.4		
2013			12.5	87.5	26.9	73.1		
2014			31.8	68.2	50.0	50.0		
2015			35.7	64.3	33.3	66.7		
2016			19.0	81.0	52.6	47.4		
2017			No carcasses were sampled					
2018			No carcasses were sampled					
2019			Only	carcass	ed; low	turn		
mean			40.2	59.8	33.3	66.7		

Table 16. Percent of Naches River wild/natural spring Chinook carcasses sampled on the spawning grounds by age and sex, 1986-present.

Return Year	Age-3		Age-4		Age-5		Age-6	
	M	F	M	F	M	F	M	F
1986	100.0		46.2	53.8	18.2	81.8	50.0	50.0
1987	100.0		31.0	69.0	13.3	86.7	100.0	
1988		100.0	36.4	63.6	28.6	71.4		
1989			60.0	40.0	25.9	74.1		100.0
1990	50.0	50.0	55.6	44.4	52.6	47.4		
1991	100.0		66.7	33.3	20.4	79.6		
1992	100.0		45.5	54.5	23.1	76.9	100.0	
1993			57.9	42.1	30.0	70.0		
1994			40.0	60.0	22.2	77.8		
1995			33.3	66.7	37.5	62.5		
1996			58.6	41.4		100.0		
1997	100.0		46.2	53.8	28.0	72.0	40.0	60.0
1998			29.4	70.6	27.9	72.1		
1999	100.0		62.5	37.5	25.0	75.0		
2000	100.0		44.1	55.9	25.0	75.0		
2001	100.0		37.4	62.6	24.6	75.4		
2002	100.0		37.4	62.6	20.0	80.0		
2003	83.3	16.7	47.1	52.9	36.1	63.9		
2004	100.0		29.4	70.6	20.0	80.0		
2005			22.5	77.5	25.0	75.0		
2006			50.0	50.0	50.0	50.0		
2007			21.4	78.6	11.1	88.9		
2008	100.0		20.0	80.0	40.0	60.0		
2009	100.0		33.3	66.7	33.3	66.7		
2010	100.0		36.4	63.6	12.5	87.5		
2011	100.0		58.3	41.7	33.3	66.7		
2012	66.7	33.3	19.4	80.6	34.8	65.2		
2013	100.0		43.8	56.3	36.4	63.6		
2014			35.1	64.9	50.0	50.0		
2015			45.5	54.5		100.0		
2016			10.0	90.0	37.5	62.5		
2017			No carcasses were sampled					
2018			No carcasses were sampled					
2019				arcasse	sampl			
mean			40.6	59.4	27.2	72.8		

Table 17. Percent of Upper Yakima River wild/natural spring Chinook carcasses sampled on the spawning grounds by age and sex, 1986-present.

Return	Age-3		Age-4		Age-5	
Year	M	F	M	F	M	F
1986			20.0	80.0		100.0
1987	100.0		35.1	64.9	15.2	84.8
1988	64.3	35.7	43.8	56.3	30.0	70.0
1989	50.0	50.0	34.0	66.0	44.4	55.6
1990	60.0	40.0	31.3	68.7	45.5	54.5
1991	100.0		32.7	67.3	14.3	85.7
1992	100.0		33.1	66.9	62.5	37.5
1993	66.7	33.3	30.4	69.6	27.3	72.7
1994			24.6	75.4		100.0
1995	100.0		25.0	75.0		
1996	87.5	12.5	33.3	66.7	40.0	60.0
1997			31.1	68.9	28.6	71.4
1998	60.0	40.0	35.3	64.7		100.0
1999	100.0		27.7	72.3		100.0
2000	100.0		24.2	75.8		
2001	100.0		24.4	75.6	13.0	87.0
2002	33.3	66.7	32.9	67.1	76.2	23.8
2003	95.8	4.2	44.1	55.9		100.0
2004	100.0		33.9	66.1		100.0
2005	78.6	21.4	34.2	65.8	25.0	75.0
2006	87.5	12.5	34.6	65.4	50.0	50.0
2007	92.9	7.1	37.5	62.5		100.0
2008	100.0		56.6	43.4		100.0
2009	98.1	1.9	57.4	42.6		100.0
2010	100.0		32.4	67.6		
2011	100.0		27.0	73.0		
2012	66.7	33.3	33.3	66.7		
2013				100.0		
2014	100.0	0.0	33.0	67.0		
2015	carcass surveys discontinued as Roza samples deemed adequate					
mean	85.7	14.3	33.0	67.0	22.5	77.5

Table 18. Percent of upper Yakima River CESRF spring Chinook carcasses sampled on the spawning grounds by age and sex, 2001-present.

Return Year	Age-3		Age-4		Age-5	
	M	F	M	F	M	F
2001	88.9	11.1	19.5	80.5		
2002	100.0		33.0	67.0	33.3	66.7
2003	100.0			100.0		
2004	100.0		27.5	72.5		100.0
2005	90.0	10.0	37.5	62.5		100.0
2006	100.0		20.4	79.6		
2007	100.0		15.4	84.6		
2008				100.0		
2009	100.0		100.0			
2010	100.0		31.3	68.8		
2011	85.7	14.3	32.3	67.7		
2012			18.2	81.8		
2013			12.5	87.5		
2014			24.4	75.6		
2015	carcass	rveys	nued as	oza sam	emed	quate
mean	96.5	3.5	26.6	73.4		

Table 19. Percent of upper Yakima River wild/natural spring Chinook collected for brood stock at Roza Dam by age and sex, 1997-present.

Return	Age-3		Age-4		Age-5	
Year	M	F	M	F	M	F
1997	100.0		43.5	56.5	33.3	66.7
1998	100.0		37.4	62.6	28.6	71.4
1999	100.0		35.8	64.2	42.9	57.1
2000	100.0		37.8	62.2	20.0	80.0
2001	90.6	9.4	37.9	62.1	46.2	53.8
2002	94.9	5.1	35.3	64.7	42.9	57.1
2003	100.0		38.9	61.1	39.7	60.3
2004	97.3	2.7	40.1	59.9	33.3	66.7
2005	96.6	3.4	35.7	64.3	36.4	63.6
2006	100.0		43.4	56.6	49.1	50.9
2007	100.0		35.1	64.9	38.0	62.0
2008	100.0		37.9	62.1	31.3	68.8
2009	94.7	5.3	40.4	59.6	27.3	72.7
2010	96.9	3.1	30.3	69.7	50.0	50.0
2011	94.3	5.7	39.7	60.3	10.0	90.0
2012	100.0		32.8	67.2	16.7	83.3
2013	100.0		41.5	58.5	50.0	50.0
2014	100.0		42.9	57.1	55.6	44.4
2015	100.0		38.7	61.3	40.0	60.0
2016	95.0	5.0	38.3	61.7	50.0	50.0
2017	90.9	9.1	39.5	60.5	50.0	50.0
2018	100.0		37.0	63.0	33.3	66.7
2019	90.9	9.1	31.3	68.7	0.0	100.0
mean	97.5	2.5	37.9	62.1	35.8	64.2

Table 20. Percent of Upper Yakima River CESRF spring Chinook collected for research or brood stock at Roza Dam by age and sex, 2001-present.

Return	Age-3		Age-4		Age-5	
Year	M	F	M	F	M	F
2001	100.0	0.0	31.8	68.2		
2002	100.0	0.0	33.5	66.5	33.3	66.7
2003	100.0	0.0	37.9	62.1	44.7	55.3
2004	100.0	0.0	38.1	61.9		
2005	100.0	0.0	39.5	60.5	30.0	70.0
2006	100.0	0.0	42.5	57.5	100.0	
2007	100.0	0.0	38.8	61.3	30.0	70.0
2008	100.0	0.0	26.3	73.7		
2009	93.8	6.3	33.9	66.1	66.7	33.3
2010	100.0	0.0	30.8	69.2		100.0
2011	93.3	6.7	31.6	68.4	66.7	33.3
2012	100.0		31.9	68.1	25.0	75.0
2013	92.3	7.7	37.8	62.2	33.3	66.7
2014	100.0	0.0	48.4	51.6	100.0	0.0
2015	100.0	0.0	27.7	72.3		
2016	100.0	0.0	42.0	58.0	100.0	0.0
2017	100.0	0.0	25.0	75.0		
2018	100.0	0.0	41.5	58.5		
2019	71.4	28.6	20.3	79.7		
mean	97.4	2.6	34.7	65.3	41.2	58.8

Size at Age

Prior to 1996, samplers were instructed to collect mid-eye to hypural plate (MEHP) lengths from carcasses surveyed on the spawning grounds. From 1996 to present the method was changed and post-eye to hypural plate (POHP) lengths have been recorded. Mean POHP lengths averaged 39, 61, and 76 cm for age-3, -4 , and -5 males, and averaged 63 and 72 cm for age- 4 and -5 females, respectively, from carcasses sampled on the spawning grounds in the American River from 1996-2016 (Table 21). In the Naches River, mean POHP lengths averaged 42, 60, and 76 cm for age- $3,-4$, and -5 males, and averaged 61 and 72 cm for age-4 and -5 females, respectively (Table 22). For wild/natural spring Chinook sampled on the spawning grounds in the upper Yakima River, mean POHP lengths averaged 44, 60, and 72 cm for age- $3,-4$, and -5 males, and averaged 59 and 69 cm for age- 4 and -5 females, respectively (Table 23). Beginning in 2012, carcass sampling in the Upper Yakima was scaled back considerably as large numbers of escaping fish are sampled at Roza Dam (Tables 27-28). From 2001-2018, CESRF fish returning to the upper Yakima have been generally smaller in size-at-age than their wild/natural counterparts (Tables 25-28).

Table 21. Counts and mean mid-eye (MEHP) or post-orbital (POHP) to hypural plate lengths (cm) of American River wild/natural spring Chinook from carcasses sampled on the spawning grounds by sex and age, 1986-present.

[^3]Table 22. Counts and mean mid-eye (MEHP) or post-orbital (POHP) to hypural plate lengths (cm) of Naches River wild/natural spring Chinook from carcasses sampled on the spawning grounds by sex and age, 1986-present.

Return Year	Males								Females							
	Age 3		Age 4		Age 5		Age 6		Age 3		Age 4		Age 5		Age 6	
	Count	MEHP														
1986	1	45.0	12	62.7	6	74.3	1.0	80.0			14	64.5	27	73.6	1	83.5
1987	1	37.0	12	64.2	2	80.5	1.0	94.0			29	67.9	13	75.7		
1988			4	62.0	4	74.6			1	45.0	7	69.1	10	73.6		
1989			33	58.4	14	77.5					22	61.7	40	73.2	1	75.0
1990	3	53.0	20	59.4	10	75.9			3	51.7	16	60.9	9	73.7		
1991	1	31.0	12	56.3	10	72.8					6	62.5	39	71.1		
1992	1	42.0	20	58.8	3	72.3	1.0	83.0			24	62.4	10	71.7		
1993			11	60.0	15	77.7					8	63.3	35	72.5		
1994			2	62.5	2	77.0					3	63.7	7	73.1		
1995			1	59.0	3	73.0					2	64.0	5	73.8		
		POHP														
1996			17	58.1							12	60.3	4	69.6		
$1997{ }^{1}$	1	39.0	24	59.8	4	71.5	2.0	78.0			28	60.0	15	68.6	1	75.0
1998			5	57.8	12	75.0					12	61.1	31	71.6		
1999	1	40.0	5	61.2	2	73.0					3	58.7	6	75.0		
2000	1	35.0	56	58.2	2	84.0					71	59.5	6	72.8		
2001	1	45.0	43	61.4	15	73.4					72	62.2	46	74.5		
2002	1	40.0	37	63.6	9	77.3					62	62.4	36	71.8		
2003	5	41.4	16	62.2	43	79.4			1	41.0	18	62.8	76	75.6		
2004	3	46.0	35	59.8	2	74.5					84	61.5	8	75.8		
2005			9	60.1	2	78.0					31	61.7	6	71.7		
2006			8	56.9	5	76.0					8	63.8	5	71.2		
2007			3	61.3	1	67.0					11	56.9	8	72.1		
2008	4	42.0	5	59.6	2	81.5					20	62.0	3	78.7		
2009	1	43.0	10	67.9	3	76.3					20	63.9	6	73.2		
2010	1	40.0	20	60.5	1	77.0					35	61.7	7	71.4		
2011	3	44.3	21	61.9	2	78.0					15	60.4	4	76.8		
2012	2	51.5	7	67.3	8	75.8			1	41.0	29	61.6	15	71.1		
2013	2	37.0	7	56.1	4	75.0					9	58.7	7	71.3		
2014			13	61.8	2	71.0					24	56.7	2	67.5		
2015			10	59.3							12	60.4	4	65.8		
2016			1	47.0	3	77.0					9	53.9	5	68.8		
2017-19				No sa	mples							No sa	mples			
Mean ${ }^{2}$		41.9		60.1		75.8		78.0		41.0		60.5		72.1		75.0

${ }^{1}$ Carcasses sampled in 1997 had a mix of MEHP and POHP lengths taken. Only POHP samples are given here.
${ }^{2}$ Mean of mean values for 1996-2016 post-eye to hypural plate lengths.
Appendix B. Yakima River / CESRF Spring Chinook Salmon - Yakama Nation Data Summary
2019 Annual Report, May 29, 2020

Table 23. Counts and mean mid-eye (MEHP) or post-orbital (POHP) to hypural plate lengths (cm) of upper Yakima River wild / natural spring Chinook from carcasses sampled on the spawning grounds by sex and age, 1986-present.

Return Year	Males						Females							
	Age 3		Age 4		Age 5		Age 3		Age 4		Age 5			
	Count	MEHP												
1986			12	60.8					48	58.7	3	70.3		
1987	7	45.3	53	58.5	5	73.0			96	59.3	28	70.6		
1988	9	40.0	28	59.0	3	79.0	5	52.6	36	59.2	7	70.3		
1989	1	50.0	121	59.7	8	70.6	1	40.0	235	58.6	10	67.2		
1990	6	47.0	84	58.0	5	77.0	4	51.5	184	59.3	6	72.5		
1991	5	39.6	48	56.2	2	67.5			99	57.6	12	68.8		
1992	4	43.0	153	58.4	10	71.2			309	58.2	6	69.5		
1993	2	44.0	45	60.7	3	75.0	1	56.0	101	59.5	8	70.3		
1994			15	62.9					49	61.3	1	72.0		
1995	1	43.0	4	62.0					12	61.4	0			
	POHP													
1996	14	40.9	138	59.1	2	66.5	2	41.0	277	58.6	3	68.0		
1997			59	59.3	2	74.0			131	58.6	5	69.4		
1998	3	38.7	18	56.4			2	47.0	33	57.5	3	66.7		
1999	21	38.8	13	57.4					34	58.9	2	69.8		
2000	2	41.0	70	60.3					219	58.3	0			
2001	1	43.0	33	60.7	3	74.7	$2 \quad 46.0$		102	60.6	20	69.8		
2002	1	44.0	24	64.9	16	69.3					49	62.5	5	70.2
2003	23	44.4	15	59.8						19	62.4	3	67.8	
2004	7	47.3	101	59.9					197	58.7	1	67.0		
2005	11	49.2	108	60.6	1	75.0	3	48.7	207	59.5	3	67.3		
2006	14	41.8	44	59.4	1	72.0	2	39.5	82	58.3	1	71.0		
2007	13	44.2	61	61.7					101	60.6	6	66.0		
2008	3	48.3	29	60.5					22	59.7	1	77.0		
2009	53	46.8	58	57.6			1	51.0	43	60.2	1	68.0		
2010	13	47.7	34	60.5					70	59.5				
2011	6	47.0	10	58.9					27	59.3				
2012	2	44.5	6	58.0			1	47.0	12	57.5				
2013			No sa	mples					8	56.6				
2014	1	45.0	29	61.2					59	61.3				
2015				rass sur	eys disco	ntinued	oza sam	les deem	d adequ					
Mean ${ }^{1}$		44.3		59.8		71.9		45.7		59.4		69.1		

[^4]Table 24. Counts and mean post-orbital to hypural plate (POHP) lengths (cm) of upper Yakima River CESRF spring Chinook from carcasses sampled on the spawning grounds by sex and age, 2001-present.

Return Year	Males						Females					
	Age 3		Age 4		Age 5		Age 3		Age 4		Age 5	
	Count	POHP										
2001	8	40.5	25	59.0	1	69.5	1	41.0	107	59.0		
2002	6	47.7	61	61.2	8	68.9			124	60.6	16	71.2
2003	1	42.0							1	69.0		
2004	2	52.0	19	60.8					50	57.9	1	68.0
2005	8	41.8	12	59.9			1	46.0	20	59.6	1	72.0
2006	4	42.3	11	54.0					43	57.0		
2007	4	44.3	2	58.5					11	60.1		
2008	0		0						1	58.0		
2009	3	47.7	2	---								
2010	2	44.0	5	61.8					11	55.5		
2011	6	40.7	10	59.1			1	46.0	21	59.0		
2012			4	63.0			1	50.0	18	57.3		
2013			1	---					7	53.6		
2014			20	60.8					62	59.0		
2015				cass surv	eys disc	ntinued	za sam	les deem	d adeq			
Mean		44.3		59.8		69.2				58.9		70.4

Table 25. Counts and mean post-orbital to hypural plate (POHP) lengths (cm) of upper Yakima River wild/natural spring Chinook from carcasses sampled at the CESRF prior to spawning by sex and age, 1997-present.

Return Year	Males						Females					
	Age 3		Age 4		Age 5		Age 3		Age 4		Age 5	
	Count	POHP										
1997	4	39.7	81	59.7	3	73.3			105	60.5	6	68.9
1998	28	43.0	95	57.3	6	67.0			161	59.2	15	65.6
1999	124	41.4	75	59.5	10	64.6			199	60.4	16	67.4
2000	19	42.0	145	59.0	1	77.0			263	59.4	3	69.4
2001	17	42.9	115	59.6	14	74.1			196	60.5	19	69.8
2002	23	42.1	113	60.6	5	72.9	1	36.6	233	61.2	9	70.9
2003	37	42.7	92	60.4	19	73.7			164	61.4	31	69.4
2004	18	42.4	108	58.9	1	67.8			225	58.3	2	66.5
2005	19	42.1	113	60.0	2	67.3	1	42.6	223	59.8	5	67.8
2006	17	41.0	82	56.7	20	70.4			197	57.8	24	68.1
2007	20	44.6	108	58.8	17	67.6			181	59.4	24	67.2
2008	17	45.5	121	59.6	4	71.1			209	59.7	11	68.4
2009	16	44.4	122	61.5	3	69.3	1	50.4	206	60.3	6	68.0
2010	9	45.0	88	61.5	1	71.2			192	60.9		
2011	11	47.5	91	60.3	1	75.3	1	52.5	182	60.2	4	72.9
2012	13	43.7	83	59.8	1	62.4			178	59.3	5	66.6
2013	18	45.8	112	59.6	7	70.0			161	58.9	6	69.7
2014	27	43.3	112	61.3	5	70.0			173	59.9	4	63.1
2015	8	41.2	110	59.6	2	71.7			167	59.9	2	70.5
2016	16	45.9	110	61.4	8	68.9			159	60.4	7	68.0
2017	18	43.2	115	61.0	2	66.0	2	47.7	167	62.1	2	64.9
2018	17	40.5	77	59.2	3	66.0			132	58.9	6	62.9
2019	6	39.8	55	55.2			1	39.5	120	56.2	1	63.5
Mean		43.0		59.6		69.9				59.8		67.7

Table 26. Counts and mean post-orbital to hypural plate (POHP) lengths (cm) of upper Yakima River CESRF spring Chinook from carcasses sampled at the CESRF prior to spawning by sex and age, 2001present.

Return Year	Males						Females					
	Age 3		Age 4		Age 5		Age 3		Age 4		Age 5	
	Count	POHP										
2001			4	61.3					33	60.4		
2002	2	40.2	25	59.6					63	59.4	2	66.1
2003	17	42.6	16	57.8	15	74.0			31	59.7	19	70.4
2004	6	39.4	9	57.1					42	59.3		
2005	6	37.9	21	58.4	2	68.7			38	58.6	5	68.0
$2006{ }^{1}$			3	57.2					3	56.3		
2007	8	40.4	18	59.3	1	71.4			35	58.2	5	67.6
2008	17	43.8	9	59.1					28	59.4		
2009	5	43.8	11	61.1					32	60.1	1	67.5
2010	11	41.8	18	59.2					40	61.0		
2011	4	43.4	10	62.7	1	79.2			32	60.4	2	71.7
2012	3	39.0	23	59.3	1	73.7			43	59.4	1	67.2
2013	2	45.7	24	60.3					32	57.3		
2014	7	39.2	21	61.8	1	70.2			32	60.5		
2015	7	38.9	17	58.5					42	59.2	1	66.7
2016	2	42.8	22	61.4	2	75.0			34	60.8		
2017	11	44.1	20	59.9					36	61.9		
2018	8	38.4	22	59.5					34	59.4		
2019	3	37.3	14	56.2					25	55.8		
Mean		41.1		59.5		73.2				59.3		68.2

${ }^{1}$ Few length samples were collected since these fish were not spawned in 2006.

Table 27. Counts and mean post-orbital to hypural plate (POHP) lengths (cm) of upper Yakima River wild/natural spring Chinook from fish sampled at Roza Dam by sex ${ }^{1}$ and age, 1997-present.

Return Year	Males						Females					
	Age 3		Age 4		Age 5		Age 3		Age 4		Age 5	
	Count	POHP										
1997	4	39.6	81	60.6	2	73.3			121	60.5	10	70.6
1998	36	42.4	108	58.3	11	67.7	1	58.5	201	59.4	13	67.0
1999	350	40.7	80	59.4	11	67.5	2	46.8	256	60.3	19	68.3
2000	40	41.3	145	60.5	1	77.0	1	46.0	354	60.2	4	72.1
2001	32	42.9	111	61.9	28	73.8			371	61.2	24	70.7
2002	43	41.6	146	61.2	21	71.4	2	52.5	379	60.7	8	70.3
2003	54	43.3	52	64.6	18	75.3	1	51.0	262	61.9	45	71.2
2004	41	43.4	121	61.1	1	69.0			394	59.4	2	69.5
2005	35	43.2	134	61.1	5	74.2			307	60.8	6	68.3
2006	27	41.3	77	59.1	22	72.6	1	47.0	336	58.8	27	69.5
2007	31	42.9	83	60.8	18	69.8	1	50.0	280	60.5	34	69.7
2008	38	45.8	101	61.7	8	72.4			293	60.7	8	69.1
2009	36	45.3	125	63.4	4	71.5	3	52.7	297	61.9	8	69.9
2010	39	43.7	129	62.6	1	74.0	1	51.0	298	62.8	1	70.0
2011	42	46.7	154	61.2	3	77.3	2	53.0	235	61.9	10	75.3
2012	27	43.6	113	60.5	1	63.0			202	60.3	5	68.0
2013	31	45.4	132	59.9	8	70.6			181	59.8	7	70.6
2014	38	44.7	138	62.2	5	72.2			181	61.2	4	65.5
2015	16	44.0	150	61.2	3	72.0			245	61.2	3	71.7
2016	21	46.0	130	62.3	10	71.4			210	61.6	10	69.8
2017	21	43.3	128	61.3	2	66.5	2	48.0	195	62.5	2	66.0
2018	21	40.9	86	59.3	3	67.3			140	59.2	7	64.4
2019	11	40.9	67	57.7			1	42.0	148	58.6	4	70.3
Mean		43.2		61.0		71.4		50.6		60.7		69.5

${ }^{1}$ Sex determined by visual observation prior to 2010 and by ultrasound from 2010 to present.

Table 28. Counts and mean post-orbital to hypural plate (POHP) lengths (cm) of upper Yakima River CESRF spring Chinook from fish sampled at Roza Dam by sex ${ }^{1}$ and age, 2001-present.

Return Year	Males						Females					
	Age 3		Age 4		Age 5		Age 3		Age 4		Age 5	
	Count	POHP										
2001	473	39.9	548	59.5			1	58.0	1795	59.2		
2002	26	38.7	383	59.5	19	67.7			1152	59.1	15	66.1
2003	392	41.8	48	61.8	61	73.0	2	47.0	207	60.3	154	70.8
2004	48	40.3	100	60.5			1	44.0	351	59.2	2	71.0
2005	98	40.4	58	60.1	6	73.0			160	59.1	12	68.7
2006	26	40.4	89	58.0					318	57.4	2	70.5
2007	174	41.4	46	60.7	6	71.7	1	47.0	185	59.0	13	69.8
2008	93	44.8	60	60.7			2	54.5	191	60.1	1	67.0
2009	254	43.6	78	62.8	5	65.0	1	50.0	212	61.8	6	69.5
2010	106	42.5	196	61.0	1	67.0	1	60.0	361	61.8	1	72.0
2011	155	42.9	146	60.9	8	73.5	2	57.5	265	61.5	13	73.4
2012	45	40.6	131	59.3	3	65.7	1	45.0	250	59.9	6	69.2
2013	92	44.4	122	59.0	3	70.0			163	58.8	4	69.3
2014	78	42.8	111	61.0	2	71.0			163	60.5	3	71.7
2015	19	41.2	90	59.5					146	60.3	3	72.0
2016	86	44.5	73	61.1	3	77.3	2	48.0	102	61.2	1	65.0
2017	83	43.9	47	61.6					160	62.3	1	67.0
2018	24	39.3	56	58.4			1	41.0	86	59.4		
2019	18	41.4	35	57.5			1	46.0	84	57.7	1	76.0
Mean		41.6		60.1		70.4		49.8		59.9		69.9

${ }^{1}$ Sex determined by visual observation prior to 2010 and by ultrasound from 2010 to present.

Migration Timing

Wild/natural spring Chinook adults returning to the upper Yakima River have generally shown earlier passage timing at Roza Dam than CESRF spring Chinook (Figures 2 and 3).

Figure 3. Proportionate passage timing at Roza Dam of wild/natural and CESRF adult spring Chinook (including jacks), 2010-2019.

Table 29. Comparison of 5%, median (50%), and 95% passage dates of wild/natural and CESRF adult spring Chinook (including jacks) at Roza Dam, 1997-Present.

Year	Wild/Natural Passage			CESRF Passage		
	5\%	Median	95\%	5\%	Median	95\%
1997	10-Jun	17-Jun	21-Jul			
1998	22-May	10-Jun	10-Jul			
1999	31-May	24-Jun	4-Aug			
2000	12-May	24-May	12-Jul	21-May ${ }^{1}$	15-Jun ${ }^{1}$	27-Jul ${ }^{1}$
2001	4-May	23-May	11-Jul	8-May	28-May	15-Jul
2002	16-May	10-Jun	6-Aug	20-May	13-Jun	12-Aug
2003	13-May	11-Jun	19-Aug	13-May	10-Jun	24-Aug
2004	4-May	20-May	24-Jun	5-May	22-May	26-Jun
2005	9-May	22-May	23-Jun	15-May	31-May	2-Jul
2006	1-Jun	14-Jun	18-Jul	3-Jun	18-Jun	19-Jul
2007	16-May	5-Jun	9-Jul	24-May	14-Jun	19-Jul
2008	27-May	$9-J u n$	9-Jul	31-May	17-Jun	14-Jul
2009	31-May	14-Jun	17-Jul	2-Jun	19-Jun	17-Jul
2010	11-May	30-May	5-Jul	12-May	2-Jun	9-Jul
2011	6-Jun	23-Jun	16-Jul	9-Jun	24-Jun	15-Jul
2012	30-May	14-Jun	9-Jul	30-May	13-Jun	8-Jul
2013	22-May	4-Jun	3-Jul	24-May	8-Jun	8-Jul
2014	15-May	1-Jun	2-Jul	18-May	5-Jun	8-Jul
$2015{ }^{2}$	4-May	16-May	31-Aug	5-May	18-May	31-Aug
2016	17-May	29-May	28-Jun	21-May	4-Jun	20-Jul
2017	1-Jun	14-Jun	3-Jul	6-Jun	20-Jun	14-Jul
2018	1-Jun	8-Jun	18-Jul	2-Jun	14-Jun	16-Jul
2019	22-May	31-May	29-Jul	25-May	5-Jun	20-Aug

1. In 2000 all returning CESRF fish were age-3 (jacks).
2. Mean daily water temperatures at Kiona (rkm 40 from the mouth of the Yakima R.) exceeded $70^{\circ} \mathrm{F}$ every day from May 21 to August 29, 2015 (source U.S. BOR hydromet database) causing delayed passage for late migrating fish.

Spawning Timing

Median spawn timing for CESRF spring Chinook is earlier than that observed for wild/natural fish in the Upper Yakima River. These differences are due in part to environmental conditions and spawning procedures at the hatchery. It must also be noted that spawning dates in the wild are only a coarse approximation, derived from weekly redd counts not actual dates of redd deposition. A clear delineation of wild/natural spawn timing between subbasins is apparent, with American River fish spawning about 1 month earlier than Naches Basin fish which spawn about 2 weeks earlier than Upper Yakima fish.
Table 30. Median spawn ${ }^{1}$ dates for spring Chinook in the Yakima Basin.

Year	American	Naches	Upper Yakima	CESRF
1988	14-Aug	7-Sep	3-Oct	
1989	14-Aug	7-Sep	19-Sep	
1990	14-Aug	12-Sep	25-Sep	
1991	12-Aug	12-Sep	$24-\mathrm{Sep}$	
1992	11-Aug	10-Sep	22-Sep	
1993	9-Aug	8-Sep	27-Sep	
1994	16-Aug	14-Sep	26-Sep	
1995	14-Aug	7-Sep	1-Oct	
1996	20-Aug	18-Sep	23-Sep	
1997	12-Aug	11-Sep	23-Sep	23-Sep
1998	11-Aug	15-Sep	30-Sep	22-Sep
1999	24-Aug	8-Sep	27-Sep	21-Sep
2000	7-Aug	20-Sep	19-Sep	19-Sep
2001	14-Aug	13-Sep	25-Sep	18-Sep
2002	12-Aug	11-Sep	23-Sep	24-Sep
2003	11-Aug	14-Sep	28-Sep	23-Sep
2004	17-Aug	12-Sep	27-Sep	21-Sep
2005	15-Aug	15-Sep	27-Sep	20-Sep
2006	15-Aug	14-Sep	26-Sep	19-Sep
2007	14-Aug	12-Sep	25-Sep	25-Sep
2008	11-Aug	12-Sep	23-Sep	23-Sep
2009	17-Aug	10-Sep	23-Sep	28-Sep
2010	17-Aug	12-Sep	21-Sep	21-Sep
2011	23-Aug	8-Sep	21-Sep	20-Sep
2012	21-Aug	11-Sep	24-Sep	25-Sep
2013	19-Aug	11-Sep	$25-\mathrm{Sep}$	23-Sep
2014	19-Aug	18-Sep	29-Sep	24-Sep
2015	20-Aug	17-Sep	28-Sep	23-Sep
2016	16-Aug	16-Sep	27-Sep	20-Sep
$2017{ }^{2}$	16-Aug		26-Sep	19-Sep
2018	15-Aug	20-Sep	1-Oct	25-Sep
2019	15-Aug	9-Sep	1-Oct	24-Sep
Mean	15-Aug	12-Sep	25-Sep	22-Sep

1. Approximately one-half of the redds in the system were counted by this date and one-half were counted after this date. For the CESRF, approximately one-half of the total broodstock were spawned by this date and one-half were spawned after this date.
2. Spawner surveys impacted by fires; especially in the Naches system.

Redd Counts and Distribution

Table 31. Yakima Basin spring Chinook redd count summary, 1981 - present.

Year	Upper Yakima River System				Naches River System				
	Mainstem ${ }^{1}$	Cle Elum	Teanaway	Total	American	Naches ${ }^{1}$	Bumping	Little Naches	Total
1981	237	57	0	294	72	64	20	16	172
1982	610	30	0	640	11	25	6	12	54
1983	387	15	0	402	36	27	11	9	83
1984	677	31	0	708	72	81	26	41	220
1985	795	153	3	951	141	168	74	44	427
1986	1,716	77	0	1,793	464	543	196	110	1,313
1987	968	75	0	1,043	222	281	133	41	677
1988	369	74	0	443	187	145	111	47	490
1989	770	192	6	968	187	200	101	53	541
1990	727	46	0	773	143	159	111	51	464
1991	568	62	0	630	170	161	84	45	460
1992	1,082	164	0	1,246	120	155	99	51	425
1993	550	105	1	656	214	189	88	63	554
1994	226	64	0	290	89	93	70	20	272
1995	105	12	0	117	46	25	27	6	104
1996	711	100	3	814	28	102	29	25	184
1997	364	56	0	420	111	108	72	48	339
1998	123	24	1	148	149	104	54	23	330
1999	199	24	1	224	27	95	39	25	186
2000	3,349	466	21	3,836	54	483	278	73	888
2001	2,910	374	21	3,305	392	436	257	107	1,192
2002	2,441	275	110	2,826	366	226	262	89	943
2003	772	87	31	890	430	228	216	61	935
2004	2,985	330	129	3,444	91	348	205	75	719
2005	1,717	287	15	2,019	140	203	163	68	574
2006	1,092	100	58	1,250	136	163	115	33	447
2007	665	51	10	726	166	60	60	27	313
2008	1,191	137	47	1,375	158	165	102	70	495
2009	1,349	197	33	1,579	92	159	163	68	482
2010	2,199	219	253	2,671	173	171	168	40	552
2011	1,663	171	64	1,898	212	145	175	48	580
2012	1,276	125	69	1,470	337	196	189	89	811
2013	552	85	34	671	170	66	85	55	376
2014	962	138	53	1,153	129	65	158	27	379
2015	1,258	39	24	1,321	239	177	152	46	614
2016	512	83	22	617	149	106	74	37	366
2017	402	118	23	543	123	84	56	30	293
2018	339	13	0	352	27	56	44	1	128
2019	184	44	9	237	21	1	2	7	31
Mean	1,000	121	27	1,147	156	161	110	46	472

[^5]
Homing

A team from NOAA fisheries conducted studies to determine the spatial and temporal patterns of homing and spawning by wild and hatchery-reared salmon released from CESRF facilities from 2001 to 2010. These studies collected GPS information on each redd and carcass recovered within a survey reach. Carcass surveys were conducted annually in late-September to early October by NOAA personnel in cooperation with Yakama Nation survey crews over five different reaches of the upper Yakima River and recorded the location of each redd flagged and carcass recovered. For each carcass sex, hatchery/wild, male status (full adult, jack, mini-jack), and CWT location was recorded. Data collected on the body location of CWTs allowed the identification of the release site of some fish. While these studies were not designed to comprehensively map carcasses and redds in all spawning reaches in the upper watershed, preliminary data indicate that fish from the Easton, Jack Creek, and Clark Flat acclimation facilities had distinct spawner distributions. A more complete description of this project is available from NOAA fisheries and in this publication:

Dittman, A. H., D. May, D. A. Larsen, M. L. Moser, M. Johnston, and D. Fast. 2010. Homing and spawning site selection by supplemented hatchery- and naturalorigin Yakima River spring Chinook salmon. Transactions of the American Fisheries Society 139:1014-1028.

Straying

The regional PTAGIS (PIT tag) and RMIS (CWT) databases were queried in December 2019 to determine the number of CESRF releases not returning to the Yakima River Basin (RMIS CWT data are incomplete for the most recent years). For adult (age-3, -4, or -5) PIT tagged fish, a stray is defined as detection at an out-of-basin facility in the Snake (Ice Harbor or Lower Granite) or Upper Columbia (Priest Rapids, Rock Island, or Wells) without a subsequent detection at Prosser or Roza Dam. For coded-wire tagged fish, a stray is generally defined as a tag recovery in tributaries of the Columbia River upstream (and including the Snake River Basin) of its' confluence with the Yakima River. Marked (adipose fin clipped) fish are occasionally found during carcass surveys in the Naches River system. All marked fish observed in spawning ground carcass surveys in the Naches Basin are assumed to be CESRF fish and are used to estimate in-basin stray rates.

Table 32. Estimated number of PIT- and CWT-tagged CESRF fish not returning to the Yakima River Basin (strays), and marked fish sampled during spawner surveys in the Naches Basin, per number of returning fish, brood years 1997-present.

Brood Year	CESRF PIT-Tagged Fish Roza			All CESRF Fish Yakima			CESRF Age-4 Fish		
	Adult Returns	Adult Strays	Stray Rate	River Mth Return	CWT Strays	Stray Rate	Yak R. MthRtn	In-Basin Strays ${ }^{1}$	Stray Rate
1997	598	2	0.33\%	8,670	1	0.01\%	7,753		
1998	398	0	0.00\%	9,782			7,939	1	0.01\%
1999	23	0	0.00\%	864			714		
2000	150	4	2.60\%	4,819	2	0.04\%	3,647	4	0.11\%
2001	80	3	3.61\%	1,251			845	2	0.24\%
2002	97	5	4.90\%	2,300			1,886	1	0.05\%
2003	31	0	0.00\%	932			800		
2004	125	1	0.79\%	4,022	4	0.10\%	3,101		
2005	142	0	0.00\%	4,378			3,052		
2006	462	3	0.65\%	9,114			5,812		
2007	240	1	0.41\%	6,558	5	0.08\%	5,174	1	0.02\%
2008	215	0	0.00\%	6,976			4,567	1	0.02\%
2009	110	0	0.00\%	3,181			2,663	1	0.04\%
2010	207	5	2.36\%	4,707	2	0.04\%	3,183		
2011^{2}	181	28	13.40\%	3,607	16	0.44\%	2,340		
$2012{ }^{2}$	69	13	15.85\%	1,723	20	1.16\%	1,492		
2013	152	4	2.56\%	2,795	6	0.21\%	1,993		
$2014{ }^{2}$	131	14	9.66\%	2,463	4	0.16\%	1,447		
$2015{ }^{2}$	57	2	3.39\%	1,192			878		

[^6]
CESRF Spawning and Survival

As described earlier, a portion of natural- and hatchery-origin (NoR and HoR, respectively) returning adults are captured at Roza Dam during the adult migration and taken to the CESRF for broodstock and/or research purposes. Fish are held in adult holding ponds at the CESRF from capture in the spring and summer until spawning in September through early October. All mortalities during the holding period are documented by sex and origin. During the spawning period data are kept on the number of males and females of each origin used for spawning or other purposes. All females have samples taken that are later evaluated for presence of BKD-causative agents. Eggs from females with high BKD-presence indicators are generally excluded (see Female BKD Profiles). Once fertilized, eggs are placed in holding troughs until shock time. Dead eggs are then sorted and hand-counted. All live eggs are machine counted, sorted into two lots per female (treatment and control) and placed into incubation (heath) trays. Using hand counts of egg samples from a subsample of female egg lots, WDFW staff determined that machine counts are biased and that the best approximation of live egg counts is given by the following equation:
$\left(\left(\frac{\text { no. eggs in subsample }}{\text { wt. of subsample }} *\right.\right.$ total egg mass wt $\left.) * 0.945\right)$-dead eggs
where
the first 3 parameters are from egg samples taken from females at spawn time, dead eggs are the number of dead or unfertilized eggs counted at shock time, and the 0.945 value is a correction factor from 1997 and 2000 WDFW studies.

Total egg take is calculated as the total number of live eggs, dead eggs, and all documented egg loss (e.g. spilled at spawn time, etc.). Heath trays are periodically sampled during incubation and dead fry are culled and counted. The number of live eggs less documented fry loss is the estimate of the number of fry ponded. Once fry are ponded, mortalities are counted and recorded daily during the rearing period. Fish are hand counted in the fall prior to their release as they are 100 -percent marked. This handcount less documented mortalities from marking through release is the estimate of smolts released. Survival statistics by origin and life-stage are given in Tables 33 and 34.

Table 33. Cle Elum Supplementation and Research Facility spawning and survival statistics (NoR brood only), 1997 - present.

No. Fish Spawned ${ }^{1}$											Live- Egg-Fry Survival	Smolts Released	Fry- Smolt Survival	Live-Egg-SmoltSurvival
Brood Year	Total Collected	Total Morts	PreSpawn Survival	Males ${ }^{2}$	Females	\% BKD Loss	Total Egg Take	Live Eggs	\% Egg Loss ${ }^{3}$	Fry Ponded ${ }^{4}$				
1997	261	23	91.2\%	106	132	2.6\%	500,750	463,948	7.3\%	413,211	98.5\%	386,048	93.4\%	91.9\%
1998	408	70	82.8\%	140	198	1.4\%	739,802	664,125	10.2\%	627,481	98.7\%	589,648	94.0\%	92.7\%
1999	$738{ }^{5}$	24	96.7\%	213	222	2.7\%	818,816	777,984	5.0\%	781,872	97.3\%	758,789	97.0\%	94.5\%
2000	567	61	89.2\%	170	278	9.2\%	916,292	851,128	7.1\%	870,328	97.3\%	834,285	95.9\%	93.4\%
2001	595	171	71.3\%	145	223	53.2\%	341,648	316,254	7.4\%	380,880	98.6\%	370,236	97.2\%	96.1\%
2002	629	89	85.9\%	125	261	10.0\%	919,776	817,841	11.1\%	783,343	98.0\%	749,067	95.6\%	93.6\%
2003	441	54	87.8\%	115	200	0.0\%	856,574	787,933	8.0\%	761,990	98.4\%	735,959	96.6\%	95.0\%
2004	597	70	88.3\%	125	245	0.4\%	873,815	806,375	7.7\%	776,941	97.8\%	691,109 ${ }^{6}$	89.0\%	87.0\%
2005	526	57	89.2\%	136	241	0.0\%	907,199	835,890	7.9\%	796,559	98.1\%	769,484	96.6\%	94.7\%
2006	519	45	91.3\%	122	239	1.7\%	772,357	703,657	8.9\%	631,691	97.3\%	$574,361{ }^{7}$	90.9\%	88.3\%
2007	473	49	89.6\%	149	216	0.9\%	798,729	760,189	4.8\%	713,814	98.9\%	676,602	94.8\%	93.7\%
2008	480	38	92.1\%	151	253	2.0\%	915,563	832,938	9.0\%	809,862	99.0\%	752,109 ${ }^{8}$	97.3\%	96.3\%
2009	486	57	88.3\%	142	219	1.4\%	850,404	848,339	0.2\%	770,706	98.2\%	744,170	96.6\%	94.6\%
2010	483	20	95.9\%	102	193	0.5\%	787,953	753,464	4.4\%	726,325	98.9\%	702,751	96.8\%	95.6\%
2011	455	28	93.8\%	103	197	0.0\%	798,229	765,221	4.1\%	721,197	98.1\%	684,481	94.9\%	93.0\%
2012	363	14	96.1\%	111	209	0.0\%	819,775	788,605	3.8\%	737,705	98.2\%	712,036	96.5\%	94.7\%
2013	385	15	96.1\%	153	179	0.6\%	683,484	658,796	3.6\%	613,493	98.9\%	575,156	93.8\%	92.6\%
2014	384	39	89.8\%	133	188	0.0\%	679,374	639,989	5.8\%	636,092	96.5\%	599,908	94.3\%	91.1\%
2015	436	116	73.4\%	128	182	0.5\%	654,361	615,189	6.0\%	613,796	97.0\%	594,736	96.9\%	94.1\%
2016	394	57	85.5\%	142	173	0.0\%	687,218	652,110	5.1\%	593,514	96.2\%	588,139	99.1\%	95.2\%
2017	396	27	93.2\%	152	193	2.1\%	707,232	671,605	5.0\%	642,836	95.7\%	634,390	98.7\%	94.5\%
2018	305	6	98.0\%	132	173	0.0\%	565,221	534,753	5.4\%	515,596	98.2\%	498,011	96.6\%	94.8\%
2019	313	25	92.0\%	103	174	2.3\%	541,760	504,630	6.9\%	482,177	94.7\%			
Mean	462	50	89.5\%	134	208	4.0\%	745,058	697,868	6.3\%	669,626	97.8\%	646,431	95.6\%	93.5\%

1. Total collected minus total mortalities does not equal total spawned. This is because some fish are used in the spawning channel, some have been released back to the river, and some have not been used.
2. Includes jacks.
3. All documented egg loss at spawn time plus dead eggs counted at shock divided by the estimated total egg take.
4. Based on physical counts at mark time and all documented rearing mortality from ponding to release, except for BY2013 it is live eggs (est.) minus fry loss.
5. Approximately one-half of these were jacks, many of which were not used in spawning.
6. Approximately 45,000 smolts lost at Jack Creek due to frozen equipment in February, 2006.
7. EWOS feed treatment had high mortality and was discontinued in May 2007; resulted in lower survival to release.
8. Approximately 36,000 NoR (Table 33) and $12,000 \mathrm{HoR}$ (Table 34) fish were culled in July 2009 to reduce pond densities; these fish were added back in to fry-smolt and live-egg-smolt survival calculations.
9. Table 34 -- From 2002 to present this is the estimated total egg take from all HxH crosses. Due to the large surplus of eggs over the approximately 100 K needed for the HxH line, many surplus fry were planted in nearby land-locked lakes and some surplus eggs were destroyed.
Appendix B. Yakima River / CESRF Spring Chinook Salmon - Yakama Nation Data Summary
2019 Annual Report, May 29, 2020

Table 34. Cle Elum Supplementation and Research Facility spawning and survival statistics (HoR brood only), 2002 - present.

No. Fish Spawned ${ }^{1}$														
Brood Year	Total Collected	Total Morts.	PreSpawn Survival	Males ${ }^{2}$	Females	$\begin{gathered} \% \\ \text { BKD } \\ \text { Loss } \end{gathered}$	Total Egg Take	Live Eggs ${ }^{10}$	$\begin{gathered} \% \\ \text { Egg } \\ \text { Loss }^{3} \end{gathered}$	Fry Ponded ${ }^{4}$	Live- Egg-Fry Survival	Smolts Released	FrySmolt Survival	Egg- Smolt Survival
2002	201	22	89.1\%	26	72	4.2\%	258,226	100,011	7.8\%	91,300	98.2\%	87,837	96.2\%	94.4\%
2003	143	12	91.6\%	30	51	0.0\%	219,901	83,128	7.3\%	91,204	98.8\%	88,733	97.3\%	96.1\%
2004	126	19	84.9\%	22	49	0.0\%	187,406	94,659	5.9\%	100,567	98.3\%	94,339	93.8\%	92.2\%
2005	109	6	94.5\%	26	45	0.0\%	168,160	89,066	12.2\%	92,903	98.1\%	90,518	97.4\%	95.6\%
2006	136	21	84.6\%	28	41	2.4\%	112,576	80,121	8.6\%	74,735	97.6\%	68,434	91.6\%	89.4\%
2007	110	15	86.4\%	26	35	0.0\%	125,755	90,162	3.2\%	96,912	99.2\%	94,663	97.7\%	96.9\%
2008	194	10	94.8\%	51	67	1.5\%	247,503	106,122	5.1\%	111,797	98.9\%	97,196	97.4\%	96.4\%
2009	164	24	85.4\%	30	38	0.0\%	148,593	91,994	0.8\%	91,221	98.3\%	88,771	97.3\%	95.6\%
2010	162	9	94.4\%	29	55	1.8\%	215,814	94,925	8.4\%	96,144	97.9\%	92,030	95.7\%	93.7\%
2011	166	7	95.8\%	28	49	0.0\%	188,075	89,107	4.5\%	88,852	98.4\%	84,701	95.3\%	93.8\%
2012	140	8	94.3\%	29	42	0.0\%	148,932	95,438	2.0\%	94,031	98.8\%	90,680	96.4\%	95.3\%
2013	186	5	97.3\%	38	43	0.0\%	155,383	80,534	2.9\%	75,842	98.2\%	71,599	94.4\%	92.7\%
2014	86	11	87.2\%	21	29	0.0\%	104,121	74,843	1.6\%	91,702	97.2\%	85,322	93.0\%	90.4\%
2015	61	23	62.3\%	15	22	13.6\%	66,238	64,646	2.4\%	62,625	96.9\%	60,211	96.1\%	93.1\%
2016	114	25	78.1\%	33	35	0.0\%	129,355	121,466	6.1\%	85,910	95.8\%	81,069	94.4\%	90.4\%
2017	127	8	93.7\%	46	55	0.0\%	195,070	187,173	4.0\%	88,905	97.9\%	76,279	85.8\%	84.0\%
2018	101	6	94.1\%	33	54	0.0\%	179,083	172,211	3.8\%	$150,126^{11}$	96.1\%	144,409	96.2\%	92.4\%
2019	126	12	90.5\%	43	46	0.0\%	128,677	115,667	10.1\%	120,071 ${ }^{11}$	92.6\%			
Mean	136	14	88.8\%	31	46	1.3\%	165,493	156,134	5.4\%	94,038	97.6\%	88,047	95.1\%	93.1\%

See footnotes for Table 33 above.
10. Table 34 -- For only those HxH fish which were actually ponded.
11. The number of segregated, hatchery-control line brood raceways was increased from 2 to 4 for this brood due to overall brood shortages.

Female BKD Profiles

Adults used for spawning and their progeny are tested for a variety of pathogens accepted as important in salmonid culture (USFWS Inspection Manual, 2003), on a population or "lot" basis. At the CESRF, and in the Columbia Basin it has been accepted that the most significant fish pathogen for spring Chinook is Renibacterium salmoninarum, the causative agent of Bacterial Kidney Disease (BKD). All adult females and 30-60 juveniles from each acclimation pond are individually tested for levels of Renibacterium salmoninarum using ELISA (Enzyme linked Immuno-sorbant Assay). ELISA data are reported annually to CESRF and YKFP staff for management purposes, eventual data entry and comparisons of ponds and rearing parameters. To date, no significant occurrences of other pathogens have been observed. Periodic field exams for external parasites and any signs of disease are performed on an "as needed" basis. Facility staff have been trained to recognize early signs of behavior changes or diseases and would report any abnormalities to the USFWS, Olympia Fish Health Center for further diagnostic work.

Adult females are ranked from 0 to 13 based on the relative amounts of BKD in the tissue samples of the tested fish. All BKD ranks below 5 are considered low risk for transferring significant BKD organisms through the egg to cause significant disease in progeny receiving proper care. The progeny of adults with BKD rank 6 are considered to be moderate risk and those with BKD rank 7 or greater are considered to be high risk. Given these data, the CESRF chose to rear only the progeny of females with a BKD rank of 6 or less through brood year 2001. Beginning with brood year 2002, the progeny of fish with BKD rank 6 (moderate risk) or greater (high risk) have not been used for production purposes at the CESRF. For additional information, see Appendix B.

Figure 4. Proportion of wild/natural females spawned at CESRF by BKD rank, 1997 - present.

Fecundity

Fish collected at Roza Dam are taken to the CESRF for spawning and/or research purposes. Egg loss due to spill or other reasons at spawn time is documented. When eggs are shocked, unfertilized (dead) eggs are hand-counted and remaining eggs are machine counted. Due to error associated with machine counts, average fecundity is calculated using spawn-time egg sample data (see discussion above under CESRF Spawning and Survival) and adding in documented egg loss for all females divided by the number of females (N) in the sample.

Table 35. Mean fecundity by age of adult females (BKD rank < 6) spawned at CESRF, 1997-present.

Brood Year	Wild/Natural (SN)						CESRF (HC)					
	Age-3		Age-4		Age-5		Age-3		Age-4		Age-5	
	N	Fecundity										
1997			105	3,842.0	4	4,069.9						
1998	2^{1}	3,908.9	161	3,730.3	15	4,322.5						
1999	3^{1}	4,470.4	183	3,968.1	14	4,448.6						
2000			224	3,876.5	2	5,737.9						
2001			72	3,966.9	9	4,991.2			18	4,178.9		
2002	1	1,038.0	205	3,934.7	7	4,329.4			60	3,820.0	1	4,449.0
2003			163	4,160.2	31	5,092.8			30	3,584.1	19	5,459.9
2004			224	3,555.4	2	4,508.3			42	3,827.2		
2005	1	1,769.0	218	3,815.5	5	4,675.1			38	3,723.9	5	4,014.7
2006			196	3,396.4	24	4,338.9			36	3,087.3		
2007			178	3,658.3	24	4,403.3			33	3,545.2	2	4,381.9
2008			207	3,814.0	10	4,139.9			58	3,898.0		
2009	1	2,498.2	195	4,018.9	6	4,897.1			34	3,920.3		
2010			185	4,103.0					54	3,996.6		
2011	1^{1}	3,853.1	179	4,000.1	4	5,692.1			41	3,843.3	2	4,098.2
2012			186	3,901.0	5	4,982.8			41	3,537.4	1	3,900.5
2013			159	3,760.3	6	5,068.0			36	3,498.7	2	4,955.3
2014			171	3,889.4	4	4,599.5			25	3,627.1	1	5,335.8
2015			166	3,963.0	2	5,249.3			14	3,975.1	1	3,793.3
2016			159	3,969.1	7	4,959.4			34	3,675.9	1	4,375.5
2017	2	2,150.6	161	4,013.8	1	3,805.5	1	1,645.0	53	3,609.1		
2018			130	3,452.4	6	3,643.9			48	3,358.6	1	2,853.4
2019	1	1,500.8	126	3,575.7	2	3,519.3	2	1,520.5	39	3,443.9	1	3,204.0
Mean				3,842.0		4,612.5				3,691.0		4,360.7

1. Given their length and fecundity, these fish may have been incorrectly aged.

Juvenile Salmon Evaluation

Food Conversion Efficiency

At the end of each month that fish are in the rearing ponds at the CESRF or the acclimation sites, a sample of fish are weighed and measured to estimate growth. These data, in addition to monthly mortality and pond feed data are entered into the juvenile growth and survival tracking database. Hatchery managers monitor food conversion (total pounds fed during a month divided by the total pounds gained by the fish) to track how well fish are converting feed into body mass and to evaluate the amount of feed that needs to be provided on a monthly basis. Average monthly food conversion and growth statistics for the CESRF facilities by brood year are provided in the following tables and figures.

Table 36. Mean food conversion (lbs fed/lbs gained) of CESRF juveniles by brood year and growth month, 1997 - present.

Brood Year	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar
1997	2.2		1.1	0.8	1.2	0.8	1.5	1.5		1.9		5.3
1998		1.0	0.9	1.0	0.9	0.8	2.4	1.4	2.1	-0.3	1.0	1.2
1999		1.0	1.1	1.1	1.2	1.5	1.8	1.0		-0.5	0.3	1.7
2000	0.8	0.8	1.0	1.5	1.2	1.4	2.2	2.0	1.6	2.1	2.5	2.4
2001	1.1	1.1	2.6	1.1	1.3	1.2	1.6	2.0	2.3	2.5	2.8	0.9
2002	0.9	1.0	1.4	1.2	1.4	1.1	1.5	2.2	4.0	-1.4	2.9	1.0
2003	0.6	1.0	0.9	1.4	1.2	1.2	4.6	0.7	0.9	-0.2	1.8	1.0
2004	0.9	1.0	1.2	1.6	2.4	1.2	1.7	2.0	2.8	0.9	-2.6	1.1
2005	0.8	0.7	1.3	1.0	1.3	1.2	1.5	-0.8	0.4	-0.4	2.2	
2006	0.8	0.7	0.6	0.9	0.8	1.0	1.6	-1.0		-2.6	0.6	0.6
2007	0.7	0.7	0.9	0.9	1.0	0.8	2.2	-1.6	1.9	2.0	0.7	0.9
2008	0.5	0.6	0.9	0.9	1.0		0.8	1.7	-1.1	0.9	0.9	0.6
2009	0.5	1.2	1.0	0.7	1.1	1.0	1.5	4.1	0.6	-2.8	0.8	0.9
2010	0.6	0.8	1.3	0.8	0.8	1.8	2.8	1.3		0.8	0.8	0.7
2011	0.9	0.6	0.8	0.7	1.1	0.9		0.7		0.6	0.9	1.0
2012	0.8	1.4	1.1	0.8	1.3	1.4	1.0	1.1		1.0	3.1	1.2
2013	0.6	0.9	0.7	0.9	1.0	1.1	2.7	1.4		0.4	0.8	2.5
2014	0.5	2.2	0.7	1.0	2.4	0.7	4.3	0.5		1.7	0.9	0.8
2015	0.8	0.9	0.8	1.0	1.3	0.9	-1.8	0.7	-0.8	1.0	0.5	0.9
2016	0.6	0.9	0.8	1.0	1.1	1.1	2.1	1.8	1.0	0.6	0.4	0.8
2017	0.8	0.8	0.9	0.9	1.7	0.8	2.1	2.9	3.8	0.4	0.1	0.6
2018	0.7	0.8	0.9	0.9	1.3	1.1		0.9		0.6	1.3	1.6
Mean	0.8	0.9	1.0	1.0	1.3	1.1	1.9	1.2	1.6	0.4	1.1	1.1

Length and Weight Growth Profiles

Figure 5. Mean fork length (cm) of CESRF juveniles by brood year and growth month, 1997 - present.

Figure 6. Mean Weight (fish/lb) of CESRF juveniles by brood year and growth month, 1997 - present.

Juvenile Fish Health Profile

Approximately 50-100 juveniles were sacrificed for juvenile fish health samples in the spring (usually in March) of their release year. Tissue samples from these fish were processed at USFWS laboratories in Olympia, Washington for presence of bacterial kidney disease (BKD) using enzyme-linked immunosorbent assay (ELISA) tests (see Female BKD Profiles and Appendix B for additional discussion). Fish were ranked high, moderate, or low (risk) based on the relative amounts of BKD in the tissue samples of the tested fish. These relative risk levels assume a good fish culture and rearing environment (i.e., water temperature and flows, nutrition, densities, etc. all must be conducive to good fish health). As indicated in Figure 7, juvenile fish released from the CESRF are largely in the low risk category for all brood years sampled to date.

Figure 7. ELISA-risk profile of CESRF juveniles by brood year, 1997 - present (data source: USFWS).
CESRF Spring Chinook juveniles released from Acclimation Sites (ELISA summary by Brood Year)

Incidence of Precocialism

For brood years 2002-2004, the YKFP tested two different feeding regimes to determine whether a slowed-growth regime reduces the incidence of precocialism without a reduction in postrelease survival. The two growth regimes tested were a normal (High) growth regime resulting in fish which were about 30/pound at release and a slowed growth regime (Low) resulting in fish which were about 45/pound at release. As a critical part of this study, a team from NOAA Fisheries conducted research to characterize the physiology and development of wild and hatchery-reared spring Chinook salmon in the Yakima River Basin. While precocious male maturation is a normal life-history strategy, the hatchery environment may be potentiating this developmental pathway beyond natural levels resulting in potential loss of anadromous adults, skewing of sex ratios, and negative genetic and ecological impacts on wild populations. Previous studies have indicated that age of maturation is significantly influenced by endogenous energy stores and growth rate at specific times of the year. These studies will help direct rearing strategies at the CESRF to allow production of hatchery fish with physiological and life-history attributes that are more similar to their wild cohorts.

Relevant Publications:

Larsen, D. A., B. R. Beckman, K. A. Cooper, D. Barrett, M. Johnston, P. Swanson, and W. W. Dickhoff. 2004. Assessment of High Rates of Precocious Male Maturation in a Spring

Chinook Salmon Supplementation Hatchery Program. Transactions of the American Fisheries Society 133:98-120.

Beckman, B.R. and Larsen D.A. 2005. Upstream Migration of Minijack (Age-2) Chinook Salmon in the Columbia River: Behavior, Abundance, Distribution, and Origin. Transactions of the American Fisheries Society 134:1520-1541.

Larsen, D.A., B.R. Beckman, C.R. Strom, P.J. Parkins, K.A. Cooper, D.E. Fast, W.W. Dickhoff. 2006. Growth Modulation Alters the Incidence of Early Male Maturation and Physiological Development of Hatchery-reared Spring Chinook Salmon: a Comparison with Wild Fish. Transactions of the American Fisheries Society 135:1017-1032.

Larsen, D.A., B.R. Beckman, and K.A. Cooper. 2010. Examining the Conflict between Smolting and Precocious Male Maturation in Spring (Stream-Type) Chinook Salmon. Transactions of the American Fisheries Society 139: 564-578.

Larsen, D.A., D.L. Harstad, C.R. Strom, M.V. Johnston, C.M. Knudsen, D.E. Fast, T.N. Pearsons, and B.R. Beckman. 2013. Early Life History Variation in Hatchery- and Natural-Origin Spring Chinook Salmon in the Yakima River, Washington. Transactions of the American Fisheries Society 142:2, 540-555.

Pearsons, T.N., C.L. Johnson, B.B. James, and G.M. Temple. 2009. Abundance and Distribution of Precociously Mature Male Spring Chinook Salmon of Hatchery and Natural Origin in the Yakima River. North American Journal of Fisheries Management 29:778-790.

CESRF Smolt Releases

The number of release groups and total number of fish released diverged from facility goals in some years. In brood year 1997, the Jack Creek acclimation facility was not yet complete and project policy and technical teams purposely decided to under-collect brood stock to allow a methodical testing of the new facility's operations with less risk to live fish, which resulted in the stocking of only 10 of the 18 raceways. In brood year 1998, the project did not meet facility release goals due to a biological specification that no more than 50% of returning wild fish be taken for brood stock. As a result only 16 raceways were stocked with progeny of the 1998 brood. In the same year, raceway 4 at the Jack Creek acclimation site suffered mechanical failures causing loss of flow and reduced oxygen levels and resulted in the loss of approximately one-half the fish in this raceway prior to release. In the drought year of 2001, a large number of returning adults presented with high enzyme-linked immunosorbent assay (ELISA) levels of Renibacterium salmoninarum, the causative agent of bacterial kidney disease (BKD). The progeny of these females were purposely destroyed. As a result, only nine raceways were stocked with fish. The project decided to use the fish from an odd raceway for a predator avoidance training sub-experiment (these fish were subsequently acclimated and released from the Easton acclimation site).

Table 37. CESRF total releases by brood year, treatment, and acclimation site.

Brood										
Year	Control 1	Treatment 2	CFJ					ESJ	JCJ	Total
1997	207,437	178,611	229,290	156,758		386,048				
1998^{3}	284,673	305,010	221,460	230,860	137,363	589,683				
1999	384,563	374,226	232,563	269,502	256,724	758,789				
2000	424,554	409,731	285,954	263,061	285,270	834,285				
2001^{4}	183,963	186,273	80,782	39,106	250,348	370,236				
2002	420,764	416,140	266,563	290,552	279,789	836,904				
2003	414,175	410,517	273,377	267,711	283,604	824,692				
2004^{5}	378,740	406,708	280,598	273,440	231,410	785,448				
2005	431,536	428,466	287,127	281,150	291,725	860,002				
2006	351,063	291,732	209,575	217,932	215,288	642,795				
2007	387,055	384,210	265,907	254,540	250,818	771,265				
2008	421,290	428,015	280,253	287,857	281,195	849,305				
2009	418,314	414,627	279,123	281,395	272,423	832,941				
2010	395,455	399,326	264,420	264,362	265,999	794,781				
2011	382,195	386,987	255,290	248,454	265,438	769,182				
2012	401,059	401,657	256,732	276,210	269,774	802,716				
2013	No Experiment	215,933	214,745	216,077	646,755					
2014	337,548	347,682	232,440	226,257	226,533	685,230				
2015	331,316	323,631	208,239	218,225	228,483	654,947				
2016	339,816	329,392	230,490	218,676	220,042	669,208				
2017	351,656	359,013	244,236	233,449	232,984	710,669				
2018	322,219	320,201	213,833	206,619	221,968	642,420				
Mean	360,447	357,245	241,554	237,312	246,822	714,468				

Table 38. CESRF average pond densities at release by brood year, treatment, and acclimation site.

Brood	Treatment		Acclimation Site		
Year	Control 1	Treatment 2	CFJ	ESJ	JCJ
1997	41,487	35,722	38,215	39,190	
1998^{3}	35,584	38,126	36,910	38,477	34,341
1999	42,729	41,581	38,761	44,917	42,787
2000	47,173	45,526	47,659	43,844	47,545
2001^{4}	41,116	41,667	40,391	6,518	41,725
2002	46,752	46,238	44,427	48,425	46,632
2003	46,019	45,613	45,563	44,619	47,267
2004^{5}	42,082	45,190	46,766	45,573	38,568
2005	47,948	47,607	47,855	46,858	48,621
2006	39,007	32,415	34,929	36,322	35,881
2007	43,006	42,690	44,318	42,423	41,803
2008	46,810	47,557	46,709	47,976	46,866
2009	46,479	46,070	46,521	46,899	45,404
2010	43,939	44,370	44,070	44,060	44,333
2011	42,466	42,999	42,548	41,409	44,240
2012	44,562	44,629	42,789	46,035	44,962
2013	No Experiment	35,989	35,791	36,013	
2014	37,505	38,631	38,740	37,710	37,756
2015	36,813	35,959	34,707	36,371	38,081
2016	37,757	36,599	38,415	36,446	36,674
2017	39,073	39,890	40,706	38,908	38,831
2018	35,802	35,578	35,639	34,437	36,995
Mean	42,100	41,650	41,483	40,146	41,682

1. Brood years 1997-2001: Optimum Conventional Treatment (OCT). Brood Years 2002-2004: Normal (High) growth. Brood Years 2005-2012: Normal feed at Cle Elum or accl. sites.
2. Brood years 1997-2001: Semi-natural Treatment (SNT). Brood Years 2002-2004: Slowed (Low) growth. Brood Year 2005, 2007-2012: saltwater transition feed at accl. Sites; BY2014-present: BioPRO vs BioVIT diet. Brood Year 2006: EWS diet at CESRF through May 3, 2007.
3. At the Jack Creek acclimation site only 4 of 6 raceways were stocked, and raceway 4 suffered mechanical failures resulting in the loss of about 20,000 OCT (control) fish.
4. High BKD incidence in adult broodstock reduced production to just 9 ponds (Clark Flat 1-2, Jack Creek, and Easton). Easton ponds were used for predator avoidance trained (PAT) fish and a single Cle Elum pond was spread between 6 ponds at Easton with crowders used to simulate pond densities for fish at other acclimation sites. These releases were excluded from mean pond density calculations by treatment.
5. At the Jack Creek acclimation site raceway 3 suffered mechanical failures resulting in the loss of about 45,000 high-growth (control) fish.

Mean length and weight at release by brood year are shown in Figures 5 and 6 under Juvenile Salmon Evaluation, length and weight growth profiles. Mark information and volitional release dates are given in Appendix A.

Smolt Outmigration Timing

The Chandler Juvenile Monitoring Facility (CJMF) located on the fish bypass facility of Chandler Canal at Prosser Dam (Rkm 75.6; Figure 1) serves as the cornerstone facility for estimating smolt production in the Yakima Basin for several species and stocks of salmonids. Daily species counts in the livebox at the CJMF are expanded by the canal entrainment, canal
survival, and sub-sampling rates in order to estimate daily passage at Prosser Dam (Neeley 2019). Expansion techniques for deriving Chandler smolt passage estimates are continually being reviewed and revised to incorporate new information. A subset of fish passing through the CJMF is sampled for presence of internal (CWT or PIT) or external (fin-clip) marks. All fish with marks are assumed to be of hatchery origin; otherwise, fish are presumed to be of natural origin.

Figure 8. Mean flow approaching Prosser Dam versus mean estimated smolt passage at Prosser of aggregate wild/natural and CESRF spring Chinook for outmigration years 1999-2019.

Smolt-to-Smolt Survival

OCT-SNT Treatment (Brood Years 1997-2001, Migration Years 1999-2003)
Results of this experiment have been published:
Fast, D. E., D. Neeley, D.T. Lind, M. V. Johnston, C.R. Strom, W. J. Bosch, C. M. Knudsen, S. L. Schroder, and B.D. Watson. 2008. Survival Comparison of Spring Chinook Salmon Reared in a Production Hatchery under Optimum Conventional and Seminatural Conditions. Transactions of the American Fisheries Society 137:1507-1518.

Abstract - We found insufficient evidence to conclude that seminatural treatment (SNT; i.e., rearing in camouflage-painted raceways with surface and underwater structures and underwater feeders) of juvenile Chinook salmon Oncorhynchus tshawytscha resulted in higher survival indices than did optimum conventional treatment (OCT; i.e., rearing in concrete raceways with surface feeding) for the specific treatments and environmental conditions tested. We reared spring Chinook salmon from fry to smolt in paired raceways under the SNT and OCT rearing treatments for five consecutive years. For four to nine SNT and OCT raceway pairs annually, we used passive integrated transponder, coded wire, and visual implant elastomer tags to compare survival indices for juvenile fish from release at three different acclimation sites 340-400 km downstream to passage at McNary Dam on the Columbia River, and for adults from release to adult return to Roza Dam in the upper Yakima basin. The observed differences in juvenile and adult survival between the SNT and OCT fish were either statistically insignificant, conflicting in
their statistical significance, or explained by significant differences in the presence of the causative agents of bacterial kidney disease in juvenile fish at release.

High-Low Growth Treatment (Brood Years 2002-04, Migration Years 2004-2006)
Two early-rearing nutritional regimes were tested using hatchery-reared Yakima Upper spring Chinook for brood years 2002 through 2004. A low nutrition-feeding rate (low treatment or low) was administered at the Cle Elum Hatchery through early rearing to determine whether that treatment would reduce the proportion of precocials produced compared to a conventional feeding rate during early rearing. The conventional feeding rate, which served as a control treatment, is referred to here as a high nutrition-feeding rate (high treatment or high). Feed was administered at a rate of 10 grams/fish for the low treatment and 15 grams/fish for the high treatment through mid-October, after which sufficient feed was administered to both sets of treated fish to meet their feeding demands. The treatments were allocated within pairs of raceways (blocks), there being a total of nine pairs. The Low nutritional feed (Low) had a significantly lower release-to-McNary survival than did the High nutritional feed (High), respective survivals being 18.1% and 21.2% ($\mathrm{P}<0.0001$; D. Neeley, Appendix B of 2008 annual report). The Low survival to McNary was consistently lower than the High at all sites in all years. Low-treated fish were smaller fish at the time of release and had somewhat later McNary passage times than high-treated fish.

Control versus Saltwater Transfer Treatment (Brood Years 2005, 2007- 2010; Migration Years

 2007, 2009-2013)Prior to releases in 2007, 2009-2013, two feed treatments were allocated to raceways within adjacent raceway pairs. Fish from each raceway within the pairs were fed BioVita prior to smoltification, then the BioVita feed for one of the raceway pairs was supplemented with a BioTransfer diet and the other was not. The intent of the experiment was to determine whether the Transfer-supplemented-feed treatment increased the rate of smoltification, the nonsupplemented treatment serving as the control. Analyses indicated no significant or substantial differences between the supplemented and non-supplemented feed when averaged over years. See Appendix F of our 2019 annual report for additional detail.

Control (Bio-Oregon) versus EWOS Feed Comparison (Brood Year 2006, Migration Year 2008)

This experimental design was similar to that described above for the Control versus saltwater transfer treatment study, with the standard Bio-Oregon pellets fed to half of the rearing ponds and an EWOS (www.ewos.com) diet fed to the other ponds. The different feed treatments only lasted about 6 weeks from the time of initial ponding as we found substantially higher mortalities for fish receiving the EWOS feed. From May 7, 2007 until these fish were released in 2008 all fish in this study received the Bio-Oregon diet. For the parameters of interest, we found no significant or substantial differences between the two feeding treatments (Appendix B of 2008 annual report).

Smolt-to-Adult Survival

Calculation of smolt-to-adult survival rates for Yakima River spring Chinook is complicated by the following factors:

1) Downstream of the confluence of the Yakima and Naches rivers the three populations of spring Chinook (Upper Yakima, Naches, and American) are aggregated. A subsample of the aggregate wild/natural populations is PIT-tagged as part of the Chandler juvenile sampling operation but their origin is not known at the time of tagging. Through 2003, the primary purpose of this subsampling effort was to derive entrainment and canal survival estimates (see 2 below). Due to issues such as tag retention and population representation, adult detections of smolts PIT-tagged at Chandler cannot be used in any valid smolt-to-adult survival analyses.
2) Smolt accounting at Prosser is based on statistical expansion of Chandler smolt trap sampling data using available flow data and estimated Chandler entrainment rates. Chandler smolt passage estimates are prepared primarily for the purpose of comparing relative wild versus CESRF passage estimates and not for making survival comparisons. While these Chandler smolt passage estimates represent the best available data, there may be a relatively high degree of error associated with these estimates due to inherent complexities, assumptions, and uncertainties in the statistical expansion process. Therefore, these estimates are subject to revision. We are continuing to develop methods to subdivide the wild/natural outmigration into Upper Yakima, Naches, and American components based on DNA samples of juveniles taken at Chandler since 1998.
3) Installation of adult PIT detection equipment at all three ladders at Prosser Dam was not completed until the fall of 2005. Therefore, detection of upstream-migrating PIT-tagged adult spring Chinook at Prosser Dam was not possible for all returning fish until the spring of 2006. Periods of high flow may preclude use of automated detection gear so 100% detection of upstream migrants is not possible in all years.
4) Through 2006, detection of upstream-migrating PIT-tagged adult spring Chinook at Roza Dam occurred at an approximate 100% rate only for marked CESRF fish and wild/natural fish taken for broodstock. The majority of wild/natural fish were passed directly back to the river without PIT interrogation.
5) For the 1997 brood (1999 out-migration), 400 Khz PIT-tags were used. Mainstem detection facilities were not configured to detect these tags at nearly the efficiency that they can detect the newer 134.2 kHz ISO tags. Although all marked adult fish are trapped and hand-wanded for PIT detections of adults at Roza Dam, the reliability of the 400 kHz detection gear and problems with hand-sampling in general likely precluded a complete accounting of all 1997 brood PIT returns.
6) All CESRF fish are adipose-fin clipped and subjected to higher harvest rates than unmarked wild/natural fish in marine and Columbia River mark-selective fisheries. No adjustments have yet been made in the following tables to account for differential harvest rates in these mark-selective fisheries.
7) PIT tag retention is a factor in estimating survival rates (Knudsen et al. 2009). No attempt has been made to correct the data in the following tables for estimates of tag retention.
8) The ISAB has indicated that "more attention should be given to the apparent documentation that PIT-tagged fish do not survive as well as untagged fish. This point has major implications for all uses of PIT-tagged fish as surrogates for untagged fish." Our data appear to corroborate this point (Tables 45-46). However, these data are not corrected for tag loss. If a fish loses its PIT tag after detection upon leaving the acclimation site, but before it returns as an adult to Roza Dam, it would be included only as a release in Table 45 and only as an adult return in Table 46. Knudsen et al. (2009) found that smolt-to-adult return rates (SARS) based on observed PIT tag recoveries were significantly underestimated by an average of 25% and that after correcting for tag loss, SARS of PIT-tagged fish were still 10% lower than SARS of non-PIT-tagged fish. Thus, the data in Table 45 under-represent "true" SARS for PIT-tagged fish and SARS for PIT-tagged and non-PIT-tagged fish are likely closer than those reported in Tables 45 and 46.
9) Due to issues relating to water permitting, size required for tagging, and allowing sufficient time for acclimation, CESRF juveniles are not allowed to migrate until at least March 15 of their smolt year. However, juvenile sampling observations at Roza Dam indicate that a substantial number of wild/natural juveniles migrate downstream during the summer, fall, and winter months prior to their smolt outmigration year (Figure 7). Comparison of SAR data for non-contemporaneously migrating juveniles may be invalid (see Copeland et al. 2015).

Given these complicating factors, Tables 40-46 present available smolt-to-adult survival data for Yakima River CESRF and wild/natural spring Chinook. Unfortunately, true "apples-to-apples" comparisons of CESRF and wild/natural smolt-to-adult survival rates are not possible from these tables due to complexities noted above. The reader is cautioned to correct these data for, or acknowledge the factors noted above prior to any use of these data.

Table 39. Estimated smolt passage at Chandler and smolt-to-adult return indices (Chandler smolt to Yakima R. mouth adult) for Yakima Basin wild/natural and CESRF-origin spring Chinook.

Brood Year	Smolt Migr. Year	Mean Flow ${ }^{1}$ at Prosser Dam	Estimated Smolt Passage at Chandler		CESRF smolt- to-smolt survival ${ }^{3}$	Yakima R. Mouth Adult Returns ${ }^{4}$		Smolt-to-Adult Return Index ${ }^{4}$	
			Wild/ Natural 2	CESRF Total		Wild/ Natural ${ }^{2}$	CESRF Total	Wild/ Natural ${ }^{2}$	CESRF Total
1982	1984	4134	381,857			6,753		1.8\%	
1983	1985	3421	146,952			5,198		3.5\%	
1984	1986	3887	227,932			3,932		1.7\%	
1985	1987	3050	261,819			4,776		1.8\%	
1986	1988	2454	271,316			4,518		1.7\%	
1987	1989	4265	76,362			2,402		3.1\%	
1988	1990	4141	140,218			5,746		4.1\%	
1989	1991		109,002			2,597		2.4\%	
1990	1992	1960	128,457			1,178		0.9\%	
1991	1993	3397	92,912			544		0.6\%	
1992	1994	1926	167,477			3,790		2.3\%	
1993	1995	4882	172,375			3,202		1.9\%	
1994	1996	6231	218,578			1,238		0.6\%	
1995	1997	12608	52,028			1,995		3.8\%	
1996	1998	5466	491,584			21,151		4.3\%	
1997	1999	5925	584,016	187,669	48.6\%	12,855	8,670	2.2\%	4.6\%
1998	2000^{5}	4946	199,416	303,688	51.5\%	8,240	9,782	4.1\%	3.2\%
1999	2001	1321	148,460	281,256	37.1\%	1,764	864	1.2\%	0.3\%
2000	2002	5015	467,359	366,950	44.0\%	11,434	4,819	2.4\%	1.3\%
2001	2003	3504	308,959	154,329	41.7\%	8,597	1,251	2.8\%	0.8\%
2002	2004	2439	169,397	290,950	34.8\%	3,743	2,557	2.2\%	0.9\%
2003	2005	1285	134,859	236,443	28.7\%	2,746	1,020	2.0\%	0.4\%
2004	2006	5652	133,238	300,508	38.3\%	2,802	4,482	2.1\%	1.5\%
2005	2007	4551	99,341	351,359	40.9\%	4,295	5,004	4.3\%	1.4\%
2006	2008	4298	120,013	265,485	41.3\%	6,004	10,577	5.0\%	4.0\%
2007	2009	5784	237,228	415,923	53.9\%	7,952	7,604	3.4\%	1.8\%
2008	2010	3592	220,950	382,878	45.1\%	7,385	8,036	3.3\%	2.1\%
2009	2011	9414	304,322	442,564	53.1\%	3,766	3,606	1.2\%	0.8\%
2010	2012	8556	258,106	391,446	49.3\%	6,602	5,592	2.6\%	1.4\%
2011	2013	4875	365,486	372,079	48.4\%	7,343	4,160	2.0\%	1.1\%
2012	2014	4923	263,266	408,222	50.9\%	3,969	1,932	1.5\%	0.5\%
2013	2015	1555	125,150	332,715	51.4\%	3,415	3,139	2.7\%	0.9\%
2014	2016	5765	185,442	403,938	58.9\%	1,800 ${ }^{6}$	2,864 ${ }^{6}$	1.0\% ${ }^{6}$	0.7\% ${ }^{6}$
2015	$2017{ }^{6}$	7804	208,929	273,248	41.7\%	816^{6}	1,320 ${ }^{6}$	$0.4 \%^{6}$	0.5\% ${ }^{6}$
2016	$2018{ }^{6}$	5652	131,489	290,644	43.4\%				
2017	2019^{6}	2476	175,427	319,579	45.0\%				

1. Mean flow (cfs) approaching Prosser Dam March 29-July 4 of juvenile migration year. No data available for migration year 1991. In high flow years (flows at or > 5000 cfs) operation of the Chandler smolt sampling facility may be precluded during portions of the outmigration. Data courtesy of U.S. BOR hydromet.
2. Aggregate of Upper Yakima, Naches, and American wild/natural populations.
3. Estimated smolt-to-smolt (release from upper Yakima River acclimation sites to Chandler) survival for CESRF juveniles.
4. Includes combined age-3 through age-5 returns. CESRF adult returns and smolt-to-adult survival values are understated relative to wild/natural values since these figures are not adjusted for differential harvest rates in mark selective fisheries in marine and lower Columbia River fisheries.
5. Available data were not sufficient to estimate juvenile flow-entrainment and passage of wild/natural fish.
6. Data for most recent year are preliminary; return data do not include age-5 adult fish.

Table 40. Estimated wild/natural smolt-to-adult return rates (SAR) based on adult detections of PIT tagged fish. Roza tagged smolts to Bonneville Dam adult returns. Footnotes follow Table 42.

Brood Year	Wild/Natural smolts tagged at Roza					
	Tagged	Age 3	Age 4	Age 5	Total	SAR ${ }^{1}$
1997	310	0	1	0	1	0.32\% ${ }^{2}$
1998	6,209	15	171	14	200	3.22\%
1999	2,179	2	8	0	10	0.46\%
2000	8,718	1	51	1	53	0.61\%
2001	7,804	9	52	3	64	0.82\%
2002	3,931	2	46	4	52	1.32\%
2003	1,733	0	6	1	7	0.40\%
2004	2,333	1	8	1	10	0.43\%
2005	1,200	0	8	0	8	0.67\%
2006	1,675	12	33	2	47	2.81\%
2007	3,795 ${ }^{\text {a }}$	6	47	2	55	1.45\%
2008	105	0	1	0	1	0.95\%
2009	2,087	0	3	1	4	0.19\%
2010	2,647	4	22	1	27	1.02\%
2011	2,473	1	9	1	11	0.44\%
2012			No Rel			
2013	524	1	5	0	6	1.15\%
2014	136	0	0	0	0	0.00\%
2015	181	0	0			
2016	382	0				

Table 41. Estimated CESRF smolt-to-adult return rates (SAR) based on adult detections of PIT tagged fish. Roza tagged smolts to Bonneville Dam adult returns.

	CESRF smolts tagged at Roza					
Brood	Number	Adult Returns at Age ${ }^{1}$				
Year	Tagged	Age 3	Age 4	Age 5	Total	SAR 1
1997	407	0	2	0	2	$0.49 \%^{2}$
1998	2,999	5	42	2	49	1.63%
1999	1,744	1	0	0	1	0.06%
2000	1,503	0	1	0	1	0.07%
2001	2,146	0	4	0	4	0.19%
2002	2,201	4	5	0	9	0.41%
2003	1,418	0	3	1	4	0.28%
2004	4,194	3	13	0	16	0.38%
2005	2,358	0	3	0	3	0.13%
2006	4,130	32	31	2	65	1.57%
2007	3,736	10	21	0	31	0.83%
2008	1,071	4	3	0	7	0.65%
2009	3,641	2	4	0	6	0.16%
2010	4,064	4	13	1	18	0.44%
2011	513	0	0	0	0	0.00%
2012	201	0	0	0	0	0.00%
2013	1,432	0	0	0	0	0.00%
2014	1,104	0	3	0	3	0.27%
2015	1,783	2	2		4	0.22%
2016	2,578	1				

1. CESRF adult returns and smolt-to-adult survival values are understated relative to wild/natural values since these figures are not adjusted for differential harvest rates in mark selective fisheries in marine and lower Columbia River fisheries.
2. The reliability of the 400 kHz detection gear precluded an accurate accounting of all 1997 brood PIT returns. Therefore, this is not a true SAR. It is presented for relative within-year comparison only and should NOT be compared to SARs for other years.

Table 42. Overall wild/natural smolt-to-adult return rates (SAR) based on juvenile and adult detections of fish PIT-tagged and released at Roza Dam (Table B. 74 in McCann et al. 2019). McNary smolts to Bonneville Dam adult returns. For 2010 and 2014 migration years, few if any wild smolts were PIT-tagged at Roza.

Juvenile migration year	Smolts arriving $\mathrm{MCN}^{\mathrm{A}}$	MCN-to-BOA without Jacks			MCN-to-BOA with Jacks		
		$\% \text { SAR }$ Estimate	Non-parametric CI		\%SAR Estimate	Non-parametric CI	
			90\% LL	90\% UL		90\% LL	90\% UL
2000	2,581	6.82	6.04	7.72	7.40	6.58	9.34
2001	521	1.54	0.75	2.52	1.92	0.98	3.04
2002	2,130	2.25	1.75	2.83	2.30	1.79	2.87
2003	2,143	2.47	1.97	3.03	2.89	2.34	3.50
2004	1,297	3.70	2.90	4.57	3.78	2.94	4.64
2005	521	1.34	0.57	2.22	1.34	0.57	2.22
2006	565	1.59	0.74	2.53	1.77	0.87	2.80
2007	362	1.93	0.84	3.17	1.93	0.84	3.17
2008	509	6.87	4.97	8.80	9.23	7.05	11.40
2009	983	4.99	3.85	6.29	5.60	4.35	6.97
$2010^{\text {B }}$	---	--	---	---	---	--	---
2011	411	0.97	0.23	1.82	0.97	0.23	1.82
2012	826	2.79	1.89	3.88	3.27	2.28	4.43
2013	704	1.42	0.70	2.19	1.56	0.82	2.37
$2014{ }^{\text {B }}$	---	--	---	---	---	--	---
2015	238	2.10	0.57	4.11	2.52	0.76	4.86
$2016^{\text {B }}$	---	--	---	---	---	--	---
$2017{ }^{\text {B }}$	---	--	---	---	---	--	---
Arithmetic mean (incl. zeros)		2.91			3.32		
Geometric mean (excl. zeros)		2.43			2.69		

${ }^{A}$ Estimated population of tagged study fish alive to MCN tailrace (included fish detected at the dam and those estimated to pass undetected). CJS estimation of S1 uses PIT-tags detected on bird colonies in the Columbia River estuary and adult detections to augment the NOAA Trawl detections below BON and the Logit link.
${ }^{\text {B }}$ Too few or no PIT-tags released to obtain reliable estimate of smolts arriving at MCN. Therefore, estimate of SAR not possible.

Table 43. Overall CESRF smolt-to-adult return rates (SAR) based on juvenile and adult detections of PIT tagged fish (Table B. 80 in McCann et al. 2019). McNary smolts to Bonneville Dam adult returns.

Juvenile migration year	Smolts arriving $\mathrm{MCN}^{\mathrm{A}}$	MCN-to-BOA without Jacks			MCN-to-BOA with Jacks		
		\%SAR Estimate	Non-parametric CI		\%SAR Estimate	Non-parametric CI	
			90\% LL	90\% UL		90\% LL	90\% UL
2000	14,416	3.61	3.34	3.91	3.95	3.65	4.26
2001	9,269	0.28	0.20	0.37	0.29	0.20	0.38
2002	11,753	1.36	1.18	1.54	1.72	1.52	1.91
2003	11,974	0.59	0.48	0.71	0.86	0.72	1.00
2004	7,986	1.54	1.31	1.78	1.85	1.60	2.11
2005	5,789	0.66	0.48	0.84	0.78	0.59	0.98
2006	10,285	1.23	1.06	1.43	1.59	1.39	1.81
2007	12,654	1.01	0.87	1.16	1.51	1.32	1.69
2008	11,752	3.15	2.86	3.43	5.03	4.64	5.39
2009	15,386	1.82	1.64	2.00	2.29	2.08	2.50
2010	12,479	1.51	1.33	1.71	2.53	2.27	2.78
2011	11,886	0.93	0.79	1.08	1.20	1.03	1.37
2012	15,736	1.22	1.08	1.37	1.76	1.57	1.94
2013	13,261	1.38	1.20	1.54	1.95	1.74	2.17
2014	12,856	0.58	0.48	0.70	0.84	0.72	0.98
2015	10,639	1.02	0.85	1.20	1.86	1.62	2.11
2016	13,837	0.87	0.74	1.01	1.52	1.35	1.71
$2017{ }^{\text {B }}$	11,199	0.62	0.50	0.75	0.74	0.60	0.89
Arithmetic mean (incl. zeros)		1.30			1.79		
Geometric mean (excl. zeros)		1.09			1.49		

${ }^{\text {A }}$ Estimated population of tagged study fish alive to MCN tailrace (included fish detected at the dam and those estimated to pass undetected). CJS estimation of S1 uses PIT-tags detected on bird colonies in the Columbia River estuary and adult detections to augment the NOAA Trawl detections below BON and the Logit link function.
${ }^{B}$ Incomplete, 2-salt returns through June 28, 2019.

Table 44. Estimated release-to-adult survival of PIT-tagged CESRF fish (CESRF tagged smolts to Bonneville and Roza Dam adult returns).

	Brood										Number
Near	Tagged 1	Age3	Age4	Age5	Total	SAR	Age3	Age4	Age5	Total	SAR
1997^{2}	39,892	18	182	4	204	0.51%	65	517	16	598	1.50%
1998	37,388	49	478	48	575	1.54%	54	310	34	398	1.06%
1999	38,793	1	25	1	27	0.07%	1	22	0	23	0.06%
2000	37,582	42	159	2	203	0.54%	37	112	1	150	0.40%
2001	36,523	32	71	0	103	0.28%	22	58	0	80	0.22%
2002^{3}	39,003	25	119	4	148	0.38%	15	80	2	97	0.25%
2003	38,916	7	37	1	45	0.12%	3	27	1	31	0.08%
2004	36,426	37	123	4	164	0.45%	24	98	3	125	0.34%
2005	39,119	63	126	2	191	0.49%	44	96	2	142	0.36%
2006	38,595	221	354	15	590	1.53%	187	264	11	462	1.20%
2007	38,618	73	279	3	355	0.92%	55	182	3	240	0.62%
2008	39,013	135	192	3	330	0.85%	81	132	2	215	0.55%
2009	36,239	32	110	3	145	0.40%	23	85	2	110	0.30%
2010	38,737	85	187	6	278	0.72%	62	142	3	207	0.53%
2011	38,165	77	191	2	270	0.71%	57	122	2	181	0.47%
2012	38,343	33	75	0	108	0.28%	10	59	0	69	0.18%
2013	38,278	90	110	0	200	0.52%	68	84	0	152	0.40%
2014	38,119	92	121	1	214	0.56%	64	66	1	131	0.34%
2015	38,029	15	69		84	0.22%	6	51		57	0.15%
2016	38,061	34					20				

1. When tag detection data are available, this is the number of unique PIT tags physically detected leaving the acclimation sites. Otherwise, this is the number of fish PIT tagged less documented mortalities of PIT-tagged fish from tagging to release.
2. BY1997 used 400 kHz tags and Bonneville Dam was not fully configured for adult detection of this type of tag; therefore we saw more detections at Roza Dam where fish were manually wanded for adult PIT detections.
3. Includes HxH fish beginning with this brood year.

Table 45. Estimated release-to-adult survival of non-PIT-tagged CESRF fish (CESRF tagged smolts to Roza Dam adult returns).

Brood Year	Number Tagged ${ }^{1}$	Adult Returns to Roza Dam				
		Age3	Age4	Age5	Total	SAR
$1997{ }^{2}$	346,156	623	5,663	120	6,406	1.85\%
1998	552,295	936	5,834	534	7,304	1.32\%
1999	719,996	103	652	13	768	0.11\%
2000	796,703	1,005	2,764	69	3,837	0.48\%
2001	333,713	290	791	9	1,091	0.33\%
$2002{ }^{3}$	797,901	332	1,771	135	2,238	0.28\%
2003	785,776	115	1,568	14	1,696	0.22\%
2004	749,022	683	3,688	202	4,574	0.61\%
2005	820,883	1,012	5,302	22	6,336	0.77\%
2006	604,200	2,383	6,427	287	9,096	1.51\%
2007	732,647	1,024	5,645	87	6,756	0.92\%
2008	810,292	1,552	3,680	76	5,308	0.66\%
2009	796,702	389	3,106	67	3,562	0.45\%
2010	756,044	721	3,618	28	4,368	0.58\%
2011	731,017	780	2,318	51	3,149	0.43\%
2012	764,373	172	2,274	12	2,458	0.32\%
2013	608,477	718	2,386	0	3,104	0.51\%
2014	647,111	644	1,511	10	2,165	0.33\%
2015	616,918	237	1,242		1,479	0.24\%
2016	631,147	158				

1. These fish were adipose fin-clipped, coded-wire tagged, and (beginning with 4 of 16 ponds in 1998) elastomer eye tagged. This is the number of fish physically counted at tagging.
2. BY1997 used 400 kHz tags and Bonneville Dam was not fully configured for adult detection of this type of tag; therefore we saw more detections at Roza Dam where fish were manually wanded for adult PIT detections.
3. Includes HxH fish beginning with this brood year.

Harvest Monitoring

Yakima Basin Fisheries

For spring fisheries in the Yakima River Basin, both the WDFW and the Yakama Nation employ two technicians and one biologist to monitor and evaluate in-basin harvest in the respective sport and tribal fisheries. Harvest monitoring consists of on-the-water surveys to collect catch data and to record tag information (e.g., elastomer, CWT, etc.) where possible for adipose-clipped fish. Survey data are expanded for time, area, and effort using standard methods to derive estimates of total in-basin harvest by fishery type (sport and tribal) and catch type (CESRF or wild denoted by adipose presence/absence).

Table 46. Spring Chinook harvest in the Yakima River Basin, 1985-present.

Year	Tribal		Non-Tribal		River Totals			Harvest Rate ${ }^{1}$
	CESRF	Wild	CESRF	Wild	CESRF	Wild	Total	
1985		865		0		865	865	19.0\%
1986		1,340		0		1,340	1,340	14.2\%
1987		517		0		517	517	11.6\%
1988		444		0		444	444	10.5\%
1989		747		0		747	747	15.2\%
1990		663		0		663	663	15.2\%
1991		32		0		32	32	1.1\%
1992		345		0		345	345	7.5\%
1993		129		0		129	129	3.3\%
1994		25		0		25	25	1.9\%
1995		79		0		79	79	11.9\%
1996		475		0		475	475	14.9\%
1997		575		0		575	575	18.1\%
1998		188		0		188	188	9.9\%
1999		604		0		604	604	21.7\%
2000	53	2,305		100	53	2,405	2,458	12.9\%
2001	572	2,034	1,252	772	1,825	2,806	4,630	19.9\%
2002	1,373	1,207	492	36^{2}	1,865	1,243	3,108	20.6\%
2003	134	306	0	0	134	306	440	6.3\%
2004	289	712	569	109^{2}	858	820	1,679	11.0\%
2005	46	428	0	0	46	428	474	5.4\%
2006	246	354	0	0	246	354	600	9.5\%
2007	123	156	0	0	123	156	279	6.5\%
2008	521	414	586	11^{2}	1,107	426	1,532	17.8\%
2009	1,089	715	541	8^{2}	1,630	722	2,353	19.4\%
2010	345	194	1,154	48^{2}	1,499	241	1,741	13.2\%
2011	1,361	1,261	1,579	$179{ }^{2}$	2,940	1,440	4,380	24.4\%
2012	1,220	1,302	735	63^{2}	1,955	1,364	3,320	27.5\%
2013	846	975	786	46^{2}	1,632	1,021	2,653	25.9\%
2014	576	715	826	54^{2}	1,402	769	2,171	19.2\%
2015	121	271	385	38^{2}	506	309	815	8.7\%
2016	103	185	132	24^{2}	235	209	444	6.4\%
2017	217	201	750	$104{ }^{2}$	967	305	1,272	17.8\%
2018	154	115	259	20^{2}	413	136	548	15.2\%
2019	24	16	0	0	24	16	40	1.8\%
Mean	493	608	529	79	1,021	613	1,126	13.3\%

1. Harvest rate is the total Yakima Basin harvest as a percentage of the Yakima River mouth run size.
2. Includes estimate of post-release mortality of unmarked fish.

Appendix B. Yakima River / CESRF Spring Chinook Salmon - Yakama Nation Data Summary 2019 Annual Report, May 29, 2020

Columbia Basin Fisheries

Standard run reconstruction techniques are employed to derive estimates of harvest from the Columbia River mouth to the Yakima River mouth for spring Chinook. Data from databases maintained by the United States versus Oregon Technical Advisory Committee (TAC) are used to obtain harvest rate estimates downstream of the Yakima River for the aggregate Yakima River spring Chinook population and to estimate passage losses from Bonneville through McNary reservoirs. These data, combined with the Prosser Dam counts and estimated harvest below Prosser, are used to derive a Columbia River mouth run size estimate and Columbia River mainstem harvest estimate for Yakima spring Chinook.

Table 47. Estimated run size, harvest, and harvest rates of Yakima Basin spring Chinook in Columbia River mainstem and terminal area fisheries, 1986-present.

Year	Columbia R. Mouth Run Size	Col. R. Mouth to BON Harvest	BON to McNary Harvest	Yakima R. Mouth Run Size	Yakima River Harvest	Columbia Basin Harvest Summary			Col. Basin Harvest Rate	
						Total	Wild	CESRF	Total	Wild
1986	13,624	282	858	9,439	1,340	2,479	2,479	0	18.2\%	18.2\%
1987	6,204	97	420	4,443	517	1,034	1,034	0	16.7\%	16.7\%
1988	5,718	366	442	4,246	444	1,252	1,252	0	21.9\%	21.9\%
1989	8,981	214	743	4,914	747	1,704	1,704	0	19.0\%	19.0\%
1990	6,990	354	514	4,372	663	1,531	1,531	0	21.9\%	21.9\%
1991	4,675	185	315	2,906	32	533	533	0	11.4\%	11.4\%
1992	6,233	103	405	4,599	345	853	853	0	13.7\%	13.7\%
1993	5,155	44	337	3,919	129	510	510	0	9.9\%	9.9\%
1994	2,265	88	126	1,302	25	239	239	0	10.6\%	10.6\%
1995	1,410	1	86	666	79	166	166	0	11.8\%	11.8\%
1996	5,909	6	320	3,179	475	801	801	0	13.6\%	13.6\%
1997	5,224	3	379	3,173	575	957	957	0	18.3\%	18.3\%
1998	2,889	3	165	1,903	188	356	356	0	12.3\%	12.3\%
1999	4,174	4	212	2,781	604	820	820	0	19.6\%	19.6\%
2000	28,825	58	1,824	19,101	2,458	4,340	4,214	126	15.1\%	15.1\%
2001	32,610	980	4,566	24,157	4,630	10,177	5,862	4,314	31.2\%	29.3\%
2002	25,751	1,300	3,333	15,828	3,108	7,740	2,946	4,794	30.1\%	25.2\%
2003	10,454	291	1,069	7,231	440	1,799	1,097	702	17.2\%	16.1\%
2004	24,644	1,041	2,716	16,847	1,679	5,436	3,166	2,269	22.1\%	17.5\%
2005	13,579	361	1,145	9,605	474	1,980	1,581	399	14.6\%	13.7\%
2006	12,457	318	1,191	6,600	600	2,108	1,230	878	16.9\%	15.2\%
2007	5,311	177	539	4,460	279	995	496	499	18.7\%	16.4\%
2008	13,269	1,273	2,479	9,311	1,532	5,284	1,629	3,655	39.8\%	28.6\%
2009	14,389	1,271	1,695	11,423	2,353	5,319	1,571	3,748	37.0\%	27.1\%
2010	19,676	1,728	3,755	13,782	1,741	7,224	1,897	5,327	36.7\%	25.7\%
2011	23,940	1,127	2,373	18,535	4,380	7,880	2,883	4,997	32.9\%	24.3\%
2012	17,622	871	1,914	12,626	3,320	6,105	2,518	3,587	34.6\%	27.8\%
2013	15,815	932	1,783	10,623	2,653	5,368	2,256	3,111	33.9\%	27.3\%
2014	16,985	703	1,927	11,857	2,171	4,801	1,936	2,865	28.3\%	21.2\%
2015	11,759	466	1,228	9,838	815	2,509	1,308	1,200	21.3\%	16.3\%
2016	10,412	467	1,277	7,292	444	2,189	1,150	1,039	21.0\%	17.8\%
2017	12,483	504	1,186	7,553	1,272	2,962	993	1,969	23.7\%	15.3\%
2018	6,302	251	698	3,739	548	1,497	486	1,011	23.8\%	17.2\%
$2019{ }^{1}$	3,677	66	156	2,250	40	263	89	174	7.1\%	6.0\%
Mean	11,747	469	1,241	8,074	1,209	2,918	1,546	1,373	21.3\%	18.3\%

1. Preliminary.

Appendix B. Yakima River / CESRF Spring Chinook Salmon - Yakama Nation Data Summary

Marine Fisheries

Based on available CWT information, harvest managers have long assumed that Columbia River spring Chinook are not harvested in any abundance in marine fisheries as the timing of their ocean migration does not generally overlap either spatially or temporally with the occurrence of marine fisheries (TAC 1997). The Regional Mark Information System (RMIS) will be queried regularly for any CWT recoveries of CESRF releases in ocean or Columbia River mainstem fisheries. Table 49 gives the results of a query of the RMIS database run on Dec. 4, 2019 for CESRF spring Chinook CWTs released in brood years 1997-2014 and Figure 8 shows recovery locations for CWTs recovered in marine fisheries 2008-2012. Based on the information reported to RMIS to date, it is believed that marine harvest accounts for about $0-3 \%$ of the total harvest of Yakima Basin spring Chinook. The apparent increase for brood year 2013 may be attributable to a number of factors including: preliminary data or changes in fish distribution, ecological conditions, or sampling rates. CWT recovery data for brood year 2015 were considered too incomplete to report at this time.

Table 48. Marine and freshwater recoveries of CWTs from brood year 1997-2014 releases of spring Chinook from the CESRF as reported to the Regional Mark Information System (RMIS) 04 Dec, 2019.

Brood	Observed CWT Recoveries			Expanded CWT Recoveries		
Year	Marine	Fresh	Marine $\%$	Marine	Fresh	Marine \%
1997	5	56	8.2%	8	321	2.4%
1998	2	53	3.6%	2	228	0.9%
1999		2	0.0%		9	0.0%
2000		14	0.0%		34	0.0%
2001		1	0.0%		1	0.0%
2002		7	0.0%		36	0.0%
2003		4	0.0%		10	0.0%
2004	2	154	1.3%	15	526	2.8%
2005	2	96	2.0%	2	304	0.7%
2006	14	328	4.1%	16	1160	1.4%
2007	8	145	5.2%	13	1139	1.1%
2008	5	245	2.0%	7	1634	0.4%
2009	4	91	4.2%	7	588	1.2%
2010	4	164	2.4%	9	948	0.9%
2011	5	186	2.6%	5	1030	0.5%
2012	4	73	5.2%	2	273	0.7%
2013	9	65	12.2%	20	534	3.6%
2014	4	68	5.6%	8	542	1.5%

1. Reporting of CWT recoveries to the RMIS database typically lags actual fisheries by one to two years. Therefore, CWT recovery data for brood year 2014 are considered preliminary or incomplete.

Figure 9. Marine recovery locations of coded-wire-tagged CESRF spring Chinook, recovery years 2008-2012.

Literature Cited

BPA (Bonneville Power Administration). 1990. Yakima-Klickitat Production Project Preliminary Design Report and Appendices. Bonneville Power Administration, Portland, OR.

Copeland, T., D.A. Venditti, and B.R. Barnett. 2014. The Importance of Juvenile Migration Tactics to Adult Recruitment in Stream-Type Chinook Salmon Populations. Transactions of the American Fisheries Society 143:1460-1475.

Knudsen C.M., S.L. Schroder, T.N. Pearsons, J.A. Rau, A.L. Fritts, and C.R. Strom. 2003. Monitoring Phenotypic and Demographic Traits of upper Yakima River Hatchery and Wild Spring Chinook: Gametic and juvenile Traits. YKFP Annual Report 2002.

Knudsen, C.M. (editor). 2004. Reproductive Ecology of Yakima River hatchery and wild spring Chinook. Annual Report 2003, Project Number 1995-063-25. BPA Report DOE/BP-00013756-3.

Knudsen, C. M., M. V. Johnston, S. L. Schroder, W. J. Bosch, D. E. Fast, and C. R. Strom. 2009. Effects of Passive Integrated Transponder Tags on Smolt-to-Adult Recruit Survival, Growth, and Behavior of Hatchery Spring Chinook Salmon. North American Journal of Fisheries Management 29:658-669.

Maynard, D. J., T. A. Flagg, and C. V. W. Mahnken. 1995. A review of seminatural culture strategies for enhancing the post-release survival of anadromous salmonids. Am. Fish. Soc. Symp. 15:307-314.

McCann, J., B. Chockley, E. Cooper, B. Hsu, G. Scheer, S. Haeseker, R. Lessard, T. Copeland, E. Tinus, A. Storch, and D. Rawding. 2019. Comparative Survival Study of PIT-tagged Spring/Summer/Fall Chinook, Summer Steelhead, and Sockeye 2019 Annual Report (BPA Project \#19960200). Fish Passage Center, Portland, Oregon.

Neeley, D. 2019. 2018 Annual Chandler Certification for Yearling Outmigrating Spring Chinook Smolt. Appendix C in Fiander et al., editors, Yakima/Klickitat Fisheries Project Monitoring and Evaluation, Yakima Subbasin, Project Number 1995-063-25, 275 electronic pages (https://www.cbfish.org/Document.mvc/Viewer/P166893).

NPPC (Northwest Power Planning Council). 1982. Columbia River Basin Fish and Wildlife Program. Adopted November 15, 1982. Northwest Power Planning Council, Portland, OR.

TAC (United States versus Oregon Technical Advisory Committee). 1997. 1996 All Species Review, Columbia River Fish Management Plan. August 4, 1997. Columbia River InterTribal Fish Commission, Portland, Oregon.

Appendix A. Tag and Release Information by Cle Elum Pond Id, Brood Years 2006-2018.

Brood Year	C.E. Pond	Accl. Pond	Treatment ${ }^{1}$				Tag Information		First Release	Last Release	CWT Code	No. PIT	$\begin{gathered} \text { No. } \\ \text { CWT } \end{gathered}$	Est. Tot. Release ${ }^{2}$
			/Avg	BKD										
2006	CLE01	CFJ04	BIO	WW	3.5	Right	Red	Snout	3/15/2008	5/14/2008	190101	2,000	36,945	38,607
2006	CLE02	CFJ03	EWS	WW	3.5	Left	Red	Snout	3/15/2008	5/14/2008	190102	2,000	31,027	32,790
2006	CLE03	ESJ02	BIO	WW	3.2	Right	Green	Snout	3/15/2008	5/14/2008	190103	2,000	36,931	38,762
2006	CLE04	ESJ01	EWS	WW	3.2	Left	Green	Snout	3/15/2008	5/14/2008	190104	2,000	29,635	31,400
2006	CLE05	JCJ02	BIO	WW	3.3	Right	Orange	Snout	3/15/2008	5/14/2008	190105	2,000	36,735	38,383
2006	CLE06	JCJ01	EWS	WW	3.3	Left	Orange	Snout	3/15/2008	5/14/2008	190106	2,000	28,984	30,680
2006	CLE07	ESJ04	BIO	WW	3.4	Right	Green	Snout	3/15/2008	5/14/2008	190107	2,000	38,212	40,006
2006	CLE08	ESJ03	EWS	WW	3.4	Left	Green	Snout	3/15/2008	5/14/2008	190108	2,000	32,726	34,519
2006	CLE09	CFJ02	BIO	WW	3.4	Right	Red	Snout	3/15/2008	5/14/2008	190109	2,000	36,485	38,097
2006	CLE10	CFJ01	EWS	WW	3.4	Left	Red	Snout	3/15/2008	5/14/2008	190110	2,000	29,907	31,647
2006	CLE11	JCJ04	BIO	WW	3.3	Right	Orange	Snout	3/15/2008	5/14/2008	190111	2,000	39,491	40,703
2006	CLE12	JCJ03	EWS	WW	3.3	Left	Orange	Snout	3/15/2008	5/14/2008	190112	2,000	33,418	35,273
2006	CLE13	ESJ06	BIO	WW	3.4	Right	Green	Snout	3/15/2008	5/14/2008	190113	2,000	38,609	39,841
2006	CLE14	ESJ05	EWS	WW	3.4	Left	Green	Snout	3/15/2008	5/14/2008	190114	2,000	31,573	33,404
2006	CLE15	JCJ06	BIO	WW	3.4	Right	Orange	Snout	3/15/2008	5/14/2008	190115	2,000	36,844	38,619
2006	CLE16	JCJ05	EWS	WW	3.4	Left	Orange	Snout	3/15/2008	5/14/2008	190116	2,000	29,857	31,630
2006	CLE17	CFJ06	BIO	HH	3.2	Right	Red	Posterior Dorsal	3/15/2008	5/14/2008	190117	4,000	34,299	38,045
2006	CLE18	CFJ05	EWS	HH	3.2	Left	Red	Posterior Dorsal	3/15/2008	5/14/2008	190118	4,000	26,643	30,389

[^7]
Appendix A. Tag and Release Information by Cle Elum Pond Id, Brood Years 2006-2018.

Brood Year	C.E. Pond	Accl. Pond	Treatment ${ }^{1}$			Tag Information			First Release	Last Release	CWT Code	No.$P I T$	$\begin{aligned} & \text { No. } \\ & \text { CWT } \end{aligned}$	Est. Tot. Release ${ }^{2}$
			/Avg	BKD										
2007	CLE01	JCJ06	BIO	WW	2.8	Right	Orange	Snout	3/15/2009	5/15/2009	190151	2,000	38,044	39,840
2007	CLE02	JCJ05	STF	WW	2.8	Left	Orange	Snout	3/15/2009	5/15/2009	190152	2,000	40,066	41,843
2007	CLE03	JCJ04	BIO	WW	2.7	Right	Orange	Snout	3/15/2009	5/15/2009	190153	2,000	40,843	42,647
2007	CLE04	JCJ03	STF	WW	2.7	Left	Orange	Snout	3/15/2009	5/15/2009	190154	2,000	40,196	41,979
2007	CLE05	CFJ06	BIO	WW	2.8	Right	Red	Snout	3/15/2009	5/15/2009	190155	2,000	40,855	42,717
2007	CLE06	CFJ05	STF	WW	2.8	Left	Red	Snout	3/15/2009	5/15/2009	190156	2,000	40,475	42,345
2007	CLE07	ESJ06	BIO	WW	2.6	Right	Green	Snout	3/15/2009	5/15/2009	190157	2,000	42,549	44,387
2007	CLE08	ESJ05	STF	WW	2.6	Left	Green	Snout	3/15/2009	5/15/2009	190158	2,000	43,243	45,080
2007	CLE09	CFJ02	BIO	HH	2.7	Right	Red	Posterior Dorsal	3/15/2009	5/15/2009	190159	4,000	43,803	47,625
2007	CLE10	CFJ01	STF	HH	2.7	Left	Red	Posterior Dorsal	3/15/2009	5/15/2009	190160	4,000	43,256	47,038
2007	CLE11	ESJ02	BIO	WW	2.8	Right	Green	Snout	3/15/2009	5/15/2009	190161	2,000	41,098	42,945
2007	CLE12	ESJ01	STF	WW	2.8	Left	Green	Snout	3/15/2009	5/15/2009	190162	2,001	40,535	42,405
2007	CLE13	ESJ04	BIO	WW	2.7	Right	Green	Snout	3/15/2009	5/15/2009	190163	2,009	39,308	41,190
2007	CLE14	ESJ03	STF	WW	2.7	Left	Green	Snout	3/15/2009	5/15/2009	190164	2,000	36,663	38,533
2007	CLE15	JCJ02	BIO	WW	2.9	Right	Orange	Snout	3/15/2009	5/15/2009	190165	2,000	40,312	42,083
2007	CLE16	JCJ01	STF	WW	2.9	Left	Orange	Snout	3/15/2009	5/15/2009	190166	2,000	40,594	42,426
2007	CLE17	CFJ03	STF	WW	2.8	Right	Red	Snout	3/15/2009	5/15/2009	190167	2,000	40,687	42,561
2007	CLE18	CFJ04	BIO	WW	2.8	Left	Red	Snout	3/15/2009	5/15/2009	190168	2,000	41,704	43,621

[^8]
Appendix A. Tag and Release Information by Cle Elum Pond Id, Brood Years 2006-2018.

Brood Year	C.E. Pond	Accl. Pond	/Avg BKD				Tag Information		First Release	Last Release	CWT Code	No. $P I T$	$\begin{gathered} \text { No. } \\ \text { CWT } \end{gathered}$	Est. Tot. Release ${ }^{2}$
2008	CLE01	ESJ01	STF	WW	3.3	Right	Orange	Snout	3/15/2010	5/11/2010	190191	2,000	44,917	46,704
2008	CLE02	ESJ02	BIO	WW	3.3	Left	Orange	Snout	3/15/2010	5/11/2010	190192	2,000	45,576	47,414
2008	CLE03	CFJ03	STF	WW	3.2	Right	Red	Snout	3/15/2010	5/11/2010	190193	2,000	44,099	45,931
2008	CLE04	CFJ04	BIO	WW	3.2	Left	Red	Snout	3/15/2010	5/11/2010	190194	2,000	42,464	44,271
2008	CLE05	JCJ05	STF	WW	3.0	Right	Green	Snout	3/15/2010	5/11/2010	190195	2,000	46,118	47,936
2008	CLE06	JCJ06	BIO	WW	3.0	Left	Green	Snout	3/15/2010	5/11/2010	190196	2,000	43,708	45,466
2008	CLE07	ESJ05	STF	WW	3.2	Right	Orange	Snout	3/15/2010	5/11/2010	190197	2,000	48,468	50,299
2008	CLE08	ESJ06	BIO	WW	3.2	Left	Orange	Snout	3/15/2010	5/11/2010	190198	2,000	47,611	49,419
2008	CLE09	CFJ05	STF	HH	2.9	Right	Red	Posterior Dorsal	3/15/2010	5/11/2010	190199	4,000	45,169	48,942
2008	CLE10	CFJ06	BIO	HH	2.9	Left	Red	Posterior Dorsal	3/15/2010	5/11/2010	190201	4,000	44,493	48,254
2008	CLE11	JCJ01	STF	WW	3.3	Right	Green	Snout	3/15/2010	5/11/2010	190202	2,000	44,583	46,413
2008	CLE12	JCJ02	BIO	WW	3.3	Left	Green	Snout	3/15/2010	5/11/2010	190203	2,000	45,086	46,856
2008	CLE13	ESJ03	STF	WW	3.1	Right	Orange	Snout	3/15/2010	5/11/2010	190204	2,000	45,518	47,317
2008	CLE14	ESJ04	BIO	WW	3.1	Left	Orange	Snout	3/15/2010	5/11/2010	190205	2,000	44,879	46,704
2008	CLE15	CFJ01	STF	WW	3.2	Right	Red	Snout	3/15/2010	5/11/2010	190206	2,000	45,169	46,893
2008	CLE16	CFJ02	BIO	WW	3.2	Left	Red	Snout	3/15/2010	5/11/2010	190207	2,000	44,149	45,962
2008	CLE17	JCJ03	STF	WW	3.2	Right	Green	Snout	3/15/2010	5/11/2010	190208	2,000	45,807	47,580
2008	CLE18	JCJ04	BIO	WW	3.2	Left	Green	Snout	3/15/2010	5/11/2010	190209	2,000	45,157	46,944

${ }^{1} \mathrm{BIO}=$ BioVita (BioOregon Protein Inc.) or control diet; STF = salt-water transition diet at acclimation sites. All fish are progeny of wild/natural parents unless denoted as HH which designates the hatchery control line beginning with brood year 2002. "Avg BKD" denotes the average BKD ELISA ranking of the female parents whose progeny were in these ponds.
${ }^{2}$ The number of fish released is estimated as the total number of fish counted at marking less mortalities documented from mark to release.

Appendix A. Tag and Release Information by Cle Elum Pond Id, Brood Years 2006-2018.

Brood Year	C.E. Pond	Accl. Pond	Treatment ${ }^{\text {I }}$			Tag Information			First Release	Last Release	CWT Code	$\begin{aligned} & \text { No. } \\ & \text { PIT } \end{aligned}$	$\begin{gathered} \text { No. } \\ C W T \end{gathered}$	Est. Tot. Release ${ }^{2}$
			/A	BK										
2009	CLE01	CFJ05	STF	HH	3.0	Right	Red	Posterior Dorsal	3/15/2011	5/16/2011	190215	4,000	40,109	43,965
2009	CLE02	CFJ06	BIO	HH	3.0	Left	Red	Posterior Dorsal	3/15/2011	5/16/2011	190216	4,000	41,012	44,806
2009	CLE03	JCJ01	STF	WW	3.0	Right	Orange	Snout	3/15/2011	3/31/2011	190217	2,000	37,245	39,048
2009	CLE04	JCJ02	BIO	WW	3.0	Left	Orange	Snout	3/15/2011	3/31/2011	190218	2,000	42,212	44,053
2009	CLE05	CFJ01	STF	WW	3.2	Right	Red	Snout	3/15/2011	5/16/2011	190219	2,000	47,016	48,761
2009	CLE06	CFJ02	BIO	WW	3.2	Left	Red	Snout	3/15/2011	5/16/2011	190220	2,000	46,733	48,569
2009	CLE07	ESJ05	STF	WW	3.1	Right	Green	Snout	3/15/2011	5/16/2011	190221	2,000	46,302	48,089
2009	CLE08	ESJ06	BIO	WW	3.1	Left	Green	Snout	3/15/2011	5/16/2011	190222	2,000	46,969	48,721
2009	CLE09	ESJ01	STF	WW	3.0	Right	Green	Snout	3/15/2011	5/16/2011	190223	2,000	43,612	45,379
2009	CLE10	ESJ02	BIO	WW	3.0	Left	Green	Snout	3/15/2011	5/16/2011	190224	2,000	43,173	44,962
2009	CLE11	JCJ05	STF	WW	3.1	Right	Orange	Snout	3/15/2011	3/31/2011	190225	2,000	47,585	49,306
2009	CLE12	JCJ06	BIO	WW	3.1	Left	Orange	Snout	3/15/2011	3/31/2011	190226	2,000	47,644	49,434
2009	CLE13	ESJ03	STF	WW	3.2	Right	Green	Snout	3/15/2011	5/16/2011	190227	2,000	45,277	47,036
2009	CLE14	ESJ04	BIO	WW	3.2	Left	Green	Snout	3/15/2011	5/16/2011	190228	2,000	45,529	47,208
2009	CLE15	JCJ03	STF	WW	3.1	Right	Orange	Snout	3/15/2011	3/31/2011	190229	2,000	43,825	45,592
2009	CLE16	JCJ04	BIO	WW	3.1	Left	Orange	Snout	3/15/2011	3/31/2011	190230	2,000	43,209	44,990
2009	CLE17	CFJO3	STF	WW	3.2	Right	Red	Snout	3/15/2011	5/16/2011	190231	2,000	45,587	47,451
2009	CLE18	CFJ04	BIO	WW	3.2	Left	Red	Snout	3/15/2011	5/16/2011	190232	2,000	43,952	45,571

${ }^{1} \mathrm{BIO}=$ BioVita (BioOregon Protein Inc.) or control diet; STF = salt-water transition diet at acclimation sites. All fish are progeny of wild/natural parents unless denoted as HH which designates the hatchery control line beginning with brood year 2002. "Avg BKD" denotes the average BKD ELISA ranking of the female parents whose progeny were in these ponds.
${ }^{2}$ The number of fish released is estimated as the total number of fish counted at marking less mortalities documented from mark to release.

Appendix A. Tag and Release Information by Cle Elum Pond Id, Brood Years 2006-2018.

Brood Year	C.E. Pond	Accl. Pond	Treatment ${ }^{\text {I }}$				Tag Information		First Release	Last Release	CWT Code	No.$P I T$	$\begin{gathered} \text { No. } \\ C W T \end{gathered}$	Est. Tot. Release ${ }^{2}$
			/Av	BK										
2010	CLE01	CFJ05	STF	WW	4.2	Right	Red	Snout	3/15/2012	5/14/2012	190256	2,000	40,221	41,972
2010	CLE02	CFJ06	BIO	WW	4.2	Left	Red	Snout	3/15/2012	5/14/2012	190257	2,000	40,845	42,664
2010	CLE03	CFJ03	STF	HH	4.0	Right	Red	Posterior Dorsal	3/15/2012	5/14/2012	190258	4,000	43,725	47,415
2010	CLE04	CFJ04	BIO	HH	4.0	Left	Red	Posterior Dorsal	3/15/2012	5/14/2012	190259	4,000	40,976	44,615
2010	CLE05	ESJ01	STF	WW	4.2	Right	Green	Snout	3/15/2012	5/14/2012	190260	2,000	40,710	42,374
2010	CLE06	ESJ02	BIO	WW	4.2	Left	Green	Snout	3/15/2012	5/14/2012	190261	2,000	40,419	42,157
2010	CLE07	JCJ01	STF	WW	4.0	Right	Orange	Snout	3/15/2012	5/14/2012	190262	2,000	43,833	45,471
2010	CLE08	JCJ02	BIO	WW	4.0	Left	Orange	Snout	3/15/2012	5/14/2012	190263	2,000	43,815	45,573
2010	CLE09	ESJ03	STF	WW	4.1	Right	Green	Snout	3/15/2012	5/14/2012	190264	2,000	42,528	44,257
2010	CLE10	ESJ04	BIO	WW	4.1	Left	Green	Snout	3/15/2012	5/14/2012	190265	2,000	42,649	44,443
2010	CLE11	ESJ05	STF	WW	4.2	Right	Green	Snout	3/15/2012	5/14/2012	190266	2,000	43,878	45,633
2010	CLE12	ESJ06	BIO	WW	4.2	Left	Green	Snout	3/15/2012	5/14/2012	190267	2,000	43,750	45,498
2010	CLE13	JCJ03	STF	WW	4.2	Right	Orange	Snout	3/15/2012	5/14/2012	190268	2,000	41,816	43,473
2010	CLE14	JCJ04	BIO	WW	4.2	Left	Orange	Snout	3/15/2012	5/14/2012	190269	2,000	41,052	42,772
2010	CLE15	JCJ05	STF	WW	4.1	Right	Orange	Snout	3/15/2012	5/14/2012	190270	2,000	42,894	44,603
2010	CLE16	JCJ06	BIO	WW	4.1	Left	Orange	Snout	3/15/2012	5/14/2012	190271	2,000	42,371	44,107
2010	CLE17	CFJ01	STF	WW	4.2	Right	Red	Snout	3/15/2012	5/14/2012	190272	2,000	42,329	44,128
2010	CLE18	CFJ02	BIO	WW	4.2	Left	Red	Snout	3/15/2012	5/14/2012	190273	2,000	41,829	43,626

${ }^{1} \mathrm{BIO}=$ BioVita (BioOregon Protein Inc.) or control diet; STF = salt-water transition diet at acclimation sites. All fish are progeny of wild/natural parents unless denoted as HH which designates the hatchery control line beginning with brood year 2002. "Avg BKD" denotes the average BKD ELISA ranking of the female parents whose progeny were in these ponds.
${ }^{2}$ The number of fish released is estimated as the total number of fish counted at marking less mortalities documented from mark to release.

Appendix A. Tag and Release Information by Cle Elum Pond Id, Brood Years 2006-2018.

Brood Year	C.E. Pond	Accl. Pond	Treatment ${ }^{1}$						First Release	Last Release	CWT Code	$\begin{aligned} & \text { No. } \\ & \text { PIT } \end{aligned}$	$\begin{gathered} \text { No. } \\ C W T \end{gathered}$	Est. Tot. Release ${ }^{2}$
2011	CLE01	JCJ05	STF	WN	4.1	Right	Orange	Snout	3/15/2013	5/15/2013	190320	2,000	42,452	44,225
2011	CLE02	JCJ06	BIO	WN	4.1	Left	Orange	Snout	3/15/2013	5/15/2013	190321	2,000	42,217	44,056
2011	CLE03	CFJ05	STF	HC	4.0	Right	Red	Posterior Dorsal	3/15/2013	5/15/2013	190322	4,000	38,432	42,092
2011	CLE04	CFJ06	BIO	HC	4.0	Left	Red	Posterior Dorsal	3/15/2013	5/15/2013	190323	4,000	38,743	42,609
2011	CLE05	ESJ01	STF	WN	4.1	Right	Green	Snout	3/15/2013	5/15/2013	190324	2,000	38,404	40,250
2011	CLE06	ESJ02	BIO	WN	4.1	Left	Green	Snout	3/15/2013	5/15/2013	190325	2,000	37,931	39,731
2011	CLE07	CFJ01	STF	WN	4.1	Right	Red	Snout	3/15/2013	5/15/2013	190326	2,000	40,449	42,308
2011	CLE08	CFJ02	BIO	WN	4.1	Left	Red	Snout	3/15/2013	5/15/2013	190327	2,000	39,281	41,088
2011	CLE09	JCJ03	STF	WN	4.0	Right	Orange	Snout	3/15/2013	5/15/2013	190328	2,000	43,588	45,243
2011	CLE10	JCJ04	BIO	WN	4.0	Left	Orange	Snout	3/15/2013	5/15/2013	190329	2,000	41,715	43,288
2011	CLE11	ESJ05	STF	WN	4.0	Right	Green	Snout	3/15/2013	5/15/2013	190330	2,000	40,964	42,610
2011	CLE12	ESJ06	BIO	WN	4.0	Left	Green	Snout	3/15/2013	5/15/2013	190331	2,000	40,905	42,759
2011	CLE13	CFJ03	STF	WN	4.0	Right	Red	Snout	3/15/2013	5/15/2013	190332	2,000	42,298	44,190
2011	CLE14	CFJO4	BIO	WN	4.0	Left	Red	Snout	3/15/2013	5/15/2013	190333	2,000	41,111	43,003
2011	CLE15	JCJ01	STF	WN	3.9	Right	Orange	Snout	3/15/2013	5/15/2013	190334	2,000	42,769	44,590
2011	CLE16	JCJ02	BIO	WN	3.9	Left	Orange	Snout	3/15/2013	5/15/2013	190335	2,000	42,230	44,036
2011	CLE17	ESJ03	STF	WN	4.0	Right	Green	Snout	3/15/2013	5/15/2013	190336	2,000	39,770	41,479
2011	CLE18	ESJ04	BIO	WN	4.0	Left	Green	Snout	3/15/2013	5/15/2013	190337	2,000	39,823	41,625

${ }^{1} \mathrm{BIO}=$ BioVita (BioOregon Protein Inc.) or control diet; STF = salt-water transition diet at acclimation sites. All fish are progeny of wild/natural parents unless denoted as HC which designates the hatchery control line beginning with brood year 2002. "Avg BKD" denotes the average BKD ELISA ranking of the female parents whose progeny were in these ponds
${ }^{2}$ The number of fish released is estimated as the total number of fish counted at marking less mortalities documented from mark to release.

Appendix A. Tag and Release Information by Cle Elum Pond Id, Brood Years 2006-2018.

Brood Year	C.E. Pond	Accl. Pond	Treatment ${ }^{1}$						First Release	Last Release	CWT Code	No. $P I T$	No. CWT	Est. Tot. Release ${ }^{2}$
2012	CLE01	ESJ03	STF	WN	3.7	Right	Green	Snout	3/15/2014	5/15/2014	190367	2,000	44,358	45,902
2012	CLE02	ESJ04	BIO	WN	3.7	Left	Green	Snout	3/15/2014	5/15/2014	190368	2,000	44,999	46,758
2012	CLE03	CFJ03	STF	HC	3.8	Right	Red	Posterior Dorsal	3/15/2014	5/15/2014	190369	4,000	42,147	45,670
2012	CLE04	CFJ04	BIO	HC	3.8	Left	Red	Posterior Dorsal	3/15/2014	5/15/2014	190370	4,000	41,497	45,010
2012	CLE05	ESJ05	STF	WN	3.8	Right	Green	Snout	3/15/2014	5/15/2014	190371	2,000	43,627	45,512
2012	CLE06	ESJ06	BIO	WN	3.8	Left	Green	Snout	3/15/2014	5/15/2014	190372	2,000	44,507	46,420
2012	CLE07	CFJ05	STF	WN	3.7	Right	Red	Snout	3/15/2014	5/15/2014	190373	2,000	41,067	42,932
2012	CLE08	CFJ06	BIO	WN	3.7	Left	Red	Snout	3/15/2014	5/15/2014	190374	2,000	37,499	39,367
2012	CLE09	CFJ01	STF	WN	3.7	Right	Red	Snout	3/15/2014	5/15/2014	190375	2,000	42,001	43,629
2012	CLE10	CFJ02	BIO	WN	3.7	Left	Red	Snout	3/15/2014	5/15/2014	190376	2,000	38,364	40,124
2012	CLE11	JCJ01	STF	WN	3.8	Right	Orange	Snout	3/15/2014	5/15/2014	190377	2,000	41,425	43,279
2012	CLE12	JCJ02	BIO	WN	3.8	Left	Orange	Snout	3/15/2014	5/15/2014	190378	2,000	44,713	46,491
2012	CLE13	ESJ01	STF	WN	3.7	Right	Green	Snout	3/15/2014	5/15/2014	190379	2,000	42,619	44,499
2012	CLE14	ESJ02	BIO	WN	3.7	Left	Green	Snout	3/15/2014	5/15/2014	190380	2,000	45,217	47,119
2012	CLE15	JCJ03	STF	WN	3.7	Right	Orange	Snout	3/15/2014	5/15/2014	190381	2,000	43,330	45,200
2012	CLE16	JCJ04	BIO	WN	3.7	Left	Orange	Snout	3/15/2014	5/15/2014	190382	2,000	42,900	44,729
2012	CLE17	JCJ05	STF	WN	3.7	Right	Orange	Snout	3/15/2014	5/15/2014	190383	2,000	43,240	45,034
2012	CLE18	JCJ06	BIO	WN	3.7	Left	Orange	Snout	3/15/2014	5/15/2014	190384	2,000	43,257	45,041

${ }^{1} \mathrm{BIO}=$ BioVita (BioOregon Protein Inc.) or control diet; STF = salt-water transition diet at acclimation sites. All fish are progeny of wild/natural parents unless denoted as HC which designates the hatchery control line beginning with brood year 2002. "Avg BKD" denotes the average BKD ELISA ranking of the female parents whose progeny were in these ponds.
${ }^{2}$ The number of fish released is estimated as the total number of fish counted at marking less mortalities documented from mark to release.

Appendix A. Tag and Release Information by Cle Elum Pond Id, Brood Years 2006-2018.

Brood Year	C.E. Pond	Accl. Pond	Treatme /Avg BK			Tag Information		First Release	Last Release	$\begin{aligned} & \text { CWT } \\ & \text { Code } \end{aligned}$	$\begin{aligned} & \text { No. } \\ & \text { PIT } \end{aligned}$	$\begin{aligned} & \text { No. } \\ & \text { CWT } \end{aligned}$	Est. Tot. Release ${ }^{2}$
2013	CLE01	CFJ05	WN	3.8	Right	Red	Snout	3/15/2015	5/6/2015	190401	2,000	36,097	37,928
2013	CLE02	CFJ06	WN	3.8	Left	Red	Snout	3/15/2015	5/6/2015	190402	2,000	34,541	36,343
2013	CLE03	ESJ05	WN	3.7	Right	Green	Snout	3/15/2015	5/6/2015	190403	2,000	33,761	35,473
2013	CLE04	ESJ06	WN	3.7	Left	Green	Snout	3/15/2015	5/6/2015	190404	2,000	34,682	36,295
2013	CLE05	CFJ03	WN	3.9	Right	Red	Snout	3/15/2015	5/6/2015	190405	2,000	34,495	36,240
2013	CLE06	CFJ04	WN	3.9	Left	Red	Snout	3/15/2015	5/6/2015	190406	2,000	32,054	33,823
2013	CLE07	ESJ03	WN	3.8	Right	Green	Snout	3/15/2015	5/6/2015	190407	2,000	32,866	34,672
2013	CLE08	ESJ04	WN	3.8	Left	Green	Snout	3/15/2015	5/6/2015	190408	2,000	34,418	36,130
2013	CLE09	CFJ01	HC	3.8	Right	Red	Posterior Dorsal	3/15/2015	5/6/2015	190409	4,000	32,264	36,029
2013	CLE10	CFJ02	HC	3.7	Left	Red	Posterior Dorsal	3/15/2015	5/6/2015	190410	4,000	31,648	35,570
2013	CLE11	JCJ03	WN	3.7	Right	Orange	Snout	3/15/2015	5/6/2015	190411	2,000	34,948	36,725
2013	CLE12	JCJ04	WN	3.7	Left	Orange	Snout	3/15/2015	5/6/2015	190412	2,000	35,508	37,236
2013	CLE13	ESJ01	WN	3.6	Right	Green	Snout	3/15/2015	5/6/2015	190413	2,000	34,013	35,805
2013	CLE14	ESJ02	WN	3.6	Left	Green	Snout	3/15/2015	5/6/2015	190414	2,000	34,580	36,370
2013	CLE15	JCJ01	WN	3.7	Right	Orange	Snout	3/15/2015	5/6/2015	190415	2,000	32,151	33,810
2013	CLE16	JCJ02	WN	3.7	Left	Orange	Snout	3/15/2015	5/6/2015	190416	2,000	33,703	35,249
2013	CLE17	JCJ05	WN	3.8	Right	Orange	Snout	3/15/2015	5/6/2015	190417	2,000	35,987	37,604
2013	CLE18	JCJ06	WN	3.8	Left	Orange	Snout	3/15/2015	5/6/2015	190418	2,000	33,807	35,453

${ }^{1}$ All fish are progeny of wild/natural parents unless denoted as HC which designates the hatchery control line beginning with brood year 2002. "Avg BKD" denotes the average BKD ELISA ranking of the female parents whose progeny were in these ponds.
${ }^{2}$ The number of fish released is estimated as the total number of fish counted at marking less mortalities documented from mark to release.

Appendix A. Tag and Release Information by Cle Elum Pond Id, Brood Years 2006-2018.

Brood Year	C.E. Pond	Accl. Pond	Treatment ${ }^{1}$ /Avg BKD				Tag Information		First Release	Last Release	CWT Code	No. $P I T$	No. CWT	Est. Tot. Release ${ }^{2}$
2014	CLE01	JCJ01	VIT	WN	1.7	Right	Orange	Snout	3/15/2016	5/12/2016	190427	2,000	35,198	37,071
2014	CLE02	JCJ02	PRO	WN	1.7	Left	Orange	Snout	3/15/2016	5/12/2016	190428	2,000	33,966	35,853
2014	CLE03	ESJ05	VIT	WN	1.6	Right	Green	Snout	3/15/2016	5/12/2016	190429	2,000	33,202	35,121
2014	CLE04	ESJ06	PRO	WN	1.6	Left	Green	Snout	3/15/2016	5/12/2016	190430	2,000	32,271	34,191
2014	CLE05	CFJ01	VIT	WN	1.5	Right	Red	Snout	3/15/2016	5/12/2016	190431	2,000	34,849	36,728
2014	CLE06	CFJ02	PRO	WN	1.4	Left	Red	Snout	3/15/2016	5/12/2016	190432	2,000	33,272	35,097
2014	CLE07	JCJ05	VIT	WN	1.5	Right	Orange	Snout	3/15/2016	5/12/2016	190433	2,000	37,322	38,943
2014	CLE08	JCJ06	PRO	WN	1.5	Left	Orange	Snout	3/15/2016	5/12/2016	190434	2,000	36,493	38,274
2014	CLE09	CFJ03	VIT	WN	1.9	Right	Red	Snout	3/15/2016	5/12/2016	190435	2,000	36,883	38,786
2014	CLE10	CFJ04	PRO	WN	1.9	Left	Red	Snout	3/15/2016	5/12/2016	190436	2,000	34,619	36,507
2014	CLE11	JCJ03	VIT	WN	1.5	Right	Orange	Snout	3/15/2016	5/12/2016	190437	2,000	37,505	39,376
2014	CLE12	JCJ04	PRO	WN	1.5	Left	Orange	Snout	3/15/2016	5/12/2016	190438	2,000	35,212	37,016
2014	CLE13	ESJ01	VIT	WN	1.4	Right	Green	Snout	3/15/2016	5/12/2016	190439	2,000	37,387	39,279
2014	CLE14	ESJ02	PRO	WN	1.4	Left	Green	Snout	3/15/2016	5/12/2016	190440	2,000	38,002	39,894
2014	CLE15	ESJ03	VIT	WN	1.4	Right	Green	Snout	3/15/2016	5/12/2016	190441	2,000	37,749	39,146
2014	CLE16	ESJ04	PRO	WN	1.4	Left	Green	Snout	3/15/2016	5/12/2016	190442	2,000	36,736	38,626
2014	CLE17	CFJ05	VIT	HC	1.2	Right	Red	Posterior Dorsal	3/15/2016	5/12/2016	190443	4,000	40,014	43,232
2014	CLE18	CFJ06	PRO	HC	1.3	Left	Red	Posterior Dorsal	3/15/2016	5/12/2016	190444	4,000	38,272	42,090

${ }^{1}$ All fish are progeny of wild/natural parents unless denoted as HC which designates the hatchery control line beginning with brood year 2002. "Avg BKD" denotes the average BKD ELISA ranking of the female parents whose progeny were in these ponds. PRO=BioPro diet, VIT=BioVita diet, Bio-Oregon products.
${ }^{2}$ The number of fish released is estimated as the total number of fish counted at marking less mortalities documented from mark to release.

Appendix A. Tag and Release Information by Cle Elum Pond Id, Brood Years 2006-2018.

Brood Year	C.E. Pond	Accl. Pond	Treatment ${ }^{\text {I }}$/Avg BKD				Tag Information		First Release	Last Release	CWT Code	$\begin{aligned} & \text { No. } \\ & \text { PIT } \end{aligned}$	$\begin{gathered} \text { No. } \\ C W T \end{gathered}$	Est. Tot. Release ${ }^{2}$
2015	CLE01	ESJ01	PRO	WN	2.9	Right	Green	Snout	3/15/2017	5/15/2017	190457	2,000	32,798	34,620
2015	CLE02	ESJ02	VIT	WN	2.9	Left	Green	Snout	3/15/2017	5/15/2017	190458	2,000	32,700	34,552
2015	CLE03	JCJ03	PRO	WN	2.9	Right	Orange	Snout	3/15/2017	5/15/2017	190459	2,000	38,469	40,305
2015	CLE04	JCJ04	VIT	WN	2.9	Left	Orange	Snout	3/15/2017	5/15/2017	190460	2,000	34,615	36,415
2015	CLE05	CFJ05	PRO	WN	2.9	Right	Red	Snout	3/15/2017	5/15/2017	190461	2,000	33,149	35,007
2015	CLE06	CFJ06	VIT	WN	2.9	Left	Red	Snout	3/15/2017	5/15/2017	190462	2,000	32,516	34,357
2015	CLE07	CFJ01	PRO	HC	2.6	Right	Red	Posterior Dorsal	3/15/2017	5/15/2017	190463	4,000	28,055	31,894
2015	CLE08	CFJ02	VIT	HC	2.6	Left	Red	Posterior Dorsal	3/15/2017	5/15/2017	190464	4,000	24,464	28,317
2015	CLE09	JCJ01	PRO	WN	3.0	Right	Orange	Snout	3/15/2017	5/15/2017	190465	2,000	38,098	39,927
2015	CLE10	JCJ02	VIT	WN	3.0	Left	Orange	Snout	3/15/2017	5/15/2017	190466	2,000	35,807	37,611
2015	CLE11	ESJ03	PRO	WN	2.8	Right	Green	Snout	3/15/2017	5/15/2017	190467	2,000	33,136	34,968
2015	CLE12	ESJ04	VIT	WN	2.8	Left	Green	Snout	3/15/2017	5/15/2017	190468	2,000	34,248	36,014
2015	CLE13	ESJ05	PRO	WN	2.8	Right	Green	Snout	3/15/2017	5/15/2017	190469	2,000	37,837	39,669
2015	CLE14	ESJ06	VIT	WN	2.8	Left	Green	Snout	3/15/2017	5/15/2017	190470	2,000	36,564	38,402
2015	CLE15	JCJ05	PRO	WN	2.9	Right	Orange	Snout	3/15/2017	5/15/2017	190471	2,000	34,354	36,206
2015	CLE16	JCJ06	VIT	WN	2.9	Left	Orange	Snout	3/15/2017	5/15/2017	190472	2,000	36,156	38,019
2015	CLE17	CFJ03	PRO	WN	2.8	Right	Red	Snout	3/15/2017	5/15/2017	190473	2,000	36,915	38,720
2015	CLE18	CFJ04	VIT	WN	2.8	Left	Red	Snout	3/15/2017	5/15/2017	190474	2,000	38,105	39,944

[^9]Appendix A. Tag and Release Information by Cle Elum Pond Id, Brood Years 2006-2018.

Brood Year	C.E. Pond	Accl. Pond	/Avg BKD				Tag Information		First Release	Last Release	CWT Code	No. $P I T$	$\begin{gathered} \text { No. } \\ C W T \end{gathered}$	Est. Tot. Release ${ }^{2}$
2016	CLE01	CFJ05	PRO	WN	2.4	Right	Red	Snout	3/15/2018	5/15/2018	190490	2,000	35,447	37,354
2016	CLE02	CFJ06	VIT	WN	2.4	Left	Red	Snout	3/15/2018	5/15/2018	190491	2,000	35,568	37,468
2016	CLE03	ESJ05	PRO	WN	2.4	Right	Green	Snout	3/15/2018	5/15/2018	190492	2,000	36,330	38,195
2016	CLE04	ESJ06	VIT	WN	2.4	Left	Green	Snout	3/15/2018	5/15/2018	190493	2,000	35,002	36,943
2016	CLE05	CFJ01	PRO	HC	2.7	Right	Red	Posterior Dorsal	3/15/2018	5/15/2018	190494	4,000	36,189	40,043
2016	CLE06	CFJ02	VIT	HC	2.7	Left	Red	Posterior Dorsal	3/15/2018	5/15/2018	190495	4,000	37,147	41,026
2016	CLE07	JCJ03	PRO	WN	2.4	Right	Orange	Snout	3/15/2018	5/15/2018	190496	2,000	36,599	38,400
2016	CLE08	JCJ04 ${ }^{3}$	VIT	WN	2.4	Left	Orange	Snout	3/15/2018	5/15/2018	190497	2,000	34,080	54,569
2016	CLE09	JCJ01	PRO	WN	2.5	Right	Orange	Snout	3/15/2018	5/15/2018	190498	2,000	34,189	36,048
2016	CLE10	JCJ023	VIT	WN	2.5	Left	Orange	Snout	3/15/2018	5/15/2018	190499	2,000	32,004	52,475
2016	CLE11	CFJ03	PRO	WN	2.6	Right	Red	Snout	3/15/2018	5/15/2018	190501	2,000	36,470	38,334
2016	CLE12	CFJ04	VIT	WN	2.6	Left	Red	Snout	3/15/2018	5/15/2018	190502	2,000	34,372	36,265
2016	CLE13	ESJ03	PRO	WN	2.5	Right	Green	Snout	3/15/2018	5/15/2018	190503	2,000	31,448	33,380
2016	CLE14	ESJ04	VIT	WN	2.5	Left	Green	Snout	3/15/2018	5/15/2018	190504	2,000	31,093	33,025
2016	CLE15	JCJ05	PRO	WN	2.5	Right	Orange	Snout	3/15/2018	5/15/2018	190505	2,000	36,688	38,550
2016	CLE16	JCJ06 ${ }^{3}$	VIT	WN	2.5	Left	Orange	Snout	3/15/2018	5/15/2018	190506	2,000	35,244	0
2016	CLE17	ESJ01	PRO	WN	2.5	Right	Green	Snout	3/15/2018	5/15/2018	190507	2,000	37,553	39,512
2016	CLE18	ESJ02	VIT	WN	2.5	Left	Green	Snout	3/15/2018	5/15/2018	190508	2,000	35,689	37,621

${ }^{1}$ All fish are progeny of wild/natural parents unless denoted as HC which designates the hatchery control line beginning with brood year 2002. "Avg BKD" denotes the average BKD ELISA ranking of the female parents whose progeny were in these ponds. PRO=BioPro diet, VIT=BioVita diet, Bio-Oregon products.
${ }^{2}$ The number of fish released is estimated as the total number of fish counted at marking less mortalities documented from mark to release.
${ }^{3}$ Due to problems at the acclimation site, Jack Creek raceway 6 was closed and all fish transferred and split between raceways 2 and 4 in February 2018.

Appendix A. Tag and Release Information by Cle Elum Pond Id, Brood Years 2006-2018.

Brood Year	C.E. Pond	Accl.	Treatment ${ }^{1}$			Tag Information			First Release	Last Release	CWT Code	$\begin{aligned} & \text { No. } \\ & \text { PIT } \end{aligned}$	$\begin{gathered} \text { No. } \\ C W T \end{gathered}$	Est. Tot. Release ${ }^{2}$
		Pond	/Av	BK										
2017	CLE01	CFJ01	PRO	WN	3.4	Right	Red	Snout	3/15/2019	5/9/2019	190535	2,000	38,689	40,527
2017	CLE02	CFJ02	VIT	WN	3.4	Left	Red	Snout	3/15/2019	5/9/2019	190536	2,000	39,792	41,650
2017	CLE03	ESJ05	PRO	WN	3.5	Right	Green	Snout	3/15/2019	5/9/2019	190537	2,000	34,646	36,556
2017	CLE04	ESJ06	VIT	WN	3.5	Left	Green	Snout	3/15/2019	5/9/2019	190538	2,000	35,655	37,493
2017	CLE05	JCJ05	PRO	WN	3.1	Right	Orange	Snout			190539	2,000	35,118	0
2017	CLE06	JCJ06	VIT	WN	3.1	Left	Orange	Snout			190540	2,000	36,475	0
2017	CLE07	ESJ03	PRO	WN	3.3	Right	Green	Snout	3/15/2019	5/9/2019	190541	2,000	37,843	39,737
2017	CLE08	ESJ04	VIT	WN	3.3	Left	Green	Snout	3/15/2019	5/9/2019	190542	2,000	38,689	40,579
2017	CLE09	CFJO3	PRO	WN	3.4	Right	Red	Snout	3/15/2019	5/9/2019	190543	2,000	40,551	42,423
2017	CLE10	CFJ04	VIT	WN	3.4	Left	Red	Snout	3/15/2019	5/9/2019	190544	2,000	41,529	43,357
2017	CLE11	JCJ03	PRO	WN	3.3	Right	Orange	Snout	3/15/2019	5/7/2019	190545	2,000	38,702	58,941
2017	CLE12	JCJ04	VIT	WN	3.3	Left	Orange	Snout	3/15/2019	5/7/2019	190546	2,000	39,368	60,266
2017	CLE13	ESJ01	PRO	WN	3.3	Right	Green	Snout	3/15/2019	5/9/2019	190547	2,000	37,502	39,385
2017	CLE14	ESJ02	VIT	WN	3.3	Left	Green	Snout	3/15/2019	5/9/2019	190548	2,000	37,829	39,699
2017	CLE15	CFJO5	PRO	HC	3.2	Right	Red	Posterior Dorsal	3/15/2019	5/9/2019	190549	4,000	33,390	37,153
2017	CLE16	CFJ06	VIT	HC	3.2	Left	Red	Posterior Dorsal	3/15/2019	5/9/2019	190550	4,000	35,413	39,126
2017	CLE17	JCJ01	PRO	WN	3.3	Right	Orange	Snout	3/15/2019	5/7/2019	190551	2,000	36,661	56,934
2017	CLE18	JCJ02	VIT	WN	3.3	Left	Orange	Snout	3/15/2019	5/7/2019	190552	2,000	35,946	56,843

[^10]Appendix A. Tag and Release Information by Cle Elum Pond Id, Brood Years 2006-2018.

Brood	C.E. Pond	Accl.	Treatment ${ }^{1}$ /Avg BKD				Tag Information		First Release	Last Release	CWT Code	No. $P I T$	No. CWT	Est. Tot. Release ${ }^{2}$
2018	CLE01	ESJ01	Pro	WN	4.2	Left	Green	Snout	3/15/2020	5/15/2020	190573	2,773	31,833	34,524
2018	CLE02	ESJ02	Vit	WN	4.2	Right	Green	Snout	3/15/2020	5/15/2020	190574	2,000	31,213	33,105
2018	CLE03	CFJ01	Pro	HC	3.2	Left	Red	Posterior Dorsal	3/15/2020	5/15/2020	190575	2,000	35,285	37,228
2018	CLE04	CFJ02	Vit	HC	3.2	Right	Red	Posterior Dorsal	3/15/2020	5/15/2020	190576	2,000	34,672	36,594
2018	CLE05	ESJ03	Pro	WN	4.0	Left	Green	Snout	3/15/2020	5/15/2020	190577	2,000	33,397	35,301
2018	CLE06	ESJ04	Vit	WN	4.0	Right	Green	Snout	3/15/2020	5/15/2020	190578	2,000	33,772	35,692
2018	CLE07	CFJ05	Pro	HC	3.1	Left	Red	Posterior Dorsal	3/15/2020	5/15/2020	190579	2,000	32,461	34,384
2018	CLE08	CFJ06	Vit	HC	3.1	Right	Red	Posterior Dorsal	3/15/2020	5/15/2020	190580	2,000	34,276	36,203
2018	CLE09	JCJ03	Pro	WN	3.9	Left	Orange	Snout	3/15/2020	5/15/2020	190581	2,000	39,166	41,015
2018	CLE10	JCJ04	Vit	WN	3.9	Right	Orange	Snout	3/15/2020	5/15/2020	190582	2,000	38,910	40,780
2018	CLE11	JCJ05	Pro	WN	4.2	Left	Orange	Snout	3/15/2020	5/15/2020	190583	2,000	32,561	34,449
2018	CLE12	JCJ06	Vit	WN	4.2	Right	Orange	Snout	3/15/2020	5/15/2020	190584	2,000	32,726	34,621
2018	CLE13	JCJ01	Pro	WN	3.2	Left	Orange	Snout	3/15/2020	5/15/2020	190585	2,000	34,595	36,473
2018	CLE14	JCJ02	Vit	WN	3.2	Right	Orange	Snout	3/15/2020	5/15/2020	190586	2,000	32,739	34,630
2018	CLE15	CFJ04	Pro	WN	4.1	Left	Red	Snout	3/15/2020	5/15/2020	190587	4,000	30,681	34,579
2018	CLE16	CFJ03	Vit	WN	4.1	Right	Red	Snout	3/15/2020	5/15/2020	190588	4,000	30,934	34,845
2018	CLE17	ESJ05	Pro	WN	4.0	Left	Green	Snout	3/15/2020	5/15/2020	190589	2,000	32,347	34,266
2018	CLE18	ESJ06	Vit	WN	4.0	Right	Green	Snout	3/15/2020	5/15/2020	190590	2,000	31,802	33,731

${ }^{1}$ All fish are progeny of wild/natural parents unless denoted as HC which designates the hatchery control line beginning with brood year 2002. "Avg BKD" denotes the average BKD ELISA ranking of the female parents whose progeny were in these ponds. PRO=BioPro diet, VIT=BioVita diet, Bio-Oregon products.
${ }^{2}$ The number of fish released is estimated as the total number of fish counted at marking less mortalities documented from mark to release.

Appendix C

2019 Annual Chandler Certification for

Yearling Out-migrating Spring Chinook Smolts

Shubha Pandit

Yakama Nation Fisheries
P.O. Box 151, Toppenish,
WA 98948, USA
EXECUTIVE SUMMARY 3

1. INTRODUCTION 7
2.0 METHODOLOGY 9
2.1. Estimating Sample Rate and Calibration 10
2.2. MisSing data imputation 12
2.3. PIT TAGGED DATA 12
2.4. GENETIC INFORMATION 12
2.5. Estimating Prosser bypass detection efficiencies 13
2.6. WILD AND HATCHERY PASSAGE ESTIMATE 14
2.7. MODEL VALIDATION (ESTIMATES COMPARISONS) 14
2.8. ESTIMATED DAILY SMOLT OUT-MIGRATION FROM PROSSER 15
3.0 RESULTS AND DISCUSSION. 17
3.1. SPECIES COMPOSITION AND DAILY COUNTS IN THE COUNTING FACILITY. 18
3.2. DETECTION EFFICIENCIES OF SAMPLING FACILITY 20
3.3. Predicted number of out-migrating wild and hatchery Spring Chinook smolts 22
3.4. AnNual trend of juvenile Prosser-Passage estimates (hatchery and wild) by stock.23
3.5. Genetic variations among the stocks (Upper Yakima, Naches, American) 28
3.6. Relationship between Wild Juvenile passage estimates and estimated Adult Returns33
3.7. Relationship between estimated Juvenile Prosser passage and river flow 35
3.7.1. AnNuAL 35
3.7.2. DAILY 36
2. REFERENCE 39
3. SUPPLEMENTARY INFORMATION: DETAILED PASSAGE-ESTIMATES 40

Executive Summary

Outmigrating smolts have been monitored since 1983 at the Chandler Diversion Canal in the Yakima River at Prosser, Washington. Chandler monitoring facility improvements over the years have made it possible to count all species entering the juvenile bypass system each year from January into July, encompassing the entire juvenile (smolts) out-migration period. Winter operations are made possible by the dual purpose of the canal, which supplies a hydroelectric plant as well as an irrigation district. The diversion is located downstream from all Spring Chinook, Summer Chinook, Coho and Steelhead spawning and juvenile rearing areas in the Yakima River Basin.

Numerous projects to restore and protect channel and riparian habitat, along with fish reintroduction programs have been implemented in the Yakima Basin since the 1990s. The population status and trends for the different species in their freshwater life stages are important measures of management success, and the data collected through the facility have allowed us to answer the several management questions that can help to improve/modify the programs. This report provides the estimation of last year's (2019) out-migrating smolt populations (hatchery and wild) of spring Chinook from Prosser; its temporal (annual) trend from 1999 through 2019; and evaluation of whether the production and releases of hatchery smolts into the upper Yakima had an effect on the production of wild smolts and on the relative frequency of the three stock sources of wild smolts (Naches, American, and Upper Yakima Rivers). This evaluation is part of an ongoing study that was initiated in 1999 with the first release of hatchery Spring Chinook smolts.

The entire bypass flow leaving the juvenile screens enters the counting facility but only a portion is manually counted. A timer gate on an hourly cycle directs bypass flow to a holding tank for a portion of each hour that can be adjusted as often as once per day to compensate for fluctuations in fish abundance so as to not overwhelm the capacity of the staff to tally those smolts by species and stock.

Last year (2019), the Chandler monitoring facility was in operation from January $13^{\text {th }}$ to July 4th (a total of 183 days), with occasional closures (5 days) due to high stream flows or bad weather condition. There were three gate timing settings (TR) for fish sampling. Over the 183 operating/sampling days, the timer gate setting (TR) was set at a 33% sample rate (20 minutes per hour) for 141 days, $\mathrm{TR}=50 \%$ for 5 days, and $\mathrm{TR}=100 \%$ for 32 days.

Several statistical methods/approaches were applied for expanding the subsample data and analyzing them. Most of the methods used in these analyses were based on the methods that were used in the previous year. To address the objectives of the study, we answered the following research questions.

1. How many species were captured during the sampling period and what are the relative

 abundances of the species?During the sampling period (January $13^{\text {th }}$ to July $4^{\text {th }}, 2019$) , 17 species were captured in the sampling room (trap). Among them, 9 species had counts totaling more than 100 individuals. Population of the Spring Chinook (hatchery and wild) had the highest count; whereas the lowest count was for the population of Dace species (Leuciscus leucisus) (only 3 counts), which was captured only in the month of March. Total counts (after adjustment) of the hatchery and wild spring Chinook that were trapped in the sampling facility during the sampling period were found to be 102,701 and 53,374 , respectively. Wild Spring Chinook smolts captured in the trap begun from the first sampling date and finished by the end of June, whereas hatchery Spring Chinook smolts begun only in March and gradually increased peaking in May, ending in June. Almost 36% of the total wild Spring Chinook smolts were trapped by the end of March; whereas during the same time period, hatchery Spring Chinook smolts were trapped at only 1% of yearly total. Last year, volitional releases of hatchery Spring Chinook from acclimation sites began March 14, indicating that only a few percent of the release arrived to the Prosser by the end of March.

2. What was the detection efficiency of the monitoring facility and did the efficiencies vary among the sampling periods (pre-March, March, April, May, Post-May)?

Based on the pooled data over the three Columbia River dams (PTAGIS juvenile detection sites MCJ, JDJ and B2J/BCC) downstream from the Yakima River, the detection rate of the monitoring facility at Prosser during the sampling period was $27.85 \pm 0.7 \%$ (mean \pm SE), however it varied among sampling months. The highest detection rate occurred in May (39.63\%) as diversion rate increased with decreasing river flow.
3. How many wild and hatchery Spring Chinook smolts were estimated to pass Prosser Dam during 2019 and was there any temporal trend from the 1999 through 2019 juvenile migration years?

Wild (natural-origin) spring chinook can be separated genetically into three stocks: Upper Yakima, from the Yakima River and tributaries above the Naches River confluence; American River, a tributary of the Naches River; and Naches River, from the Naches River and tributaries exclusive of the American River. Only the Upper Yakima stock receives hatchery supplementation.

The estimated number of wild Spring Chinook smolts passing Prosser Dam during the 2019 migration period ranged from 154,530 to 175,427; whereas hatchery smolts ranged from 310,836 to 353,803. The estimated total number of hatchery Spring Chinook smolts passing Prosser Dam during the 2019 sampling period was almost double that of wild Spring Chinook smolts. On average over out-migration years $2000-2019,230,512 \pm 26,669$ wild and $322,470 \pm 16,547$ hatchery Spring Chinook smolts out-migrated or passed from Prosser. The total number of wild outmigrating smolts as well as its upper Yakima component stock seemed to be decreasing over time (from 2000-2019 out-migration year), whereas the population of Upper Yakima hatchery smolts seemed to be increasing; however these trends were not statistically significant.

4. What was the proportion of wild (Spring Chinook) populations that out-migrated from Prosser contributed by different stocks (Naches, American, Upper Yakima) in the Yakima Basin?

About 60% of the total count of wild out-migrating smolts at Prosser Dam was contributed by Upper Yakima stock; whereas 28% and 12% of the total out-migrating smolt populations were contributed by Naches and American river stocks, respectively. The result showed that the rate of decline in the wild Upper Yakima stock averaged -1184/year, which was the highest of the three wild populations (Naches, American, Upper Yakima), but the estimated decline was not significant (Upper Yakima; $\mathrm{R}^{2}=0.005, \mathrm{p}=0.76$). The rate of decrease for Naches stock was $-394 /$ year, it was also not significant; however, only the American stock average reduction was significant (Slope= $1087 /$ year, $\mathrm{R}^{2}=0.228, \mathrm{p}=0.04$). There was also an interaction between the proportions of wild stocks (Naches, American, Upper Yakima) in the out-migrating population and years ($\mathrm{F}_{32,255}=3.67, \mathrm{p}<0.01$), indicating that the proportion of out-migrating population between the three stocks (Naches, Amrican and Upper Yakima) varied among migration years. For example, on average 60% of the total wild out-migrating smolts was contributed by Yakima stock, but when this percentage was lower in some years, the proportion of Naches stock became higher than average. The interaction might have occurred due to variation in the river conditions among the river basins in those years.

The upper Yakima River is more highly regulated by reservoir storage and releases than the Naches River, which may cause different population responses to annual flow variations.

5. Did the production and releases of hatchery smolts into the upper Yakima have an effect on the production of wild smolts (Naches, American, and Upper Yakima stocks)?

To evaluate if there was an effect of the hatchery program on wild production, we tested a hypothesis that the rate of decline of out-migration should be higher in the Upper Yakima's wild Spring Chinook, because only the Upper Yakima stock receives hatchery supplementation, but not in Naches and American river stocks. The result showed that there was no significant linear trend in the proportion of out-migrating smolt populations with the out-migration year for all three stocks (Upper Yakima, Naches, and American), indicating that there was no influence of hatchery supplementation on these out-migrating smolts at Prosser in the lower Yakima River. If a hatchery effect was present, the proportions of wild in Upper Yakima would have decreased significantly across the migration years.

6. What was the effect of river flow (daily as well as annual flow) on the number of outmigrating Spring Chinook smolt?

The annual juvenile Prosser passage estimate of wild and hatchery Spring Chinook tends to increase with the river flow approaching Prosser Dam, suggesting that higher river flow can help to push out the smolt populations from the river basin. When looking at the relationship between daily estimated counts and daily river flow (approaching the dam), the relationship was very strong (and significant) for the month of April, May and June but this relationship was not significant during pre-March and post-May. The results indicate on those days during the out-migrating period in which the river flow increased, the out-migration of smolts also increased.

1. Introduction

Conservation and management of culturally and economically important species rely on monitoring programs to provide accurate and robust estimates of population size. Numerous projects to restore and protect channel and riparian habitat have been implemented on the Yakima River in coordination with reintroduction/supplementation programs. Quantifying and understanding whether juvenile out-migration or Smolt-to-Adult-Return (SAR) are increased/decreased over time, or which stocks perform better, are fundamental questions in determining whether species management and production goals are being reached.

Outmigrating smolts have been monitored since 1983 at the Chandler Diversion Canal in the Yakima River at Prosser, Washington (Figures 2 and 3). The diversion is located downstream from all Spring Chinook, Summer Chinook, Coho and Steelhead spawning and juvenile rearing areas in the Yakima River Basin. The Chandler monitoring facility improvements over the years have made it possible to count all species entering the juvenile bypass system each year from January into July, encompassing the entire juvenile (smolts) out-migration period. Winter operations are made possible by the dual purpose of the canal, which supplies a hydroelectric plant as well as an irrigation district. Chandler Diversion canal typically conveys 1000 cfs with a maximum of 1500 cfs over the course of a year. Most of the portions of the water are used for irrigation and the remaining portion is returned to the Yakima River eleven miles downstream at the Chandler Powerhouse. The Yakima River at Prosser is characterized by a high spring runoff peaking in March, and low summer flows reaching a minimum in August however, there is a tremendous variation in this flow pattern and the timing of high or low flows among several years.

At the present Chandler Juvenile Monitoring Facility, fish are counted from the portion of the river flow that is diverted into the irrigation canal and then into the juvenile fish bypass system. The monitoring data collected at the facility from January into July every year can be useful to determine the status and trends of different species at the out-migrating smolt stage, identify potential life-cycle bottlenecks, and evaluate the effectiveness of ongoing reintroduction and habitat improvement actions on population dynamics. The number of smolts of different species that out-migrate from the river basin can be influenced by several environmental factors such as water temperature and river flows. River flow of the Yakima River is highly regulated and modified due to a number of large reservoirs in the Yakima basin that have been developed to store water during the high flow
season and release water as required for irrigation and maintenance of ecological processes during summer months. River flows vary by year and day-by-day within a season. Reducing the river flow during the fish outmigration period can be detrimental to juvenile survival and the rate of outmigration. Several studies showed that peak flows can cue fish to out-migrate so that river flow pulses (higher temporal variability of river flow) can provide a greater opportunity for smolt movement downstream and to survival to the ocean. Relying entirely on annual totals may obscure how out-migrating smolt populations are affected by river flow in the Yakima Basin.

The main objectives of the study were to estimate prior-year (2019) out-migrating smolt populations (hatchery and wild) of spring Chinook; assess its temporal trend from 1999 through 2019; determine whether the production and releases of hatchery smolts into the upper Yakima had an effect on the production of wild smolts and on the relative abundances of the three stock sources of wild smolts (Naches, American, and Upper Yakima Rivers); and evaluate whether out-migration is higher in the years that had high river flow; as well as higher smolt out-migration on days in which river flow was higher. To address the objectives, we answered the following research questions:

- How many species were captured during the 2019 sampling period and what are the relative abundances of the species?
- What was the detection efficiency of the monitoring facility, and did the efficiencies vary among the sampling periods (pre-March, March, April, May, Post-May) in 2019?
- How many wild and hatchery Spring Chinook smolts emigrated from Prosser during 2019 and was there any temporal trend from 1999 through the 2019 juvenile migration year?
- What was the proportion of wild Spring Chinook populations that out-migrated from Prosser contributed by different stocks (Naches, American, Upper Yakima) in the Yakima Basin? Do the proportions of these stocks in the out-migrating smolt population vary by migration years?
- Did the production and release of hatchery smolts into the upper Yakima have an effect on the production of wild smolts (Naches, American, and Upper Yakima Rivers)?
- What was the effect of river flow (daily as well as annual flow) on the number of outmigrating Spring Chinook smolts?

2.0 Methodology

The Chandler juvenile monitoring facility is located on the fish bypass outlet of Chandler Canal at Prosser Dam (Figures 2 and 3), which is about 76 river km (47 river miles) upstream from the mouth of the Yakima River. This Canal is basically used to supply water for irrigation and to generate power. The Chandler Canal typically conveys 1000 cfs with a maximum of 1500 cfs over the course of a year (Pyper and Smith, 2005). However only the portion of the river flow that has been diverted into the irrigation canal enters the bypass system. Similarly, the entire bypass flow leaving the juvenile screens enters the counting facility but only a portion is manually counted. A timer gate on an hourly cycle directs bypass flow to a holding tank for a portion of each hour that can be adjusted as often as once per day to compensate for fluctuations in fish abundance so as to not overwhelm the capacity of the staff to tally those smolts by species and stock. For this study, several methods were used and are outlined in Fig. 1.

Figure 1. Outline of the methodology used for data analysis in this report

Figure 2. Yakima basin and the location of the Chandler juvenile facility at Prosser and different sub-basins or genetic stocks (Naches, Upper Yakima River and American River).

2.1. Estimating Sample Rate and Calibration

Figure 3 shows the Chandler Monitoring facility's layout and the details of the sampling area. Sampling period was from January $9^{\text {th }}$ to July $6^{\text {th }}$ in 2019 except a few days in which the facility was shut down due to adverse weather conditions. Timer gate settings (TR) varied over days based on the number of the sampled smolts entering the counting facility so as to not overwhelm the capacity of the facility or the ability of the staff to tally those smolts by species and stock.

In 2019, there were three time gate settings, $\mathrm{TR}=33 \%$ (20 minutes per hour), $\mathrm{TR}=50 \%$ (30 minutes per hour), and $\mathrm{TR}=100 \%$. The timer gate directs the bypass flow into the counting facility for a set percentage of each hour. That percentage, referred to herein as the timer-gate rate (TR), the
timer gate often changes between sampling days during the sampling period to accommodate the capability of staff to manage and tally the number of smolts. There are two PIT-tag detectors (Figure 3): one in the bypass upstream of the timer gate and one in the exit from the counting facility downstream of the timer gate where a set proportion of the smolts are tallied. Along with detectors in the Prosser adult ladders, these detectors comprise site PRO in the PIT Tag Information System (PTAGIS) maintained by the Pacific States Marine Fisheries Commission.

Figure 3. Site Overview of Chandler Juvenile Monitoring Facility at Prosser. The layout was adapted from the site configuration at https://www.ptagis.org/.

The timer gate, when opened, directs the Prosser bypass flow from Chandler Canal into the monitoring facility in which smolts are tallied. Data regarding species, its life stage, and abundance were tallied and counted daily during the sampling period. For a given daily TR-setting, the sample rate was computed as
$\mathrm{SR}_{\mathrm{t}}: \frac{\text { the number of PIT-tagged Spring Chinook smolts detected in the counting facility }}{\text { the total number detected by a bypass detector located upstream of the timer gate }\left(T G_{i}\right)}$; or
$\mathrm{SR}_{\mathrm{ti}}=\frac{\mathrm{n}[\text { counting facility }] /}{\mathrm{n}[\text { bypass }(\mathrm{TR})]}$; Where $t i$ is the timer setting.
Once we estimated the daily sample rate, the calibration value was computed as:

$$
\text { Calibration value }(\mathrm{CV})=\mathrm{w}(33 \%) *[\operatorname{SR}(\mathrm{TR}=33 \%) / 33 \%]+\mathrm{w}(50 \%) *[\operatorname{SR}(\mathrm{TR}=50 \%) / 50 \%]
$$

Where $\mathrm{w}(33 \%)$ and $\mathrm{w}(50 \%)$ are the weight, which are the proportion of bypass detections within the TR setting 0.33 and 0.50 , respectively. The weights being the proportions of bypass detections within the TR setting and estimated as (see, Neeley 2012):

$$
\begin{aligned}
& \mathrm{w}(33) \%=\mathrm{n}[\operatorname{bypass}(\mathrm{TR}=33 \%)] /\{\mathrm{n}[\operatorname{bypass}(\mathrm{TR}=33 \%)]+\mathrm{n}[\operatorname{bypass}(\mathrm{TR}=50 \%)]\} \\
& \mathrm{w}(50) \%=\mathrm{n}[\operatorname{bypass}(\mathrm{TR}=50 \%)] /\{\mathrm{n}[\operatorname{bypass}(\mathrm{TR}=33 \%)]+\mathrm{n}[\operatorname{bypass}(\mathrm{TR}=50 \%)]\}
\end{aligned}
$$

2.2. Missing data imputation

On a daily basis, fish were counted and tallied as to source (hatchery-spawned or wild). However, the sampling facility was shut down for a few days due to flow conditions or other technical problems. Data are missing for those days in which the sampling facility was closed. Linear interpolation was used to impute values (fill in data) for the missing information.

2.3. PIT tagged data

We queried the PTAGIS database (https://www.ptagis.org/) in April 2020 to retrieve available PITtag detection information for all Spring Chinook Salmon smolts (hatchery) released upstream of the Prosser Dam. A total of 42,542 smolts were used for this analysis and an encounter history for each fish with detection events (date and Dams) was constructed for further analysis.

2.4. Genetic information

During the sampling period each year, tissue samples were taken from the subsamples of wild smolts passing through the counting facility. In order to minimize bias, samples of smolts were distributed proportionally among five time strata (January-Feb., March, April, May and June). These tissue samples were processed in the Molecular Genetics Laboratory of the Washington Department of Fish and Wildlife (WDFW). Results of 2018 molecular samples are available (see, Seamons and Bowman, 2019) and this information was used to estimate 2018 out-migrating smolts; results of 2019 genetic data are not yet available.

2.5. Estimating Prosser bypass detection efficiencies

The proportions of all PIT- tagged smolts released above Prosser and detected at mid-Columbia dams that were previously detected in the Chandler Canal bypass serve as estimates of bypassdetection efficiency. Three downstream detection sites were used to estimate Prosser Bypass's detection efficiency—McNary, John Day, and Bonneville Dams—and detections were pooled over the three dams. A given downstream dam's daily Prosser bypass detection efficiency is unlikely to be homogeneous over days because the river flows and spill rates often vary and the detections are from a mixture of daily passages. Therefore for each downstream dam the detection efficiencies are stratified over the downstream passage time (pre-March, March, April, May and post-May) based on only McNary Dam or pooled over the three Columbia Dams (McNary, John Day and Bonneville Dams). The detection efficiency was estimated as:
$\mathrm{DE}=\mathrm{n}$ (daily joint site detections) $/ \mathrm{n}$ (total site detections)

These detection efficiencies based on hatchery Spring Chinook were applied to both populations coming from the hatchery and wild sources. The wild stocks were tallied smolts that were not coded-wire tagged. The wild Spring Chinook were made up of Naches, American, and UpperYakima stock (See fig. 1). All and only hatchery smolts were coded-wire tagged and were of Upper Yakima stock. Most hatchery smolts were also elastomer tagged by acclimation site. Acclimation sites included Clark Flat, Easton, and Jack Creek, respectively receiving red, green, and orange elastomer tags. These tags were also tallied and pooled. The hatchery smolts that were not elastomer-tagged were PIT-tagged prior to release.

The wild and elastomer-tagged hatchery tallies were expanded by four different estimates of Prosser detection rates as mentioned above.

1. McNary-based un-stratified detection rate estimate
2. McNary-based stratified detection rate estimate
3. Pooled-lower-dam-based un-stratified detection rate estimate
4. Pooled-lower-dam-based stratified detection rate estimate

Detailed methodology is given in Neeley (2019; appendix C).

In summary, four estimators were used, and the one chosen was a pooling of stratified estimates from the detection efficiencies from McNary, John Day, and Bonneville Dams on the Columbia Rivers; the strata being established for each of these dams by combining daily estimates that were deemed similar using Logistic stepwise regression of the daily detection efficiencies on Julian-date indicators that take the value 1 if the estimate was from a given date or a later date or 0 if the estimate was from an earlier date.

2.6. Wild and hatchery passage estimate

On a daily basis the sampled Spring Chinook smolts were tallied as to source (hatchery-spawned or wild). On those days when the facility was shut down, linear interpolation was used to impute values to the missing information as mentioned above. The daily actual and imputed tallies were divided by the sample rates in use on those days (SR). The sample-rate-adjusted tallies for each source were added over days within each of five time periods and were then divided by the respective period's detection efficiencies. The wild and hatchery smolts were tallied separately. The wild smolts were identified by the lack of a coded-wire tag. The hatchery smolts were identified by the presence of an elastomer tag and adipose fin clipped and absence of coded-wire tag. Expanded elastomer-tagged tallies were then divided by the proportion of hatchery smolts to obtain estimates of the passage of all hatchery smolts.

Within five time periods (pre-March, March, April, May, post-May), the tallied sample wild smolts were subsampled and genetically classified as to brood origin (stock from the American, Naches, or Upper Yakima Rivers). Within each period, the brood-origin proportions of those sampled smolts were computed by WDFW. The wild passage estimates within each period were multiplied by each of the period's brood-source proportions. Each brood's time-period wild passage estimates were then added over the time periods to estimate the brood's total passages as were the hatchery passage estimates. The detailed methodology can be found in Neeley, (2019).

2.7. Model validation (estimates comparisons)

The estimates of the number of smolts passing Prosser Dam can vary with different methods that are used in the analysis. To ascertain which of the passage estimates is the best to report and use for further analysis, we compared these estimated populations at Prosser of hatchery Spring Chinook smolts to another estimate that was derived using its survival rate (release site to Prosser). Since we know the total released number of hatchery Spring Chinook smolts in the upper Yakima, we
multiplied the survival rate by the total released populations, which provide us the total smolt populations passing at Prosser. This estimate can be viewed as an independent estimate for the comparison, however this estimate can also be biased because the survival rate seemed to be heterogeneous over days but here we assumed there was no variation in the survival rate among the sampling days. If detection efficiency is not homogeneous, survival rate cannot be homogeneous. However, this value can be an additional reference to cross check even if it is not perfect data to compare.

In addition to the above method, each of the other four methods' estimates of hatchery juvenile passage (see above section 2.5) was also compared with hatchery returns. If the estimate is a reasonable value it should be highly correlated with the predicted hatchery adult returns.

2.8. Estimated Daily smolt out-migration from Prosser

One of our objectives was to determine whether river flows influence the size of the population of out-migrating smolts If larger number of smolts out-migrated during high river flow, the rate of outmigration would be a function of river flow. To estimate daily passage at Prosser Dam, daily counts of each species in the live box at the Chandler Juvenile Monitoring Facility (CJMF) were expanded by the canal entrainment, canal survival (from prior paired releases), and sub-sampling rates using the following formula (Neeley, 2012).

Entrainment rate $(E R)=1 / 1+\exp (-5.60081+13.5861 *$ diversion rate $)$

Estimated daily count: Count/(Survival Probability * sample. rate(SR) * ER)

The model for the ER was based on the logistic regression using the daily proportion of Yakima River flow diverted into the canal. The Entrainment Rate (ER) is the predicted daily proportion of fish passing Prosser that are entrained into Chandler Canal, the Canal-Survival Rate (Survival probability) is the daily predicted proportion of those entrained fish that survive the canal from below the head-gate down the canal and into the bypass to a point just above the sampling station, and Sampling Rate (SR) is the estimated proportion of fish that are sampled from the bypass and enumerated.
2.8.1. Relationship between river flow and estimated daily count

To determine whether high river flow helped to increase the rate of smolt out-migration from Prosser, we built univariate relationships using two datasets (annual and daily).
A. Annual total estimates: A univariate linear relationship between the estimated total annual number of hatchery Spring Chinook smolts passing Prosser (2000-2019 out-migration years) and the average river flows (average of four months [March-June]) for each year for 20002019. We chose the average of only four months because the hatchery juvenile/smolts exited from the acclimation sites from March to June.
B. Daily estimates: A univariate linear relationship between the estimated daily count of wild Spring Chinook and daily river flow. River flow is considered as flow that approaches the dam, and sum of the flow measured at the gauge stations CHCW and YRPW. River flow data were accessed in April, 2020 from
https://www.usbr.gov/pn/hydromet/yakima/yakwebarcread.html.

3.0 Results and discussion

In 2019 the Chandler monitoring facility was operated from January $13^{\text {th }}$ to July $4^{\text {th }}$ (183 days total), with occasional closures (5 days) due to excessively high stream flows or other problems. There were three timer gate settings (TR) for sampling. Among the 183 days, the timer gate setting (TR) was 33% for 141 days, $\mathrm{TR}=50 \%$ for 5 days, and $\mathrm{TR}=100 \%$ for 32 days. In 2019 the results showed that when TR was 33%, sample rate (SR) was 29.9% (see Table 1). In almost all cases, the SR was less than the TR, indicating not all fish passing through the bypass when the timer gate was open are actually entering and being detected in the counting facility.

Table 1. Sample-room sample rates for given timer-gate settings. Timer Gate Rate (TR) is the proportion of time that the bypass gate is opened to Sample Room.

Out- Migrati on Year	Calibrati on Value	Estimated Sample Rates (SR) for different Timer-Gate Rates								
		Timer-Gate Rate (TR)								
		0.05	0.1	0.2	0.25	0.33	0.4	0.45	0.5	0.75
1998	0.778	0.039	0.078	0.156	0.194	0.257	0.311	0.350	0.389	0.583
1999	0.833	0.042	0.083	0.167	0.208	0.275	0.333	0.375	0.417	0.625
2000	0.794	0.040	0.079	0.159	0.198	0.262	0.318	0.357	0.397	0.595
2001	0.278	0.014	0.028	0.056	0.070	0.092	0.111	0.125	0.139	0.209
2002	0.838	0.042	0.084	0.168	0.209	0.277	0.335	0.377	0.419	0.628
2003	0.669	0.033	0.067	0.134	0.167	0.221	0.267	0.301	0.334	0.501
2004	0.693	0.035	0.069	0.139	0.173	0.229	0.277	0.312	0.346	0.520
2005	0.776	0.039	0.078	0.155	0.194	0.256	0.310	0.349	0.388	0.582
2006	1.000	0.050	0.100	0.200	0.250	0.330	0.400	0.450	0.500	0.750
2007	0.800	0.040	0.080	0.160	0.200	0.264	0.320	0.360	0.400	0.600
2008	0.651	0.033	0.065	0.130	0.163	0.215	0.260	0.293	0.326	0.488
2009	0.770	0.038	0.077	0.154	0.192	0.254	0.308	0.346	0.385	0.577
2010	0.584	0.029	0.058	0.117	0.146	0.193	0.234	0.263	0.292	0.438
2011	1.000	0.050	0.100	0.200	0.250	0.330	0.400	0.450	0.500	0.750
2012	0.979	0.049	0.098	0.196	0.245	0.323	0.391	0.440	0.489	0.734
2013	0.973	0.049	0.097	0.195	0.243	0.321	0.389	0.438	0.486	0.729
2014	0.903	0.045	0.090	0.181	0.226	0.298	0.361	0.407	0.452	0.678
2015	0.830	0.041	0.083	0.166	0.207	0.274	0.332	0.373	0.415	0.622
2016	0.873	0.044	0.087	0.175	0.218	0.288	0.349	0.393	0.437	0.655
2017	0.819	0.041	0.082	0.164	0.205	0.270	0.327	0.368	0.409	0.614
2018	0.910	0.046	0.091	0.182	0.228	0.300	0.364	0.410	0.455	0.683
2019	0.906	0.045	0.091	0.181	0.226	0.299	0.362	0.408	0.453	0.679

Note: Estimates for the year1998-2018 were adopted from Neeley (2019)

3.1. Species composition and daily counts in the counting facility

During the sampling period, altogether 17 species were captured in the sampling room (trap).
Among them, 9 species (Smallmouth bass, Channel catfish, Chiselmouth, Coho, Lamprey, Spring Chinook, Steelhead, Sucker and Whitefish) had counts more than 100 individuals (see Figure 4). Spring Chinook (hatchery and wild) had the highest count (43,034, before adjusted) and the second highest count was Coho $(24,823)$ during the sampling period. The population of Dace (Rbinichthys sp.) had the lowest count (only 3 counts, see Fig. 4), which was captured only in March. Among the sampling periods (pre-March, March, April, May, post-May), almost 67% of the total counts were in May, whereas 15% in April, 9% in post-May, 4% in March and also 4\% in pre-March.

Adjusted total counts of the hatchery and wild spring Chinook during the sampling period were estimated to be 102,701 and 53,374 , respectively (see table 2, Figure 5A). Wild Spring Chinook smolts captured in the trap since the beginning of sampling and ended in end of June; whereas hatchery Spring Chinook smolts captured in the trap begun only in March, gradually increased and peaked in May, ending in June. Almost 36% of the total wild Spring Chinook smolts were trapped by the end of March; whereas during that time only 1% of hatchery Spring Chinook smolt were trapped (Figure 5B and C). It seems that the wild spring Chinook start to out-migrate earlier than the hatchery Spring Chinook, however the volitional releases are normally allowed beginning on or shortly before March 15th (as early as March 9th) and remaining fish are forced out of the acclimation sites no later than May 16th each year from the acclimation sites (Clark Flat (CFJ), Jack Creek (JCJ) and Easton (ESJ)).

Figure 4: Daily catch of different species from January through July, 2019 (sampling period). Number in green color is the total counts in the sampled during the sampling period.

Table 2. Adjusted total count of hatchery and wild Spring Chinook smolts in the monitoring facility (CJMF) during the sampling period of 2019 and among the strata (Pre-March, March, April, May and Post-May).

Origin	Adjusted counts					
	Pre-March	March	April	May	Post-May	Total
Wild	15489	3937	10596	23290	63	53374
Hatchery	0	904	24775	76824	198	102701

Figure 5. Daily counts (Adjusted counts) of wild and hatchery Spring Chinook in the trap (counting facility) from January through July 2019 [A]; percentage of the catch by sampling period stratum [B]; and cumulative catch proportion (January to June, 2019; [C]).

3.2. Detection efficiencies of sampling facility

In 2019 approximately 6% of the total released juveniles (hatchery Spring Chinook smolts) were PIT-tagged and released from the acclimation sites (Clark Flat, Jack Creek and Easton). Using exit detections instead of tagging data eliminates mortalities and shed tags from release counts, but tag collisions when too many fish pass detectors at once can result in undercounting releases, although such detection failures have amounted to a few percent at most. In total, tagged earlier as well as
including untagged hatchery outmigrants captured and tagged at Roza Dam for downstream survival studies, 42,542 PIT tagged hatchery Spring Chinook were used for further analyses.
Among the PIT-tagged hatchery Spring Chinook, 5,858 were detected at the sampling facility in Prosser in 2019. The number of tagged fish detected at Prosser that were also detected at downstream dams depended on downstream detection probability in addition to downstream mortality. Joint detections between Prosser (PRO) and McNary (MCJ), PRO and John Day (JDJ); and PRO and Bonneville Dam (B2J/BCC) were found to be 369, 320, and 465, [1154 total], respectively for the 2019 released smolts (hatchery Spring Chinook).

The average detection rate of the sampling based on PRO and JDJ joint-detection (when taking the detection of Prosser with reference of JDJ) was relatively high ($29.46 \pm 1.4 \%$; mean \pm SE) compared to the based on Prosser and B2J/BCC (27.04\%) (see, Table 3). Based on the pooled over the three Columbia Dams (MCJ, JDJ and B2J/BCC), the detection rate of the monitoring facility of Prosser during the sampling period was $27.85 \pm 0.7 \%$ (mean $\pm \mathrm{SE}$). The joint detection rate also varied by strata. The highest detection rate was in May (39.63\%); whereas the lowest was in PreMarch (0\%) for hatchery Spring Chinook smolt.

Table 3. Detection efficiencies of Prosser (PRO) and joint detection of the smolts of the hatchery Spring Chinook between PRO and McNary (MCJ), PRO and John Day (JDJ), PRO and Bonneville (B2J/BCC); and PRO and the detection at all dams (Pooled). Detection of Bonneville included the juvenile (smolt) population of hatchery Spring Chinook detected by B2J, BCC antennas.

Joint detection bet $^{\mathrm{n}}$	Months						
	Pre- March	March	April	May	Post- May	Joint	detection \pm SE

Table 4. Detection at Prosser based on strata (Un-stratified and Stratified) with the reference of McNary Dam and pooled over the three Columbia River dams (MCJ, JDJ and B2J/BCC). Rate of Redistribution was estimated by pooling the five time periods into two groups: pre-March through April, and May through Post-May.

Reference	Strata	Pre- March	March	April	May	Post-May
Based on MCJ	- Un-stratified	27.61\%	27.61\%	27.61\%	27.61\%	27.61\%
	- Stratified	0.00\%	19.38\%	17.72\%	35.63\%	0.00\%
	- Stratified (Redistributed)	18.47\%	18.47\%	18.47\%	35.63\%	35.63\%
Based on pooled Dams (MCJ, JDJ \& B2J/BCC)	- Un-stratified	27.93\%	27.93\%	27.93\%	27.93\%	27.93\%
	- Stratified	0.00\%	24.64\%	20.27\%	36.13\%	0.00\%
	- Stratified					
	(Redistributed)	20.07\%	20.07\%	20.06\%	35.88\%	35.88\%

3.3. Predicted number of out-migrating wild and hatchery Spring Chinook smolts

The total number of hatchery Spring Chinook smolts (Juvenile Prosser-passage estimates) passing at Prosser during the 2019's sampling period was almost double that of the Wild Spring Chinook smolts (Table 5). Based on the different methods that were used to estimate the detection rate at Prosser, the estimates of wild Spring Chinook smolts passing Prosser Dam also varied and ranged from 154,530 to 175,427 ; whereas the hatchery smolt estimates ranged from 310,836 to 353,803 . The estimates based on different estimators from 1999-2019 are given in the supplementary document (see attached Supplementary document A).

Table 5. The estimated number of wild and hatchery Spring Chinook smolts migrating past Prosser Dam during 2019 using four estimators (methods).

	Estimates	
Estimators (Methods)	Wild	Hatchery
MCJ_Unstratified	168,119	310,836
MCJ_Stratified (redistributed)	154,848	353,803
Pooled_Unstratified	175,427	319,579
Pooled-Stratified (redistributed)	154,530	343,212

Among the four estimates, choosing which estimate was the best was challenging. We further compared these estimates with another independent estimate derived by another method that was based on its survival rate. The average survival rate from the release sites to Prosser during the
sampling period was $50.82 \pm 2.2 \%$ (based on CJS model) and the total number of released hatchery Spring Chinook smolts during 2019 was 673,218 . Using the survival rate and released population, the total out-migration of hatchery Spring Chinook from Prosser would be 342,129 $\pm 14,810$ (mean \pm SE). This estimate seemed to be compatible with the estimate derived from the pooled stratified (redistributed) method. However the estimates based on survival rate may still have some bias because the survival rate may not be homogeneous among the sampling months, especially due to variation of river flow at Prosser within the sampling period. However, previous years' analyses also showed that estimate based on pooled-lower-dam-based stratified detection rate (method 4) was highly correlated with hatchery returns.

3.4. Annual trend of juvenile Prosser-passage estimates (hatchery and wild) by stock

Annual juvenile Prosser-passage estimates from out-migration years 1999 through 2019 are given in Table 6 by stock of wild origin (Naches, American, and Upper Yakima Rivers) plus hatchery Upper Yakima River origin. It showed that Prosser juvenile estimates for both wild and hatchery vary among the out-migration year. In an average year, $230,512 \pm 26,669$ wild and $322,470 \pm 16,547$ hatchery Spring Chinook smolt out-migrated from Prosser (Table 6 and Figure 6). Wild Spring Chinook from the American River had the lowest average, Naches had the second,, and Upper Yakima subbasin had the highest average among the wild stocks (Figure 6). Total Spring Chinook out-migration per year was $552,982 \pm 30,492$. The number of out-migration of both wild and hatchery juvenile from Prosser during 2019 was relatively higher than the smolt out-migrated during 2018 out-migration year (Table 6).

Table 6: Annual estimated wild and hatchery-origin smolt passage at Prosser Dam from the 1999 through 2019 out-migration years.

Brood Year (BY)	Outmigration Year	Wild Stock Estimates				Hatchery (Upper Yakima)	Total Wild \& Hatchery
		Total Wild	Naches	American	Upper Yakima		
1997	1999	584,016	93,427	63,000	427,588	187,669	771,685
1998	2000	199,416	55,737	50,944	92,795	303,688	503,104
1999	2001	148,460	Genetic	amples not ta		281,256	429,716
2000	2002	467,359	92,323	17,835	357,201	366,950	834,309
2001	2003	308,959	74,498	42,867	191,594	154,329	463,288
2002	2004	169,397	59,978	35,800	73,619	290,950	460,347
2003	2005	134,859	45,321	35,564	5,374	236,443	371,302
2004	2006	133,238	49,947	7,882	75,409	300,508	433,746
2005	2007	99,341	26,684	11,103	61,554	351,359	450,700
2006	2008	120,013	32,589	6,811	80,613	265,485	385,498
2007	2009	237,228	80,756	26,498	128,974	415,923	653,151
2008	2010	220,950	77,397	30,354	113,198	382,878	603,828
2009	2011	304,322	58,904	17,882	227,536	442,564	746,886
2010	2012	258,106	81,483	23,609	153,014	391,446	649,552
2011	2013	365,386	85,577	25,681	254,228	372,079	737,465
2012	2014	263,266	79,450	28,622	155,194	408,222	671,488
2013	2015	125,150	29,885	13,769	81,496	332,715	457,865
2014	2016	185,442	57,657	15,378	112,407	403,938	589,380
2015	2017	208,929	62,190	24,455	122,285	273,248	482,177
2016	2018	131,489	37,500	9,824	76,150	290,644	422,133
2017	2019	175,427	Genetic samples not yet available			319,579	495,006
Average/year		230,512	62,174	25,678	146,854	322,470	552,982
Standard Error (SE)		26,669	6,309	3,450	24,230	16,547	30,492

Estimates for the out-migration years from 1998 through 2018 were adopted from Neeley 2019 (Appendix C in Fiander et al. 2019).

Figure 6. Average annual Prosser-passage estimates (2000-2019; out-migration years) of wild and hatchery Spring Chinook by stock. Dot with red color is the mean and central line is the median. The out-migration year 1999 was not included for this box plots because in that year, only a few raceways were used for hatchery production compared to other years. Similarly, 1999 was the last outmigration year in which the old "ISO" tags with poor read range were used.

Although the out-migration populations of all three stocks (Total wild, Upper Yakima wild, and Upper Yakima hatchery) varied by out-migration year, we further estimated its linear trend over outmigration years and compared among stocks. In 1999, only 14 of 18 raceways were used for hatchery production. As a result, the Prosser passage estimates for hatchery smolts in 1999 seemed to be very low, which might not be compatible with other years' hatchery estimates. Brood year1997 (Migration Year 1999) had 10 raceways in use; Brood year 1998 (migration Year 2000) had 16 raceways in use; Brood year 2001 (Migration Year 2003) had 10 raceways in use with an 11 ${ }^{\text {th }}$ raceway's $\sim 40,000$ fish split among 6 raceways (to approximate the densities in other production raceways). Therefore, two relationships were developed using the data with and without 1999's passage estimates for all three stocks (total wild, Upper Yakima wild, and Upper Yakima hatchery). In both datasets, the total number of out-migrating wild smolts and the number of wild upper Yakima smolts seemed to be decreasing over time, whereas the population of Upper Yakima hatchery smolts seemed to be increasing; however these trends were not statistically significant [Figure 7 upper panel A1,B1 and C1- total Wild: slope $=-1184, \mathrm{R}^{2}=0.006 ; \mathrm{p}=0.76$; Wild upper

Yakima: slope $=-1956, \mathrm{R}^{2}=0.015 ; \mathrm{p}=0.605 ; ;$ Hatchery Upper Yakima: slope $=4140, \mathrm{R}^{2}=0.119$; $\mathrm{p}=0.137]$.

Figure 7. Estimated Juvenile Prosser-Passage populations of total wild, Upper Yakima wild, and Upper Yakima hatchery stocks with predicted trends by out-migration year. A1, B1, and C1 are for out-migration years 2000-2019 (omitting 1999 data); whereas A2, B2, and C2 were created using all out-migration years from 1999 through 2019.

Although out-migration of hatchery smolts of Upper Yakima is increasing but not significantly so, there was a possibility that a true positive increase in hatchery smolt passage coming from the Upper Yakima would have an associated true negative decrease in wild passage. Therefore, the assessment of wild and hatchery trends was further examined using the percentage changes in out-migrating smolt populations of wild and hatchery over years (hatchery plus wild).

Table 7. Percentage of wild (including American, Naches, and Upper Yakima) and hatchery (only upper Yakima) stocks in juvenile Prosser passage estimates.

Brood Year (BY)	Outmigration Year	Total Yakima Basin		Only Upper Yakima River	
		\% Hatchery of Total	\% Wild of Total	\% Hatchery of Upper Yakima Stock	\% Wild of Upper Yakima stock
1997	1999	24.32\%	75.68\%	30.50\%	69.50\%
1998	2000	60.36\%	39.64\%	76.60\%	23.40\%
1999	2001	65.45\%	34.55\%	Genetic sam	es not taken
2000	2002	43.98\%	56.02\%	50.67\%	49.33\%
2001	2003	33.31\%	66.69\%	44.61\%	55.39\%
2002	2004	63.20\%	36.80\%	79.81\%	20.19\%
2003	2005	63.68\%	36.32\%	97.78\%	2.22\%
2004	2006	69.28\%	30.72\%	79.94\%	20.06\%
2005	2007	77.96\%	22.04\%	85.09\%	14.91\%
2006	2008	68.87\%	31.13\%	76.71\%	23.29\%
2007	2009	63.68\%	36.32\%	76.33\%	23.67\%
2008	2010	63.41\%	36.59\%	77.18\%	22.82\%
2009	2011	59.25\%	40.75\%	66.04\%	33.96\%
2010	2012	60.26\%	39.74\%	71.90\%	28.10\%
2011	2013	50.45\%	49.55\%	59.41\%	40.59\%
2012	2014	60.79\%	39.21\%	72.45\%	27.55\%
2013	2015	72.67\%	27.33\%	80.33\%	19.67\%
2014	2016	68.54\%	31.46\%	78.23\%	21.77\%
2015	2017	56.67\%	43.33\%	69.08\%	30.92\%
2016	2018	68.85\%	31.15\%	79.24\%	20.76\%
2017	2019	64.56\%	35.44\%	Not yet Available	

Note: Estimates for the out-migration years from 1998 through 2018 were adopted from Neeley (2019).

The results showed that rate of change over years for both hatchery and wild groups seemed to be positive (Figure 8) but still it was not statistically significant. It indicates that the production and releases of hatchery smolts into the upper Yakima had no effect on the production of wild smolts.

Figure 8. Linear trend on the percentage of hatchery and wild components of the total out-migrating populations by out-migration year (2000-2019). For the Upper Yakima trend analysis (right), the 2019 estimate was not used because genetic analysis for the stock assignment was not yet available).

3.5. Genetic variations among the stocks (Upper Yakima, Naches, American)

As mentioned above, the wild Spring Chinook in the Yakima Basin are composed of multiple stocks including Upper Yakima River, Naches River, and American River among others. The reproductively isolated populations usually differ in productivity and capacity. We, therefore, further evaluated whether the rate of out-migration of these genetic stocks has changed over time. This analysis can also test a hypothesis if there was an effect of the hatchery program on wild production. If there is an effect of hatchery on wild production, we can also expect a high degree of decline in the wild smolt out-migration population from the Upper Yakima compared to the American and Naches River out-migrants because no hatchery program has been implemented in the American and Naches rivers. We, therefore, hypothesized that the rate of decline should be higher in the Upper Yakima's wild Spring Chinook, if there was an effect of the hatchery program. The result showed that the wild Spring Chinook smolt population declined over the2000-2019 out-migration years (Figure 9) for all three stocks. The rate of decline in the Wild Upper Yakima stock was -

1184/year, which was the highest of the three wild, but the estimate was not significantly different $\left(\mathrm{r}^{2}=0.005, \mathrm{p}=0.76\right)$. The rate of decline for the Naches River stock was $-394 /$ year, it was also not significant. Only the American stock average reduction was significant (Slope= -1087/year, $R 2=0.228, p=0.04$, Figure 9); there has been no introduction of hatchery smolts into the American River. The American River seems to have a relatively low anthropogenic effect compared to other rivers. It is also coldest and has entirely natural flow that persists through the summer. The Juveniles probably grow the slowest and may be the smallest at outmigration. One can speculate that if ocean conditions are worsening, the fish that spend more time there are affected more, but relating this to population decline. Similarly, earlier studies (Zabel and Achord 2004; and Zabel et al. 2005) found that juvenile survival rate of wild salmonids was related to fish size (fork length), with larger juveniles having higher downstream survival. These factors may have played a role in declining the survival rate.

Figure 9. The relationship between the estimated out-migration populations of Naches, American, and Upper Yakima by out-migration year.

About 60% of the total wild out-migrating smolts from Prosser was contributed by the Upper Yakima wild stock; whereas 28% and 12% of the total population were contributed by Naches and American River stocks, respectively (Table 8 and Figure 10). There was no significant linear trend in
the wild proportion by out-migration year for any of the three stocks (Upper Yakima, Naches, and American), indicating that there was no hatchery effect on out-migrating smolts sampled at Prosser Dam. If the hatchery effect was present, the proportion of wild Spring Chinook in the Upper Yakima would have decreased over migration years.

Table 8. American, Naches and Upper Yakima Percentages of Prosser passage of wild Spring Chinook smolts at Prosser Dam.

Out-migration				
Brood Year		Naches	American	Upper Yakima
1997	1999	16.00\%	10.79\%	73.22\%
1998	2000	27.95\%	25.55\%	46.53\%
1999	2001			
2000	2002	19.75\%	3.82\%	76.43\%
2001	2003	24.11\%	13.87\%	62.01\%
2002	2004	35.41\%	21.13\%	43.46\%
2003	2005	33.61\%	26.37\%	40.02\%
2004	2006	37.49\%	5.92\%	56.60\%
2005	2007	26.86\%	11.18\%	61.96\%
2006	2008	27.15\%	5.68\%	67.17\%
2007	2009	34.04\%	11.17\%	54.37\%
2008	2010	35.03\%	13.74\%	51.23\%
2009	2011	19.36\%	5.88\%	74.77\%
2010	2012	31.57\%	9.15\%	59.28\%
2011	2013	23.42\%	7.03\%	69.58\%
2012	2014	30.18\%	10.87\%	58.95\%
2013	2015	23.88\%	11.00\%	65.12\%
2014	2016	31.09\%	8.29\%	60.62\%
2015	2017	29.77\%	11.70\%	58.53\%
2016	2018	28.52\%	7.47\%	57.91\%
2017	2019 Genetic samples not yet available			
Mean		28.17\%	11.61\%	59.88\%
SE		1.32\%	1.39\%	2.32\%

There was an interaction between the proportions among stocks and years ($\mathrm{F}_{32,255}=3.67, \mathrm{p}<0.01$, Figure 10. A), indicating that the contribution in the out-migrating smolt populations from the different stocks was different among years but the contribution percentage of one stock depends on another stock's contribution.

Figure 10. Proportion of each stock in the out-migrating smolt populations from 1999 through 2019 (data from WDFW, see table 10).

Table 9. Estimated Wild Spring Chinook stock distributions (American, Naches and Upper Yakima River) within the genetic sampling periods (from Pre-March through Post-May).

$\begin{gathered} \text { migrati } \\ \text { on } \\ \text { year } \\ \hline \end{gathered}$	American					Naches					U. Yakima				
	Pre- March	March	April	May	PostMay	Pre- March	March	April	May	PostMay	Pre- March	March	April	May	Post- May
1999	8.08\%	8.08\%	8.08\%	12.00\%	28.00\%	6.06\%	6.06\%	6.06\%	29.00\%	33.00\%	85.86\%	85.86\%	85.86\%	59.00\%	39.00\%
2000	16.18\%	16.18\%	22.14\%	46.94\%	46.94\%	22.06\%	22.06\%	30.99\%	36.73\%	36.73\%	61.76\%	61.76\%	46.88\%	16.33\%	16.33\%
2002	3.81\%	3.81\%	3.81\%	3.86\%	3.86\%	19.68\%	19.68\%	19.68\%	20.29\%	20.29\%	76.51\%	76.51\%	76.51\%	75.85\%	75.85\%
2003	13.43\%	13.43\%	13.43\%	16.03\%	16.03\%	21.64\%	21.64\%	21.64\%	34.24\%	34.24\%	64.93\%	64.93\%	64.93\%	49.73\%	49.73\%
2004	6.46\%	4.27\%	21.50\%	34.72\%	31.25\%	33.84\%	29.27\%	36.47\%	34.03\%	18.75\%	59.70\%	66.46\%	42.03\%	31.25\%	50.00\%
2005	21.39\%	18.87\%	29.57\%	32.14\%	0.00\%	35.32\%	7.55\%	35.36\%	23.21\%	17.86\%	43.28\%	73.58\%	35.07\%	44.64\%	82.14\%
2006	7.36\%	0.00\%	5.52\%	5.45\%	2.27\%	39.88\%	25.96\%	35.95\%	39.11\%	15.91\%	52.76\%	74.04\%	58.53\%	55.45\%	81.82\%
2007	9.10\%	14.50\%	6.81\%	16.75\%	11.54\%	18.20\%	32.30\%	24.72\%	29.78\%	26.07\%	72.70\%	53.20\%	68.47\%	53.47\%	62.39\%
2008	8.33\%	0.00\%	5.22\%	5.00\%	14.81\%	8.33\%	14.29\%	25.22\%	31.11\%	51.85\%	83.33\%	85.71\%	69.57\%	63.89\%	33.33\%
2009	9.80\%	10.93\%	12.06\%	10.95\%	36.29\%	35.60\%	32.43\%	29.25\%	40.78\%	28.23\%	54.60\%	56.64\%	58.69\%	48.27\%	35.48\%
2010	30.31\%	0.00\%	14.16\%	11.88\%	0.00\%	7.35\%	19.50\%	37.13\%	33.63\%	75.49\%	62.34\%	80.50\%	48.71\%	54.49\%	24.51\%
2011	8.64\%	0.00\%	3.49\%	5.92\%	16.65\%	18.19\%	19.75\%	23.96\%	13.10\%	0.00\%	73.17\%	80.25\%	72.55\%	80.98\%	83.35\%
2012	10.99\%	5.31\%	6.17\%	13.65\%	23.46\%	31.62\%	29.60\%	29.32\%	38.48\%	29.45\%	57.39\%	65.09\%	64.51\%	47.87\%	47.09\%
2013	8.23\%	2.30\%	5.72\%	16.96\%	6.39\%	17.43\%	20.59\%	27.50\%	29.53\%	7.85\%	74.34\%	77.11\%	66.78\%	53.51\%	85.76\%
2014	11.65\%	12.03\%	9.09\%	11.95\%	13.86\%	41.19\%	21.74\%	30.16\%	38.12\%	0.00\%	47.16\%	66.23\%	60.74\%	49.93\%	86.14\%
2015	13.86\%	11.62\%	8.92\%	14.74\%	14.74\%	16.80\%	26.32\%	23.13\%	24.09\%	24.09\%	69.34\%	62.06\%	67.96\%	61.17\%	61.17\%
2016	5.69\%	7.42\%	9.44\%	13.00\%	3.71\%	26.41\%	23.18\%	38.42\%	34.52\%	0.00\%	67.90\%	69.40\%	52.13\%	52.49\%	96.29\%
2017	10.20\%	11.21\%	15.80\%	10.78\%	37.16\%	31.70\%	27.73\%	27.10\%	29.57\%	11.47\%	58.10\%	61.06\%	57.10\%	59.65\%	51.37\%
2018	8.80\%	3.30\%	5.82\%	10.40\%	25.00\%	23.20\%	33.00\%	35.11\%	41.94\%	25.00\%	68.00\%	63.70\%	59.08\%	47.66\%	50.00\%
2019							Genetic	ata not yet	vailable						

The data was provided by WDFW.

3.6. Relationship between Wild Juvenile passage estimates and estimated Adult Returns

Since the number of smolts out-migrating from Prosser (Prosser-passage estimates) varied among years, we further evaluated whether this variation corresponded to adult returns. Or in other words, does the fluctuation of annual wild juvenile Prosser passage (out-migrating smolts from Prosser) synchronize with the fluctuation of the adult returns at Prosser? To answer the question, we built a univariate relationship between the total Juvenile Prosser estimates of wild Spring Chinook and the predicted adult return to Prosser. Table 10 presents the brood year Prosser escapement (the escapement measures are taken as a surrogate of spawner number) of the parental generation in addition to total juvenile Prosser passage and Prosser return. The relationship between the escapement and estimated juvenile passage was not significant, however the correlation of total wild juvenile passage to adult return was significantly high (Figure 11). The year-to-year trends (Figure 12) between the total wild juvenile-passage adult return and estimated return seemed to be consistent and it was only 70% correlation.

Table 10. Total estimated wild escapement, juvenile passage and return to Prosser. Estimated value for the Prosser escapement and Prosser return were adopted from Table 10, and Table 3 of Bosch, 2020 , respectively. The shaded yellow color indicates no or incomplete estimates.

Brood Year	Out- migration Year	Prosser Escapement	Total Juvenile Prosser Passage	Prosser return
1997	1999	2,337	584,016	12,808
1998	2000	1,307	199,476	7,283
1999	2001	1,439	148,460	4,090
2000	2002	15,976	467,359	11,128
2001	2003	17,916	308,959	7,731
2002	2004	11,113	169,397	3,850
2003	2005	5,933	134,859	2,195
2004	2006	12,893	133,218	3,687
2005	2007	7,617	99,265	4,089
2006	2008	5,050	123,735	5,118
2007	2009	3,308	250,846	7,610
2008	2010	5,922	221,228	6,739
2009	2011	8,172	303,711	4,167
2010	2012	9,875	252,029	6,148
2011	2013	11,644	365,468	7,002

2012	2014	7,383	267,433	3,941
2013	2015	6,352	123,289	3,736
2014	2016	7,882	53,478	1,928
2015	2017	7,569	57,051	870
2016	2018	5,613	131,489	98
2017	2019	5,015	175,427	

Figure 11. For each brood from 1997 to 2017, the relationship between Prosser escapement of parents and Prosser returns of progeny to Prosser passage of smolts.

Figure 12. Year-to-year trends in juvenile outmigration from Prosser and returns from that outmigration, for out-migration years 1999-2017.

3.7. Relationship between estimated Juvenile Prosser passage and river flow

3.7.1. Annual

The annual juvenile Prosser-passage estimate of wild and hatchery Spring Chinook tends to increase with the river flow, however this was significant only in the Upper Yakima hatchery smolts (See Figure 13).

Figure 13. The relationship between the annual estimate of the juvenile Prosser-Passage (total number of out-migrating smolts of Total Wild, Upper Yakima Wild and Upper Yakima hatchery) and the four month average river flow approaching Prosser Dam (March through June). The flow is the sum of the flow measured at the gaging stations CHCW and YRPW.

3.7.2. Daily

We further evaluated whether daily estimated number of wild out-migrating smolts is affected by daily river flow (the river flow approaching the dam, which is the sum of the flow measured at the gaging stations CHCW and YRPW). Figure 14 shows day-to-day trends of the estimated daily counts and the daily river flow. It showed that in general, daily estimated out-migrating smolts was high if the river flow was high, but this relationship was strong only in the months of March, April and May, which indicates that rate of out-migration from Prosser was a function of river flow during those months and, when smolt migration appears to be stalled, releases of pulses in flow from reservoirs can improve the rate of smolt out-migration.

Figure 14. Daily estimated counts of wild/natural Spring Chinook smoltsand river flow for the period in which Chandler Canal's monitoring facility was operated during 2019. Gaps in the estimated population (red line) represent the missing count data. The river flow (blue line) is the flow approaching the dam (sum of the flow measured at the gaging stations CHCW and YRPW). The arrows (green color) along the lines corresponding to river flow and estimated counts show synchronizing events between increasing river flow and increasing fish counts.

We further examined how much synchrony there was between daily river flow and outmigration population for each month of the 2019 sampling period. We analyzed scatter plots and linear relationships between the daily estimated counts of wild Spring Chinook and daily river flow and found that if river flow increased, the out-migrating smolt population increased in the months, March, April and May. The relationship between daily out-migration and river flow seemed to be
negative for Pre-March and Post-May, but it was not significant. However, the positive relationship was very strong for the months of March, April and May.

Figure 15. The relationship between daily estimated wild/natural Spring Chinook smolt passage and river flow for the period in which the Chandler Canal monitoring facility was operated during 2019.

4. Reference

Bosch, B. 2020. Run Size Forcast for Yakima River Adult Spring Chinook, 2020 (preliminary). Yakima Klickitat Fisheries Project, Yakama Nation Fisheries Resource Management, 760 Pence Road, Yakima, Washington, 98908

Fiander, W., D.E. Fast, and W. J. Bosch (editors). 2019. Yakima-Klickitat Fisheries Project Monitoring and Evaluation- Yakima Subbasin, Final Report for the performance period May/2018-April/2019. Project Number 1995-063-25, 275 electronic pages.

Neeley, D. 2019. Methods of Estimating Smolt Survival and Passage (Appendix C), In Final report for the performance period May 1, 2018 through April 30, 2019, edited by W. Fiander, D. E. Fast, and W. J. Bosch. Yakima/Klickitat Fisheries Project.

Neeley, D. 2012. 2012 Annual Report: Chandler Certificate for Yearling Outmigrating Spring Chinook Smolt.

Pyper BJ and Smith DL, 2005. EVALUATION OF SALMONID SURVIVAL RESULTING FROM FLOW ALTERATIONS TO THE LOWER YAKIMA RIVER, S.P. Cramer and Assocaites, submmited to Kennewick Irrigation District and US Bureau of Recalmation, Yakima

Seamons, T.R. and Bowman, C.M., 2019. DNA-Based Population-of-Origin Assignments of Chinook Smolts Outmigrating Past Chandler Trap at Prosser Dam (Yakima River) in 2018. Washington Department of Fish and Wildlife, Molecular Genetics Laboratory, 600 Capital Way N., Olympia, WA.

Zabel, R.W. \& Achord, S. (2004) Relating size of juveniles tosurvival within and among populations of Chinook salmon. Ecology, 85, 795-806.

Zabel, R. W., T. Wagner, J. L. Congleton, S. G. Smith, and J. G. Williams. 2005. Survival and selection of migrating salmon from capturerecapture models with individual traits. Ecological Applications 15:1427-1439.
5. Supplementary information: Detailed Passage-Estimates

Detailed Passage-Estimates for each year from 1998 through 2019

Supplementary information: Detailed Passage-Estimates for each year from 1998 through 2019

5.1.Year 1998

		Brood-Year 1996	Pre-March	March	April	May	Post- May	Total	Expanded Elastomer			
Wild		Prosser Wild Tally	0	10618	106253	6174	292	123337	123337			
	American	WDFW Percent	0	0.00	0.02	0.02	0.12					
		Estimated Prosser Tally	0	0.00	2125.06	124.72	35.06	2284.84	2284.84			
		WDFW Percent	0.21	0.21	0.24	0.24	0.51					
	Naches	Estimated Prosser Tally	0	2230	25501	1497	149	29376	29376			
	Upper	WDFW Percent	0.79	0.79	0.74	0.74	0.37					
	Yakima	Estimated Prosser Tally	0	8388	78627	4552	108	91676	91676			
		Yakima Passage Wild Tally	0	10618	106253	6174	292	123337	Expanded Elastomer	Calibrated Total	PIT- Tag/Total	Calibration Index
	Estimate a.	Detection Efficiency										
		Total Passage										
		American Passage										
		Naches Passage										
		American \& Naches Passage										
		Upper Yakima Passage										
	Estimate b.	Detection Efficiency										
		Total Passage										
		American Passage										
		Naches Passage										
		American \& Naches Passage										
		Upper Yakima Passage										
	Estimate c.	Detection Efficiency										
*		Total Passage										
		American Passage										

		Naches Passage				
		American \& Naches Passage				
		Upper Yakima Passage				
	Estimate e.	Detection Efficiency				
		Total Passage				
		American Passage				
		Naches Passage				
		American \& Naches Passage				
		Upper Yakima Passage				
Hatchery		Prosser Hatchery Tally	Expanded Elastomer	Expanded PIT	PIT- Tag/Total	Calibration Index
McN-Str Hatch	Estimate a.	Total Passage				
McN-UnStr Hatch	Estimate b.	Total Passage				
Pooled Str Hatch Pooled UnStr	Estimate c.	Total Passage				
Hatch	Estimate e.	Total Passage				

5.2.Year 1999

1999		Brood-Year 1997	Pre-March	March	April	May	Post- May	Total	Expanded Elastomer			
Wild		Prosser Wild Tally	41232.89541	407	29431	51920	1577	124569	124569			
	American	WDFW Percent	0.08	0.08	0.08	0.12	0.28					
		Estimated Prosser Tally.	3332	33	2378	6230	442	12415	12415			
		WDFW Percent	0.06	0.06	0.06	0.29	0.33					
	Naches	Estimated Prosser Tally	2499	25	1784	15057	520	19885	19885			
	Upper	WDFW Percent	0.86	0.86	0.86	0.59	0.39					
	Yakima	Estimated Prosser Tally	35401.98091	350	25269	30633	615	92269	92269			
		Yakima Passage Wild Tally	41233	407	29431	51920	1577	124569	Expanded Elastomer	Calibrated Total	PIT- Tag/Total	Calibration Index
McN Str Wild	Estimate a.	Detection Efficiency	18.5\%	18.5\%	18.5\%	25.5\%	5.0\%					

5.3. Year 2000

5.4. Year 2001

2001		Brood-Year 1999	Pre-March	March	April	May	Post- May	Total	Expanded Elastomer	Genetic Sample Analysis not Performed			
Wild			4678.6417										
		Prosser Wild Tally	82	3236	101993	27763	1307	138977	138977				
	American	WDFW Percent											
		Estimated Prosser Tally							0				
		WDFW Percent	genetic assignment to Upper Yakima Stock not possible					0		Calibra ted Total	$\begin{aligned} & \text { PIT- } \\ & \text { Tag/Total } \end{aligned}$		
	Naches	Estimated Prosser Tally											
	Upper Yakima	WDFW Percent											
		Estimated Prosser Tally							0				
	Yakima Passage Wild Tally							138977	Elastomer			Calibration Index	
McN Str Wild	Estimate a.	Detection Efficiency	76.1\%	76.1\%	76.1\%	86.8\%	91.9\%						
		Total Passage	6150	4253	134076	31992	1421	177893	177893	149124		0.8383	
		American Passage											

YKFP Project Year 2019 M\&E Annual Report, Appendix C, Chandler Certification

		Naches Passage American \& Naches Passage Upper Yakima Passage										
McN UnStr Wild	Estimate b.	Detection Efficiency	83.9\%	83.9\%	83.9\%	83.9\%	83.9\%					
		Total Passage	5577	3857	121571	33092	1558	165654	165654	143613		0.8669
		American Passage										
		Naches Passage										
		American \& Naches Passage										
		Upper Yakima Passage										
Pooled Str Wild	Estimate c.	Detection Efficiency	77.3\%	77.3\%	77.3\%	85.9\%	90.9\%					
		Total Passage	6052	4185	131931	32310	1438	175917	175917	148460		0.8439
		American Passage										
		Naches Passage										
		American \& Naches Passage										
		Upper Yakima Passage										
Pooled UnStr Wild	Estimate e.	Detection Efficiency	83.7\%	83.7\%	83.7\%	83.7\%	83.7\%					
		Total Passage	5589	3865	121828	33162	1561	166004	166004	143917		0.8669
		Naches Passage										
		American \& Naches Passage										
		Upper Yakima Passage										
Hatchery		Prosser Hatchery Tally	0	4	96207	148783	16931	261925	Expanded Elastomer	Expand ed PIT	PITTag/Total	Calibration Index
McN-Str Hatch	Estimate a.	Total Passage	0	5	126468	171448	18415	316337	333380	279467	0.0511	0.8383
McN-UnStr Hatch	Estimate b.	Total Passage	0	5	114674	177343	20181	312202	329022	285245		0.8669
Pooled Str Hatch	Estimate c.	Total Passage	0	5	124446	173151	18633	316235	333273	281256		0.8439
Pooled UnStr Hatch	Estimate e.	Total Passage	0	5	114916	177717	20223	312862	329717	285847		0.8669

5.5. Year 2002

| 2002 | Brood-Year 2000 | Pre-March | March | April | May | Post-
 May | Total | Expanded
 Elastomer |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Wild | Prosser Wild Tally | 66506.36024 | 26080 | 101052 | 40512 | 62 | 234213 | 234213 |

	American	WDFW Percent Estimated Prosser Tally	$\begin{array}{r} 0.04 \\ 2534 \end{array}$	$\begin{gathered} 0.04 \\ 994 \end{gathered}$	$\begin{array}{r} 0.04 \\ 3850 \end{array}$	$\begin{gathered} 0.04 \\ 1566 \end{gathered}$	$\begin{array}{r} 0.04 \\ 2 \end{array}$	8945	8945			
		WDFW Percent	0.20	0.20	0.20	0.20	0.20					
	Naches	Estimated Prosser Tally	13090	5133	19890	8220	13	46345	46345			
	Upper	WDFW Percent	0.77	0.77	0.77	0.76	0.76					
	Yakima	Estimated Prosser Tally	50882.64387	19954	77313	30726	47	178922	178922			
		Yakima Passage Wild Tally	66506	26080	101052	40512	62	234213	Elastomer	$\begin{aligned} & \text { Calibrated } \\ & \text { Total } \\ & \hline \end{aligned}$	PIT- Tag/Total	$\begin{aligned} & \text { Calibration } \\ & \text { Index } \\ & \hline \end{aligned}$
McN Str Wild	Estimate a.	Detection Efficiency	31.7\%	31.7\%	56.3\%	65.9\%	25.2\%					
		Total Passage	209858	82295	179367	61477	247	533244	533244	466904		0.8756
		American Passage	7995	3135	6833	2376	10	20348	20348	17817		
		Naches Passage	41305	16198	35304	12474	50	105331	105331	92227		
		American \& Naches Passage	49300	19333	42137	14850	60	125679	125679	110044		
		Upper Yakima Passage	160558	62963	137230	46628	187	407565	407565	356861		
McN UnStr Wild	Estimate b.	Detection Efficiency	59.5\%	59.5\%	59.5\%	59.5\%	59.5\%					
		Total Passage	111740	43819	169781	68066	104	393510	393510	349322		0.8877
		American Passage	4257	1669	6468	2631	4	15028	15028	13341		
		Naches Passage	21993	8625	33417	13810	21	77867	77867	69123		
		American \& Naches Passage	26250	10294	39885	16441	25	92895	92895	82464		
		Upper Yakima Passage	85490	33525	129896	51625	79	300615	300615	266858		
Pooled Str Wild	Estimate c.	Detection Efficiency	32.8\%	32.8\%	53.9\%	65.2\%	7.9\%					
		Total Passage	202911	79571	187367	62093	784	532726	532726	467359		0.8773
		American Passage	7730	3031	7138	2400	30	20329	20329	17835		
		Naches Passage	39938	15662	36879	12599	159	105236	105236	92323		
		American \& Naches Passage	47668	18693	44016	14998	189	125565	125565	110158		
		Upper Yakima Passage	155243	60878	143350	47095	595	407161	407161	357201		
Pooled UnStr												
Wild	Estimate e.	Total Passage	57.6\%	57.6\%	57.6\%	57.6\%	57.6\%					
		Total Passage	115447	45272	175414	70324	108	406565	406565	360912		0.8877
		American Passage	4398	1725	6682	2718	4	15527	15527	13784		
		Naches Passage	22723	8911	34526	14269	22	80450	80450	71416		
		American \& Naches Passage	27121	10635	41208	16986	26	95977	95977	85200		
		Upper Yakima Passage	88326	34637	134206	53337	82	310588	310588	275712		

Hatchery		Prosser Hatchery Tally	5	2254	126919	101160	171	230509	Expanded Elastomer	Expanded PIT	PITTag/Total	Calibration Index
McN-Str Hatch	Estimate a.	Total Passage	16	7111	225281	153510	680	386599	404834	354470	0.0450	0.8756
McN-UnStr Hatch	Estimate b.	Total Passage	9	3786	213241	169962	288	387287	405555	360015		0.8877
Pooled Str Hatch Pooled UnStr	Estimate c.	Total Passage	16	6876	235328	155049	2164	399432	418273	366950		0.8773
Hatch	Estimate e.	Total Passage	9	3912	220316	175601	298	400136	419010	371959		0.8877

2003		Brood-Year 2001	Pre-March	March	April	May	Post- May	Total	Expanded Elastomer			
Wild		Prosser Wild Tally	30359.49166	16582	98537	33294	272	179045	179045			
	American	WDFW Percent	0.13	0.13	0.13	0.16	0.16					
		Estimated Prosser Tally	4078	2227	13236	5338	44	24923	24923			
		WDFW Percent	0.22	0.22	0.22	0.34	0.34					
	Naches	Estimated Prosser Tally	6570	3589	21325	11400	93	42977	42977			
	Upper	WDFW Percent	0.65	0.65	0.65	0.50	0.50					
	Yakima	Estimated Prosser Tally	19711.01324	10766	63975	16557	135	111144	111144			
		Yakima Passage Wild Tally	30359	16582	98537	33294	272	179045	Elastomer	$\begin{aligned} & \text { Calibrated } \\ & \text { Total } \\ & \hline \end{aligned}$	PIT- Tag/Total	$\begin{aligned} & \text { Calibration } \\ & \text { Index } \\ & \hline \end{aligned}$
McN Str Wild	Estimate a.	Detection Efficiency	45.1\%	45.1\%	61.9\%	54.7\%	13.4\%					
		Total Passage	67353	36787	159149	60921	2035	326245	326245	308309		0.9450
		American Passage	9047	4941	21378	9767	326	45461	45461	42961		
		Naches Passage	14576	7961	34443	20859	697	78536	78536	74218		
		American \& Naches Passage	23624	12903	55821	30626	1023	123997	123997	117180		
		Upper Yakima Passage	43729	23884	103328	30295	1012	202248	202248	191129		
McN UnStr Wild	Estimate b.	Detection Efficiency	58.5\%	58.5\%	58.5\%	58.5\%	58.5\%					
		Total Passage	51891	28342	168422	56908	466	306029	306029	289106		0.9447
		American Passage	6970	3807	22624	9124	75	42600	42600	40244		
		Naches Passage	11230	6134	36450	19485	159	73458	73458	69395		
		American \& Naches Passage	18201	9941	59073	28609	234	116058	116058	109640		
		Upper Yakima Passage	33691	18401	109349	28299	232	189971	189971	179466		
Pooled Str Wild	Estimate c.	Detection Efficiency	47.3\%	47.3\%	61.3\%	51.8\%	11.4\%					

		Total Passage	64119	35020	160800	64329	2398	326666	326666	308959		0.9458
		American Passage	8613	4704	21600	10314	93	45324	45324	42867		
		Naches Passage	13877	7579	34800	22026	487	78768	78768	74498		
		American \& Naches Passage	22490	12283	56400	32339	579	124091	124091	117365		
		Upper Yakima Passage	41630	22737	104400	31990	1819	202575	202575	191594		
Pooled UnStr												
Wild	Estimate e.	Detection Efficiency	57.1\%	57.1\%	57.1\%	57.1\%	57.1\%					
		Total Passage	53199	29056	172667	58342	477	313743	313743	296392		0.9447
		American Passage	7146	3903	23194	9354	77	43674	43674	41259		
		Naches Passage	11513	6288	37368	19976	163	75309	75309	71145		
		American \& Naches Passage	18659	10191	60562	29330	240	118983	118983	112403		
		Upper Yakima Passage	34540	18865	112105	29013	237	194760	194760	183989		
Hatchery		Prosser Hatchery Tally	0	2058	67386	15896	233	85573	Expanded Elastomer	Expanded PIT	$\begin{gathered} \text { PIT- } \\ \text { Tag/Total } \end{gathered}$	Calibration Index
McN-Str Hatch	Estimate a.	Total Passage	0	4565	108836	29087	1743	144230	160014	151217	0.0986	0.9450
McN-UnStr Hatch	Estimate b.	Total Passage	0	3517	115178	27170	399	146264	162271	153297		0.9447
Pooled Str Hatch Pooled UnStr	Estimate c.	Total Passage	0	4346	109965	30714	2054	147078	163174	154329		0.9458
Hatch	Estimate e.	Total Passage	0	3605	118081	27855	409	149950	166361	157161		0.9447

5.7.Year 2004

2004		Brood-Year 2002	PreMarch	March	April	May	Post- May	Total	Expanded Elastomer			
Wild			5652.215									
		Prosser Wild Tally	163	7240	70520	19028	346	102786	102786			
	American	WDFW Percent	0.06	0.04	0.21	0.35	0.31					
		Estimated Prosser Tally	365	309	15160	6607	108	22549	22549			
		WDFW Percent	0.34	0.29	0.36	0.34	0.19					
	Naches	Estimated Prosser Tally	1913	2119	25721	6475	65	36292	36292			
		WDFW Percent	0.60	0.66	0.42	0.31	0.50					
	Upper	Estimated Prosser Tally	3374.136				173	43944	43944			
		Estinated Prosser Tally					173					
		Yakima Passage Wild Tally	5652	7240	70520	19028	346	102786	Elastomer	Calibrated Total	$\begin{aligned} & \text { PIT- } \\ & \text { Tag/Total } \end{aligned}$	Calibration Index
McN Str Wild	Estimate a.	Detection Efficiency	58.4\%	58.4\%	58.4\%	87.2\%	87.2\%					
		Total Passage	9680	12400	120771	21832	397	165079	165079	171641		1.0398
		American Passage	626	529	25963	7580	124	34822	34822	36206		
		Naches Passage American \& Naches	3276	3629	44049	7429	74	58457	58457	60781		
		Passage	3901	4158	70012	15009	198	93280	93280	96987		
		Upper Yakima Passage	5778	8241	50759	6822	198	71799	71799	74653		
McN Str Wild	Estimate b.	Detection Efficiency	64.5\%	64.5\%	64.5\%	64.5\%	64.5\%					
		Total Passage	8760	11221	109291	29489	536	159296	159296	170539		1.0706
		American Passage	566	479	23495	10239	167	34947	34947	37413		
		Naches Passage American \& Naches	2964	3284	39862	10034	100	56245	56245	60215		
		Passage	3531	3763	63357	20274	268	91192	91192	97628		
		Upper Yakima Passage	5229	7458	45934	9215	268	68104	68104	72910		
McN UnStr Wild	Estimate c.	Detection Efficiency	59.4\%	59.4\%	59.4\%	86.8\%	86.8\%					
		Total Passage	9511	12183	118664	21916	398	162673	162673	169397		1.0413
		American Passage	615	520	25510	7610	124	34379	34379	35800		
		Naches Passage American \& Naches	3219	3566	43281	7458	75	57597	57597	59978		
		Passage	3833	4086	68791	15068	199	91976	91976	95778		

YKFP Project Year 2019 M\&E Annual Report, Appendix C, Chandler Certification

		Upper Yakima Passage	5678	8097	49873	6849	199	70696	70696	73619		
Pooled Str Wild	Estimate e.	Detection Efficiency	66.8\%	66.8\%	66.8\%	66.8\%	66.8\%					
		Total Passage	8465	10843	105611	28496	518	153933	153933	164797		1.0706
		American Passage	547	463	22704	9894	162	33770	33770	36153		
		Naches Passage American \& Naches	2865	3174	38520	9697	97	54352	54352	58188		
		Passage	3412	3636	61224	19591	259	88122	88122	94341		
		Upper Yakima Passage	5053	7207	44387	8905	259	65811	65811	70456		
Pooled UnStr Wild		Prosser Hatchery Tally	0	1662	99011	83912	283	184868	Expanded Elastomer	Expanded PIT	$\begin{gathered} \text { PIT- } \\ \text { Tag/Total } \end{gathered}$	Calibration Index
McN-Str Hatch	Estimate a.	Total Passage	0	2847	169565	96276	324	269013	282162	293378	0.0466	1.0398
McN-UnStr Hatch	Estimate b.	Total Passage	0	2576	153446	130045	438	286505	300510	321719		1.0706
Pooled Str Hatch	Estimate c.	Total Passage	0	2797	166606	96651	326	266380	279400	290950		1.0413
Pooled UnStr Hatch	Estimate e.	Total Passage	0	2490	148280	125667	423	276860	290392	310888		1.0706

5.8.Year 2005

YKFP Project Year 2019 M\&E Annual Report, Appendix C, Chandler Certification

		Passage										
		Upper Yakima Passage	26806	4324	32694	4030	75	67930	67930	52560		
McN UnStr Wild	Estimate b.	Detection Efficiency	70.0\%	70.0\%	70.0\%	70.0\%	70.0\%					
		Total Passage	53727	5097	95116	8921	91	162952	162952	125864		0.7724
		American Passage	11494	962	28121	2868	0	43444	43444	33556		
		Naches Passage American \& Naches	18978	385	33635	2071	16	55085	55085	42548		
		Passage	30472	1346	61757	4939	16	98530	98530	76104		
		Upper Yakima Passage	23255	3751	33360	3983	74	64422	64422	49760		
Pooled Str Wild	Estimate c.	Detection Efficiency	60.1\%	60.1\%	71.9\%	57.1\%	57.1\%					
		Total Passage	62602	5939	92669	10945	111	172267	172267	134859		0.7828
		American Passage	13392	1121	27398	3518	0	45429	45429	35564		
		Naches Passage American \& Naches	22113	448	32770	2541	20	57892	57892	45321		
		Passage	35506	1569	60168	6059	20	103321	103321	80885		
		Upper Yakima Passage	27096	4370	32501	4886	91	68946	68946	53974		
Pooled UnStr Wild	Estimate e.	Detection Efficiency	68.4\%	68.4\%	68.4\%	68.4\%	68.4\%					
		Total Passage	54999	5218	97370	9133	93	166813	166813	128846		0.7724
		American Passage	11766	985	28788	2936	0	44474	44474	34351		
		Naches Passage American \& Naches	19428	394	34432	2120	17	56390	56390	43556		
		Passage	31194	1378	63220	5056	17	100864	100864	77907		
		Upper Yakima Passage	23806	3840	34150	4077	76	65949	65949	50939		
Hatchery		Prosser Hatchery Tally	21	8	159590	37455	16	197090	Expanded Elastomer	Expanded PIT	PIT- Tag/Total	Calibration Index
McN-Str Hatch	Estimate a.	Total Passage	35	13	223388	54132	24	277593	291340	225424	0.0472	0.7737
McN-UnStr Hatch	Estimate b.	Total Passage	31	11	227934	53495	23	281494	295434	228194		0.7724
Pooled Str Hatch	Estimate c.	Total Passage	36	13	222070	65629	29	287777	302028	236443		0.7828
Pooled UnStr Hatch	Estimate e.	Total Passage	31	11	233334	54762	24	288163	302433	233600		0.7724

5.9.Year 2006

| 2006 | Brood-Year 2004 | Pre-
 March | March | April | May | Post-
 May | TotalExpanded
 Elastomer | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | Prosser Wild Tally | 10378.78 | 400 | 21517 | 9248 | 45 | 41588 | 41588 |

		American \& Naches										
		Passage	23650	501	43044	19875	40	87110	87110	56800		
		Upper Yakima Passage	26415	1429	60747	24733	179	113502	113502	74009		
Hatchery		Prosser Hatchery Tally	3	9	46130	45561	19	91722	Expanded Elastomer	Expanded PIT	PIT- Tag/Total	Calibration Index
McN-Str Hatch	Estimate a.	Total Passage	14	43	219277	192140	81	411555	431559	283348	0.0464	0.6566
McN-UnStr Hatch	Estimate b.	Total Passage	15	44	224500	221728	93	446380	468077	305209		0.6520
Pooled Str Hatch	Estimate c.	Total Passage	15	45	229944	207074	87	437166	458415	300508		0.6555
Pooled UnStr Hatch	Estimate e.	Total Passage	15	44	222520	219773	92	442444	463950	302518		0.6520
5.10.Year	7											

2007		Brood-Year 2005	Pre- March	March	April	May	Post- May	Total	Expanded Elastomer			
			541.5116									
Wild		Prosser Wild Tally	347	523	17147	11159	189	29559	29559			
	American	WDFW Percent	9.10\%	14.50\%	6.81\%	16.75\%	11.54\%					
		Estimated Prosser Tally	49	76	1167	1869	22	3183	3183			
		WDFW Percent	18.20\%	32.30\%	24.72\%	29.78\%	26.07\%					
	Naches	Estimated Prosser Tally	99	169	4239	3323	49	7879	7879			
		WDFW Percent	72.70\%	53.20\%	68.47\%	53.47\%	62.39\%					
	Upper		393.6789									
	Yakima	Estimated Prosser Tally	584	278	11740	5967	118	18497	18497			
		Yakima Passage Wild Tally	542	523	17147	11159	189	29559	Elastomer	Calibrated Total	PIT- Tag/Total	Calibration Index
McN Str Wild	Estimate a.	Detection Efficiency	30.2\%	30.2\%	30.2\%	21.9\%	21.9\%					
		Total Passage	1791	1728	56711	51048	866	112144	112144	99769		0.8897
		American Passage	163	251	3860	8550	100	12924	12924	11498		
		Naches Passage American \& Naches	326	558	14022	15200	226	30332	30332	26985		
		Passage	489	809	17882	23750	326	43256	43256	38483		
		Upper Yakima Passage	1302	920	38829	27297	540	68888	68888	61287		
McN UnStr Wild	Estimate b.	Detection Efficiency	26.3\%	26.3\%	26.3\%	26.3\%	26.3\%					
		Total Passage	2058	1986	65172	42413	719	112349	112349	98319		0.8751
		American Passage	187	288	4436	7104	83	12098	12098	10588		

		Naches Passage American \& Naches	375	642	16114	12629	188	29946	29946	26207		
		Passage	562	930	20550	19733	271	42045	42045	36794		
		Upper Yakima Passage	1496	1057	44622	22680	449	70304	70304	61525		
Pooled Str Wild	Estimate c.	Detection Efficiency	28.3\%	28.3\%	28.3\%	23.7\%	23.7\%					
		Total Passage	1916	1849	60674	47178	800	112417	112417	99265		0.8830
		American Passage	174	268	4130	7902	92	12567	12567	11097		
		Naches Passage American \& Naches	349	597	15001	14048	209	30204	30204	26670		
		Passage	523	865	19131	21950	301	42771	42771	37767		
		Upper Yakima Passage	1393	984	41543	25228	499	69646	69646	61498		
Pooled UnStr Wild	Estimate e.	Detection Efficiency	26.2\%	26.2\%	26.2\%	26.2\%	26.2\%					
		Total Passage	2068	1996	65477	42611	723	112874	112874	98779		0.8751
		American Passage	188	289	4457	7137	83	12155	12155	10637		
		Naches Passage American \& Naches	376	645	16189	12688	188	30087	30087	26329		
		Passage	565	934	20646	19825	272	42241	42241	36967		
		Upper Yakima Passage	1503	1062	44831	22786	451	70633	70633	61813		
Hatchery		Prosser Hatchery Tally	0	629	61236	37776	281	99922	Expanded Elastomer	Expanded PIT	PIT- Tag/Total	Calibration Index
McN-Str Hatch	Estimate a.	Total Passage	0	2079	202534	172814	1285	378712	396759	352979	0.0455	0.8897
McN-UnStr Hatch	Estimate b.	Total Passage	0	2389	232752	143581	1068	379790	397889	348202		0.8751
Pooled Str Hatch	Estimate c.	Total Passage	0	2224	216687	159714	1188	379813	397912	351359		0.8830
Pooled UnStr Hatch	Estimate e.	Total Passage	0	2400	233841	144253	1073	381568	399751	349831		0.8751

$$
\text { 5.11. Year } 2008
$$

2008		Brood-Year 2006	Pre- March	March	April	May	Post- May	Total	Expanded Elastomer
Wild			7037.374						
		Prosser Wild Tally	779	1052	44603	16505	443	69641	69641
	American	WDFW Percent	8.33\%	0.00\%	5.22\%	5.00\%	14.81\%	3804	3804
		Estimated Prosser Tally	586	0	2327	825	66		
		WDFW Percent	8.33\%	14.29\%	25.22\%	31.11\%	51.85\%		
	Naches	Estimated Prosser Tally	586	150	11248	5135	230	17349	17349

	Upper Yakima	WDFW Percent Estimated Prosser Tally	$\begin{array}{r} 83.33 \% \\ 5864.478 \\ 983 \end{array}$	85.71\% 902	69.57\% 31028	63.89\% 10545	33.33% 148	48487	48487			
		Yakima Passage Wild Tally	7037	1052	44603	16505	443	69641	Elastomer	Calibrated Total	PIT- Tag/Total	Calibration Index
McN Str Wild	Estimate a.	Detection Efficiency	71.4\%	71.4\%	71.4\%	35.6\%	10.8\%					
		Total Passage	9857	1473	62485	46346	4094	124254	124254	107901		0.8684
		American Passage	821	0	3260	2317	606	7005	7005	6083		
		Naches Passage American \& Naches	821	210	15757	14419	2123	33330	33330	28944		
		Passage	1643	210	19017	16736	2729	40335	40335	35027		
		Upper Yakima Passage	8214	1263	43468	29610	1365	83919	83919	72874		
McN UnStr Wild	Estimate b.	Detection Efficiency	46.1\%	46.1\%	46.1\%	46.1\%	46.1\%					
		Total Passage	15257	2281	96703	35784	961	150986	150986	130742		0.8659
		American Passage	1271	0	5045	1789	142	8248	8248	7142		
		Naches Passage American \& Naches	1271	326	24386	11133	498	37614	37614	32571		
		Passage	2543	326	29431	12922	641	45863	45863	39714		
		Upper Yakima Passage	12715	1955	67272	22862	320	105123	105123	91029		
Pooled Str Wild	Estimate c.	Detection Efficiency	48.8\%	48.8\%	66.7\%	31.2\%	7.9\%					
		Total Passage	14422	2156	66892	52920	5644	142034	142034	123735		0.8712
		American Passage	1202	0	3490	2646	836	8174	8174	7121		
		Naches Passage American \& Naches	1202	308	16868	16464	2927	37769	37769	32903		
		Passage	2404	308	20358	19110	3763	45943	45943	40024		
		Upper Yakima Passage	12018	1848	46534	33810	1881	96091	96091	83711		
Pooled UnStr Wild	Estimate e.	Detection Efficiency	41.4\%	41.4\%	41.4\%	41.4\%	41.4\%					
		Total Passage	16979	2538	107612	39821	1069	168019	168019	145492		0.8659
		American Passage	1415	0	5615	1991	158	9179	9179	7948		
		Naches Passage American \& Naches	1415	363	27137	12389	554	41858	41858	36246		
		Passage	2830	363	32752	14380	713	51037	51037	44194		
		Upper Yakima Passage	14149	2175	74861	25441	356	116983	116983	101298		
Hatchery		Prosser Hatchery Tally	0	233	43465	65164	930	109793	Expanded Elastomer	Expanded PIT	PIT- Tag/Total	Calibration Index
McN-Str Hatch	Estimate a.	Total Passage	0	326	60890	182980	8595	252791	268938	233543	0.0600	0.8684

YKFP Project Year 2019 M\&E Annual Report, Appendix C, Chandler Certification

McN-UnStr Hatch	Estimate b.	Total Passage	0	505	94235	141281	2017	238037	253242	219289	0.8659
Pooled Str Hatch	Estimate c.	Total Passage	0	477	65185	208936	11851	286449	304746	265485	
Pooled UnStr Hatch	Estimate e.	Total Passage	0	561	104866	157219	2245	264891	281812	244028	

5.12.Year 2009

2009		Brood-Year 2007	Pre- March	March	April	May	Post- May	Total	Expanded Elastomer			
Wild		Prosser Wild Tally	14956	543	27585	9394	2450	54927	54927			
	American	WDFW Percent	9.80\%	10.93\%	12.06\%	10.95\%	36.29\%					
		Estimated Prosser Tally	1466	59	3327	1029	889	6769	6769			
		WDFW Percent	35.60\%	32.43\%	29.25\%	40.78\%	28.23\%					
	Naches	Estimated Prosser Tally	5324	176	8068	3831	691	18090	18090			
		WDFW Percent	54.60\%	56.64\%	58.69\%	48.27\%	35.48\%					
	Upper		8166.224									
	Yakima	Estimated Prosser Tally	368	307	16191	4534	869	30067	30067			
		Yakima Passage Wild Tally	14956	543	27585	9394	2450	54927	Elastomer	Calibrated Total	PIT- Tag/Total	Calibration Index
McN Str Wild	Estimate a.	Detection Efficiency	28.4\%	28.4\%	21.2\%	12.5\%	12.5\%					
		Total Passage	52671	1911	130062	75334	19645	279622	279622	240827		0.8613
		American Passage	5162	209	15686	8249	7129	36434	36434	31379		
		Naches Passage American \& Naches	18751	620	38038	30723	5545	93676	93676	80680		
		Passage	23912	828	53724	38972	12674	130111	130111	112059		
		Upper Yakima Passage	28758	1082	76338	36362	6971	149512	149512	128768		
McN UnStr Wild	Estimate b.	Detection Efficiency	15.3\%	15.3\%	15.3\%	15.3\%	15.3\%					
		Total Passage	98002	3555	180751	61551	16051	359910	359910	318180		0.8841
		American Passage	9604	388	21799	6740	5825	44356	44356	39213		
		Naches Passage American \& Naches	34889	1153	52863	25102	4530	118537	118537	104793		
		Passage	44493	1541	74662	31842	10355	162893	162893	144006		
		Upper Yakima Passage	53509	2014	106089	29710	5695	197017	197017	174173		
Pooled Str Wild	Estimate c.	Detection Efficiency	26.2\%	26.2\%	21.3\%	11.4\%	11.4\%					
		Total Passage	57137	2073	129580	82196	21434	292419	292419	250846		0.8578
		American Passage	5599	226	15628	9000	7778	38232	38232	32797		

YKFP Project Year 2019 M\&E Annual Report, Appendix C, Chandler Certification

5.13.Year 2010

2010		Brood-Year 2008	PreMarch	March	April	May	Post- May	Total	Expanded Elastomer			
Wild		Prosser Wild Tally	3862	3204	70483	24871	637	103056	103056			
	American	WDFW Percent	30.31\%	0.00\%	14.16\%	11.88\%	0.00\%					
		Estimated Prosser Tally	1170	0	9981	2955	0	14106	14106			
		WDFW Percent	7.35\%	19.50\%	37.13\%	33.63\%	75.49\%					
	Naches	Estimated Prosser Tally	284	625	26167	8364	481	35921	35921			
		WDFW Percent	62.34\%	80.50\%	48.71\%	54.49\%	24.51\%					
	Upper Yakima	Estimated Prosser Tally	$\begin{array}{r} 2407.390 \\ 06 \end{array}$	2579	34334	13552	156	53029	53029			
		Yakima Passage Wild Tally	3862	3204	70483	24871	637	103056	Expanded Elastomer	Calibrated Total	PITTag/Total	Calibration Index
McN Str Wild	Estimate a.	Detection Efficiency	45.0\%	45.0\%	45.0\%	59.2\%	43.6\%					
		Total Passage	8584	7122	156665	42045	1459	215875	215875	221188		1.0246
		American Passage	2602	0	22186	4995	0	29782	29782	30515		

YKFP Project Year 2019 M\&E Annual Report, Appendix C, Chandler Certification

		American \& Naches										
		Passage	3233	1389	80349	19135	1101	105206	105206	107796		
		Upper Yakima Passage	5351	5733	76316	22910	358	110668	110668	113392		
McN UnStr Wild	Estimate b.	Detection Efficiency	52.2\%	52.2\%	52.2\%	52.2\%	52.2\%					1.0220
		Total Passage	7396	6137	134998	47635	1219	197386	197386	201737		
		American Passage	2242	0	19117	5659	0	27018	27018	27614		
		Naches Passage American \& Naches	544	1197	50119	16020	921	68800	68800	70316		
		Passage	2785	1197	69236	21679	921	95818	95818	97930		
		Upper Yakima Passage	4611	4940	65761	25956	299	101568	101568	103807		
Pooled Str Wild	Estimate c.	Detection Efficiency	45.4\%	45.4\%	45.4\%	57.4\%	35.4\%					1.0244
		Total Passage	8507	7058	155261	43333	1796	215955	215955	221228		
		American Passage	2578	0	21987	5148	0	29713	29713	30439		
		Naches Passage American \& Naches	625	1377	57642	14573	1356	75572	75572	77418		
		Passage	3204	1377	79629	19721	1356	105285	105285	107856		
		Upper Yakima Passage	5303	5682	75632	23612	440	110669	110669	113372		
Pooled UnStr Wild	Estimate e.	Detection Efficiency	51.3\%	51.3\%	51.3\%	51.3\%	51.3\%					1.0220
		Total Passage	7530	6248	137440	48497	1241	200957	200957	205387		
		American Passage	2282	0	19463	5761	0	27507	27507	28113		
		Naches Passage American \& Naches	553	1219	51026	16310	937	70044	70044	71588		
		Passage	2836	1219	70489	22071	937	97551	97551	99702		
		Upper Yakima Passage	4694	5030	66951	26426	304	103406	103406	105685		
Hatchery		Prosser Hatchery Tally	0	204	58305	129493	737	188739	Expanded Elastomer	Expanded PIT	PITTag/Total	Calibration Index
McN-Str Hatch	Estimate a.	Total Passage	0	453	129598	218915	1688	350653	367535	376582	0.0459	1.0246
McN-UnStr Hatch	Estimate b.	Total Passage	0	390	111674	248021	1411	361496	378900	387253		1.0220
Pooled Str Hatch	Estimate c.	Total Passage	0	449	128436	225621	2078	356584	373751	382878		1.0244
Pooled UnStr Hatch	Estimate e.	Total Passage	0	397	113694	252508	1436	368036	385755	394259		1.0220

5.14.Year 2011

2011		Brood-Year 2009	Pre- March	March	April	May	Post- May	Total	Expanded Elastomer			
Wild		Prosser Wild Tally	24773	4142	30530	15792	91	75328	75328			
	American	WDFW Percent	8.64\%	0.00\%	3.49\%		16.65\%					
		Estimated Prosser Tally	2140	0	1066	935	15	4156	4156			
		WDFW Percent	18.19\%	19.75\%	23.96\%	13.10\%	0.00\%					
	Naches	Estimated Prosser Tally	4506	818	7316	2069	0	14709	14709			
		WDFW Percent	73.17\%	80.25\%	72.55\%	80.98\%	83.35\%					
	Upper Yakima		18126.20 455									
		Estimated Prosser Tally	455	3324	22149	12788	75	56463	56463			
		Yakima Passage Wild Tally	24773	4142	30530	15792	91	75328	Expanded Elastomer	$\begin{aligned} & \text { Calibrated } \\ & \text { Total } \\ & \hline \end{aligned}$	PIT- Tag/Total	$\begin{aligned} & \text { Calibration } \\ & \text { Index } \\ & \hline \end{aligned}$
McN Str Wild	Estimate a.	Detection Efficiency	17.5\%	17.5\%	28.7\%	30.9\%	30.9\%					
		Total Passage	141442	23652	106452	51115	293	322954	322954	299949		0.9288
		American Passage	12221	0	3716	3027	49	19012	19012	17657		
		Naches Passage American \& Naches	25728	4671	25508	6697	0	62605	62605	58146		
		Passage	37949	4671	29224	9724	49	81617	81617	75803		
		Upper Yakima Passage	103493	18980	77228	41391	244	241337	241337	224146		
McN UnStr Wild	Estimate b.	Detection Efficiency	27.9\%	27.9\%	27.9\%	27.9\%	27.9\%					
		Total Passage	88870	14861	109524	56652	325	270231	270231	254125		0.9404
		American Passage	7678	0	3823	3355	54	14910	14910	14021		
		Naches Passage American \& Naches	16165	2935	26245	7423	0	52768	52768	49623		
		Passage	23844	2935	30067	10777	54	67678	67678	63644		
		Upper Yakima Passage	65026	11926	79457	45875	271	202554	202554	190481		
Pooled Str Wild	Estimate c.	Detection Efficiency	17.6\%	17.6\%	28.3\%	29.5\%	29.5\%					
		Total Passage	140705	23528	107826	53479	307	325846	325846	303711		0.9321
		American Passage	12157	0	3764	3167	51	19138	19138	17838		
		Naches Passage American \& Naches	25594	4647	25838	7007	0	63086	63086	58800		
		Passage	37751	4647	29601	10174	51	82224	82224	76639		
		Upper Yakima Passage	102954	18882	78225	43306	256	243622	243622	227072		
Pooled UnStr Wild	Estimate e.	Detection Efficiency	27.3\%	27.3\%	27.3\%	27.3\%	27.3\%					
		Total Passage	90699	15166	111779	57819	332	275795	275795	259357		0.9404

YKFP Project Year 2019 M\&E Annual Report, Appendix C, Chandler Certification

5.15. Year 2012

2012		Brood-Year 2010	Pre- March	March	April	May	Post- May	Total	Expanded Elastomer			
Wild		Prosser Wild Tally	15922	6786	14719	5327	993	43746	43746			
	American	WDFW Percent	10.99\%		6.17\%							
		Estimated Prosser Tally	1750	360	908	727	233	3978	3978			
		WDFW Percent	31.62\%	29.60\%	29.32\%	38.48\%	29.45\%					
	Naches	Estimated Prosser Tally	5034	2009	4316	2050	292	13700	13700			
		WDFW Percent	57.39\%	65.09\%	64.51\%	47.87\%	47.09\%					
	Upper Yakima	Estimated Prosser Tally	$\begin{array}{r} 9138.041 \\ 429 \end{array}$	4416	9495	2550	468	26067	26067			
		Yakima Passage Wild Tally	15922	6786	14719	5327	993	43746	Expanded Elastomer	Calibrated Total	PITTag/Total	Calibration Index
McN Str Wild	Estimate a.	Detection Efficiency	10.6\%	10.6\%	6.8\%	6.4\%	6.4\%					
		Total Passage	149599	63757	215132	82800	15434	526721	526721	301173		0.5718
		American Passage	16439	3386	13274	11299	3621	48019	48019	27456		
		Naches Passage American \& Naches	47298	18874	63077	31863	4545	165658	165658	94721		
		Passage	63738	22260	76350	43162	8166	213676	213676	122178		
		Upper Yakima Passage	85861	41497	138782	39638	7267	313045	313045	178995		
McN UnStr Wild	Estimate b.	Detection Efficiency	6.8\%	6.8\%	6.8\%	6.8\%	6.8\%					
		Total Passage	233096	99343	215485	77987	14537	640449	640449	368824		0.5759

YKFP Project Year 2019 M\&E Annual Report, Appendix C, Chandler Certification

		American Passage	25615	5276	13295	10642	3411	58239	58239	33539		
		Naches Passage American \& Naches	73698	29408	63180	30011	4281	200579	200579	115510		
		Passage	99312	34684	76476	40654	7692	258818	258818	149049		
		Upper Yakima Passage	133784	64659	139010	37334	6845	381631	381631	219775		
Pooled Str Wild	Estimate c.	Detection Efficiency	17.2\%	12.0\%	8.0\%	6.2\%	6.2\%					
		Total Passage	92790	56530	184609	86385	16102	436417	436417	252029		0.5775
		American Passage	10197	3002	11390	11788	3778	40155	40155	23189		
		Naches Passage American \& Naches	29337	16735	54127	33243	4742	138184	138184	79801		
		Passage	39534	19737	65518	45031	8520	178339	178339	102990		
		Upper Yakima Passage	53256	36794	119091	41354	7582	258077	258077	149038		
Pooled UnStr Wild	Estimate e.	Detection Efficiency	7.4\%	7.4\%	7.4\%	7.4\%	7.4\%					
		Total Passage	216431	92241	200080	72412	13497	594661	594661	342455		0.5759
		American Passage	23783	4898	12345	9881	3167	54075	54075	31141		
		Naches Passage American \& Naches	68429	27306	58663	27866	3975	186239	186239	107252		
			92212	32204	71008	37747	7142	240314	240314	138393		
		Upper Yakima Passage	124219	60036	129071	34665	6356	354347	354347	204063		
Hatchery		Prosser Hatchery Tally	0	1485	20279	22395	919	45078	Expanded Elastomer	Expanded PIT	PIT- Tag/Total	Calibration Index
McN-Str Hatch	Estimate a.	Total Passage	0	13952	296397	348103	14288	672740	707207	404372	0.0487	0.5718
McN-UnStr Hatch	Estimate b.	Total Passage	0	21739	296884	327872	13457	659952	693764	399527		0.5759
Pooled Str Hatch	Estimate c.	Total Passage	0	12370	254344	363177	14906	644798	677833	391446		0.5775
Pooled UnStr Hatch	Estimate e.	Total Passage	0	20185	275659	304431	12495	612770	644164	370963		0.5759

5.16.Year 2013

YKFP Project Year 2019 M\&E Annual Report, Appendix C, Chandler Certification

	Upper Yakima	WDFW Percent Estimated Prosser Tally	$\begin{array}{r} 74.34 \% \\ 21188.49 \\ 724 \end{array}$	$\begin{gathered} 77.11 \% \\ 14407 \end{gathered}$	66.78\% 34055	53.51\% 4419	85.76\%	74358	74358			
		Yakima Passage Wild Tally	28502	18683	50994	8258	336	106774	Expanded Elastomer	Calibrated Total	PIT- Tag/Total	Calibration Index
McN Str Wild	Estimate a.	Detection Efficiency	26.7\%	26.7\%	37.1\%	23.4\%	23.4\%					
		Total Passage	106741	69970	137366	35270	1437	350785	350785	358055		1.0207
		American Passage	8785	1608	7855	5982	92	24321	24321	24826		
		Naches Passage American \& Naches	18605	14408	37774	10415	113	81314	81314	82999		
		Passage	27390	16016	45628	16397	205	105636	105636	107825		
		Upper Yakima Passage	79352	53955	91738	18873	1232	245149	245149	250230		
McN UnStr Wild	Estimate b.	Detection Efficiency	32.6\%	32.6\%	32.6\%	32.6\%	32.6\%					
		Total Passage	87352	57260	156284	25309	1031	327236	327236	333839		1.0202
		American Passage	7189	1316	8936	4293	66	21800	21800	22240		
		Naches Passage American \& Naches	15225	11791	42976	7474	81	77546	77546	79111		
		Passage	22415	13106	51912	11766	147	99346	99346	101351		
		Upper Yakima Passage	64938	44154	104372	13543	884	227890	227890	232489		
Pooled Str Wild	Estimate c.	Detection Efficiency	27.5\%	27.5\%	35.1\%	21.1\%	21.1\%					
		Total Passage	103702	67978	145428	39056	1591	357755	357755	365468		1.0216
		American Passage	8535	1562	8316	6624	102	25139	25139	25680		
		Naches Passage American \& Naches	18075	13997	39991	11533	125	83721	83721	85526		
		Passage	26610	15560	48306	18157	227	108860	108860	111206		
		Upper Yakima Passage	77092	52418	97122	20898	1365	248896	248896	254261		
Pooled UnStr Wild	Estimate e.	Detection Efficiency	30.5\%	30.5\%	30.5\%	30.5\%	30.5\%					
		Total Passage	93410	61231	167121	27064	1103	349929	349929	356990		1.0202
		American Passage	7688	1407	9556	4590	70	23312	23312	23782		
		Naches Passage American \& Naches	16281	12608	45956	7992	87	82924	82924	84597		
		Passage	23969	14015	55512	12582	157	106235	106235	108379		
		Upper Yakima Passage	69441	47216	111609	14482	946	243693	243693	248611		
Hatchery		Prosser Hatchery Tally	0	13014	69719	20263	879	103874	Expanded Elastomer	Expanded PIT	PIT- Tag/Total	Calibration Index
McN-Str Hatch	Estimate a.	Total Passage	0	48738	187807	86542	3753	326839	343892	351019	0.0496	1.0207

YKFP Project Year 2019 M\&E Annual Report, Appendix C, Chandler Certification

McN-UnStr Hatch	Estimate b.	Total Passage	0	39885	213671	62100	2693	318349	334959	341718	1.0202
Pooled Str Hatch	Estimate c.	Total Passage	0	47350	198830	95831	4155	346166	364227	372079	
Pooled UnStr Hatch	Estimate e.	Total Passage	0	42651	228489	66406	2879	340425	358187	365415	1.0216

5.17.Year 2014

2014		Brood-Year 2012	PreMarch	March	April	May	Post- May	Total	Expanded Elastomer			
Wild		Prosser Wild Tally	1589	4340	14949	11897	959	33735	33735			
	American	WDFW Percent	11.65\%	12.03\%	9.09\%	11.95\%						
		Estimated Prosser Tally	185	522	1360	1421	133	3621	3621			
		WDFW Percent	41.19\%	21.74\%	30.16\%	38.12\%	0.00\%					
	Naches	Estimated Prosser Tally	655	944	4509	4535	0	10643	10643			
		WDFW Percent	47.16\%	66.23\%	60.74\%	49.93\%	86.14\%					
	Upper		749.6015									
	Yakima	Estimated Prosser Tally	614	2874	9080	5940	826	19471	19471			
		Yakima Passage Wild Tally	1589	4340	14949	11897	959	33735	Expanded Elastomer	Calibrated Total	PIT- Tag/Total	Calibration Index
McN Str Wild	Estimate a.	Detection Efficiency	13.9\%	13.9\%	13.9\%	13.9\%	6.0\%					
		Total Passage	11447	31257	107660	85679	15923	251966	251966	250881		0.9957
		American Passage	1334	3760	9791	10236	2208	27329	27329	27211		
		Naches Passage American \& Naches	4715	6795	32474	32662	0	76646	76646	76317		
		Passage	6049	10555	42266	42898	2208	103975	103975	103528		
		Upper Yakima Passage	5398	20701	65395	42781	13715	147991	147991	147354		
McN UnStr Wild	Estimate b.	Detection Efficiency	13.8\%	13.8\%	13.8\%	13.8\%	13.8\%					
		Total Passage	11481	31349	107976	85931	6930	243667	243667	241676		0.9918
		American Passage	1338	3771	9820	10266	961	26156	26156	25942		
		Naches Passage American \& Naches	4729	6815	32570	32758	0	76872	76872	76244		
		Passage	6066	10586	42390	43024	961	103027	103027	102186		
		Upper Yakima Passage	5414	20762	65587	42907	5969	140639	140639	139490		
Pooled Str Wild	Estimate c.	Detection Efficiency	13.1\%	13.1\%	13.1\%	13.1\%	5.0\%					
		Total Passage	12091	33016	113718	90500	19031	268355	268355	267433		0.9966
		American Passage	1409	3972	10342	10812	2638	29173	29173	29073		
		Naches Passage American \& Naches	4980	7178	34302	34500	0	80959	80959	80681		
		Passage	6389	11149	44644	45312	2638	110132	110132	109754		

		Upper Yakima Passage	5702	21866	69074	45188	16392	158223	158223	157679		
Pooled UnStr Wild	Estimate e.	Total Passage	13.0\%	13.0\%	13.0\%	13.0\%	13.0\%					
		Total Passage	12197	33306	114717	91295	7363	258877	258877	256762		0.9918
		American Passage	1421	4007	10433	10907	1021	27788	27788	27561		
		Naches Passage American \& Naches	5024	7241	34603	34803	0	81670	81670	81003		
		Passage	6445	11247	45036	45710	1021	109459	109459	108564		
		Upper Yakima Passage	5752	22058	69681	45585	6342	149419	149419	148198		
Hatchery		Prosser Hatchery Tally	0	1493	16126	30753	1114	49486	Expanded Elastomer	```Expanded PIT```	PIT- Tag/Total	$\begin{aligned} & \text { Calibration } \\ & \text { Index } \\ & \hline \end{aligned}$
McN-Str Hatch	Estimate a.	Total Passage	0	10749	116139	221480	18480	366847	385256	383598	0.0478	0.9957
McN-UnStr Hatch	Estimate b.	Total Passage	0	10781	116480	222131	8043	357434	375371	372304		0.9918
Pooled Str Hatch	Estimate c.	Total Passage	0	11354	122673	233942	22087	390056	409630	408222		0.9966
Pooled UnStr Hatch	Estimate e.	Total Passage	0	11454	123751	235997	8545	379747	398803	395545		0.9918

5.18. Year 2015

		Yakima Passage Wild Tally	2658	13541	35320	11639	4	63162	Expanded Elastomer	Calibrated Total	PIT- Tag/Total	Calibra tion Index
McN Str Wild	Estimate a.	Detection Efficiency	52.9\%	52.9\%	52.9\%	56.3\%	56.3\%					
		Total Passage	5028	25614	66809	20689	6	118146	118146	120848		1.0229
		American Passage	697	2976	5956	3050	1	12680	12680	12970		
		Naches Passage	845	6742	15451	4985	2	28024	28024	28665		
		American \& Naches	1541	9718	21408	8035	3	40704	40704	41635		

		Passage										
		Upper Yakima Passage	3486	15897	45401	12655	4	77442	77442	79213		
McN UnStr Wild	Estimate b.	Detection Efficiency	53.2\%	53.2\%	53.2\%	53.2\%	53.2\%					
		Total Passage	4999	25468	66427	21890	7	118791	118791	121334		1.0214
		American Passage	693	2959	5922	3227	1	12802	12802	13076		
		Naches Passage American \& Naches	840	6703	15363	5274	2	28182	28182	28786		
		Passage	1533	9662	21285	8501	3	40984	40984	41861		
		Upper Yakima Passage	3466	15806	45141	13389	4	77807	77807	79472		
Pooled Str Wild	Estimate c.	Detection Efficiency	37.1\%	37.1\%	62.1\%	57.6\%	57.6\%					
		Total Passage	7170	36531	56858	20221	6	120786	120786	123289		1.0207
		American Passage	994	4244	5069	2981	1	13289	13289	13564		
		Naches Passage American \& Naches	1205	9615	13150	4872	2	28843	28843	29441		
		Passage	2198	13859	18219	7853	2	42132	42132	43005		
		Upper Yakima Passage	4972	22671	38639	12368	4	78654	78654	80284		
Pooled UnStr Wild	Estimate e.	Detection Efficiency	51.4\%	51.4\%	51.4\%	51.4\%	51.4\%					
		Total Passage	5173	26355	68741	22653	7	122930	122930	125561		1.0214
		American Passage	717	3062	6129	3339	1	13248	13248	13531		
		Naches Passage American \& Naches	869	6937	15898	5458	2	29164	29164	29788		
		Passage	1586	9999	22027	8797	3	42412	42412	43320		
		Upper Yakima Passage	3587	16356	46714	13856	4	80518	80518	82241		
Hatchery		Prosser Hatchery Tally	0	43016	90070	26254	11	159351	Expanded Elastomer	$\begin{aligned} & \text { Expanded } \\ & \text { PIT } \\ & \hline \end{aligned}$	PIT- Tag/Total	Calibra tion Index
McN-Str Hatch	Estimate a.	Total Passage	0	81366	170371	46668	19	298424	317197	324451	0.0592	1.0229
McN-UnStr Hatch	Estimate b.	Total Passage	0	80901	169397	49377	21	299696	318550	325368		1.0214
Pooled Str Hatch	Estimate c.	Total Passage	0	116043	144995	45612	19	306669	325961	332715		1.0207
Pooled UnStr Hatch	Estimate e.	Total Passage	0	83720	175300	51098	21	310139	329649	336705		1.0214

5.19. Year 2016

2016		Brood-Year 2014	Pre-March	March	April	May	PostMay	Total	Expanded Elastomer			
Wild		Prosser Wild Tally	2900	3922	4227	3478	73	14599	14599			
	American	WDFW Percent	5.69\%	7.42\%	9.44\%	13.00\%	3.71\%					
		Estimated Prosser Tally	165	291	399	452	3	1310	1310			
		WDFW Percent	26.41\%	23.18\%	38.42\%	34.52\%	0.00\%					
	Naches	Estimated Prosser Tally	766	909	1624	1200	0	4500	4500			
	Upper	WDFW Percent	67.90\%	69.40\%	52.13\%	52.49\%	96.29\%					
	Yakima	Estimated Prosser Tally	1968.880324	2722	2204	1825	70	8790	8790			
		Yakima Passage Wild Tally	2900	3922	4227	3478	73	14599	Expanded Elastomer	Calibrated Total	PIT- Tag/Total	Calibra tion Index
McN Str Wild	Estimate a.	Detection Efficiency	5.5\%	5.5\%	5.5\%	22.8\%	22.8\%					
		Total Passage	52843	71469	77035	15257	320	216925	216925	51305		0.2365
		American Passage	3007	5304	7273	1983	12	17578	17578	4157		
		Naches Passage American \& Naches	13956	16568	29600	5266	0	65391	65391	15465		
		Passage	16963	21872	36873	7250	12	82969	82969	19623		
		Upper Yakima Passage	35881	49598	40162	8008	308	133956	133956	31682		
McN UnStr Wild	Estimate b.	Detection Efficiency	9.6\%	9.6\%	9.6\%	9.6\%	9.6\%					
		Total Passage	30115	40730	43902	36116	757	151620	151620	39037		0.2575
		American Passage	1714	3022	4145	4694	28	13603	13603	3502		
		Naches Passage American \& Naches	7953	9442	16869	12466	0	46731	46731	12031		
		Passage	9667	12465	21014	17161	28	60334	60334	15534		
		Upper Yakima Passage	20448	28265	22888	18956	729	91286	91286	23503		
Pooled Str Wild	Estimate c.	Detection Efficiency	5.9\%	5.9\%	4.4\%	21.5\%	21.5\%					
		Total Passage	49149	66473	96748	16177	339	228887	228887	53478		0.2336
		American Passage	2797	4933	9134	2103	13	18979	18979	4434		
		Naches Passage American \& Naches	12980	15410	37175	5584	0	71149	71149	16624		
		Passage	15777	20343	46309	7687	13	90128	90128	21058		
		Upper Yakima Passage	33372	46131	50439	8491	326	138759	138759	32420		
Pooled UnStr Wild	Estimate e.	Detection Efficiency	8.4\%	8.4\%	8.4\%	8.4\%	8.4\%					
		Total Passage	34538	46712	50350	41421	868	173890	173890	44770		0.2575

YKFP Project Year 2019 M\&E Annual Report, Appendix C, Chandler Certification

		American Passage		3466	4754	5384	32	15601	15601	4017		
		Naches Passage	9122	10829	19347	14297	0	53594	53594	13799		
		American \& Naches										
		Passage	11087	14295	24100	19681	32	69196	69196	17815		
		Upper Yakima Passage	23451	32417	26250	21740	836	104694	104694	26955		
Hatchery		Prosser Hatchery Tally	0	9155	14039	20515	66	136488	Expanded Elastomer	Expanded PIT	PIT- Tag/Total	Calibra tion Index
McN-Str Hatch	Estimate a.	Total Passage	0	166846	255836	90006	289	1499037	1587340	375419	0.0556	0.2365
McN-UnStr Hatch	Estimate b.	Total Passage	0	95085	145799	213058	685	1417512	1501013	386455		0.2575
Pooled Str Hatch	Estimate c.	Total Passage	0	155183	321302	95434	307	1632683	1728859	403938		0.2336
Pooled UnStr Hatch	Estimate e.	Total Passage	0	109051	167214	244352	785	1625716	1721481	443217		0.2575

5.20.Year 2017

2017		Brood-Year 2015	Pre-March	March	April	May	Post- May	Total	Expanded Elastomer
Wild		Prosser Wild Tally	2542	458	993	1352	24	5369	5369
	American	WDFW Percent	10.20\%	11.21\%	15.80\%	10.78\%	37.16\%		
		Estimated Prosser Tally	296	440	668	375	27	1805	1805
		WDFW Percent	31.70\%	27.73\%	27.10\%	29.57\%	11.47\%		
	Naches	Estimated Prosser Tally	919	1087	1146	1028	8	4189	4189
	Upper Yakima	WDFW Percent	58.10\%	61.06\%	57.10\%	59.65\%	51.37\%		
		Estimated Prosser Tally	1684.712029	2395	2414	2074	37	8605	8605

		Yakima Passage Wild Tally	2900	3922	4227	3478	73	14599	Expanded Elastomer	Calibrated Total	PIT- Tag/Total	Calibration Index
McN Str Wild	Estimate a.	Detection Efficiency	5.5\%	5.5\%	5.5\%	9.3\%	9.3\%					
		Total Passage	45879	8257	17922	14554	258	86871	86871	60411		0.6954
		American Passage	4680	926	2832	1569	96	10102	10102	7025		
		Naches Passage American \& Naches	14544	2289	4857	4304	30	26024	26024	18097		
		Passage	19223	3215	7688	5873	126	36125	36125	25122		
		Upper Yakima Passage	26656	5042	10233	8682	133	50745	50745	35289		

McN UnStr Wild	Estimate b.	Detection Efficiency	7.2\%	7.2\%	7.2\%	7.2\%	7.2\%					
		Total Passage	35465	6383	13854	18862	335	74899	74899	49700		0.6636
		American Passage	3617	716	2189	2033	124	8679	8679	5759		
		Naches Passage American \& Naches	11242	1770	3754	5578	38	22383	22383	14853		
		Passage	14860	2485	5943	7611	163	31062	31062	20612		
		Upper Yakima Passage	20605	3897	7910	11251	172	43836	43836	29088		
Pooled Str Wild	Estimate c.	Detection Efficiency	5.9\%	5.9\%	5.9\%	9.7\%	9.7\%					
		Total Passage	43257	7785	16897	14009	249	82198	82198	57051		0.6941
		American Passage	4412	873	2670	1510	92	9557	9557	6633		
		Naches Passage American \& Naches	13712	2159	4579	4143	29	24622	24622	17089		
		Passage	18125	3031	7249	5653	121	34179	34179	23723		
		Upper Yakima Passage	25132	4754	9648	8357	128	48019	48019	33328		
Pooled UnStr Wild	Estimate e.	Detection Efficiency	7.6\%	7.6\%	7.6\%	7.6\%	7.6\%					
		Total Passage	33442	6019	13064	17786	316	70627	70627	46866		0.6636
		American Passage	3411	675	2064	1917	117	8184	8184	5431		
		Naches Passage American \& Naches	10601	1669	3540	5260	36	21107	21107	14006		
		Passage	14012	2344	5604	7177	154	29291	29291	19436		
		Upper Yakima Passage	19430	3675	7459	10609	162	41336	41336	27429		
Hatchery		Prosser Hatchery Tally	1	235	1943	5727	41	7947	Expanded Elastomer	Expanded PIT	PIT- Tag/Total	Calibration Index
McN-Str Hatch	Estimate a.	Total Passage	18	4241	35067	61646	441	386839	412204	286652	0.061	0.6954
McN-UnStr Hatch	Estimate b.	Total Passage	9	3279	27108	79893	572	425176	453055	300633	0.1029	0.6636
Pooled Str Hatch	Estimate c.	Total Passage	12	3999	33063	59338	425	369465	393691	273248	0.1029	0.6941
Pooled UnStr Hatch	Estimate e.	Total Passage	9	3092	25561	75336	539	400926	427215	283486	0.1029	0.6636

5.21.Year 2018

	2018	Brood-Year 2016	Pre-March	March	April	May	Post- May	Total	Expanded Elastomer
Wild		Prosser Wild Tally	6091	1173	8517	1374	96	17251	17251
		WDFW Percent	8.80\%	3.30\%	5.82\%	10.40\%	25.00\%	0.00	

		Estimated Prosser Tally	255	129	246	362	18	1010	1010			
		WDFW Percent	31.70\%	27.73\%	27.10\%	29.57\%	11.47\%	0.00				
	Naches	Estimated Prosser Tally	919	1087	1146	1028	8	4189	4189			
	Upper	WDFW Percent	58.10\%	61.06\%	57.10\%	59.65\%	51.37\%	0.00				
	Yakima	Estimated Prosser Tally	1684.712029	2395	2414	2074	37	8605	8605			
		Yakima Passage Wild Tally	2859	3612	3805	3464	64	13804	Expanded Elastomer	Calibrated Total	PIT- Tag/Total	Calibration Index
McN Str Wild	Estimate a.	Detection Efficiency	9.8\%	9.8\%	9.8\%	4.9\%	4.9\%					
		Total Passage	62211	11978	86996	27928	1951	191064	191064	128380		0.6719
		American Passage	5475	395	5061	2904	488	14323	14323	9624		
		Naches Passage American \& Naches	19721	3321	23576	8259	224	55101	55101	37024		
		Passage	25196	3716	28637	11164	712	69424	69424	46647		
		Upper Yakima Passage	36145	7314	49674	16659	1002	110794	110794	74445		
McN UnStr Wild	Estimate b.	Detection Efficiency	8.4\%	8.4\%	8.4\%	8.4\%	8.4\%					
		Total Passage	72640	13986	101579	16386	1145	205735	205735	122910		0.5974
		American Passage	6392	462	5909	1704	286	14753	14753	8814		
		Naches Passage American \& Naches	23027	3878	27528	4846	131	59410	59410	35493		
		Passage	29419	4339	33437	6550	418	74163	74163	44307		
		Upper Yakima Passage	42204	8540	58001	9774	588	119107	119107	71157		
Pooled Str Wild	Estimate c.	Detection Efficiency	13.7\%	13.7\%	9.3\%	4.4\%	4.4\%					
		Total Passage	44443	8557	91787	30928	2161	177875	177875	131489		0.7392
		American Passage	3911	282	5340	3216	540	13289	13289	9824		
		Naches Passage American \& Naches	14088	2373	24874	9147	248	50730	50730	37500		
		Passage	17999	2655	30214	12363	788	64019	64019	47324		
		Upper Yakima Passage	25821	5225	52410	18448	1110	103015	103015	76150		
Pooled UnStr Wild	Estimate e.	Detection Efficiency	8.2\%	8.2\%	8.2\%	8.2\%	8.2\%					
		Total Passage	74408	14326	104052	16785	1173	210744	210744	136769		0.6490
		American Passage	6548	473	6053	1745	293	15112	15112	9808		
		Naches Passage American \& Naches	23587	3972	28198	4964	135	60856	60856	39495		
		Passage	30135	4445	34251	6709	428	75969	75969	49302		
		Upper Yakima Passage	43231	8748	59413	10012	602	122007	122007	79180		

YKFP Project Year 2019 M\&E Annual Report, Appendix C, Chandler Certification

Hatchery		Prosser Hatchery Tally	0	1470	15058	2640	392	19560	Expanded Elastomer	Expanded PIT	PITTag/Total	Calibration Index
McN-Str Hatch	Estimate a.	Total Passage	0	15011	153802	53661	7968	386839	411667	276607	0.0603	0.6719
McN-UnStr Hatch	Estimate b.	Total Passage	0	17527	179584	31484	4675	425176	452465	270311		0.5974
Pooled Str Hatch	Estimate c.	Total Passage	0	10724	162273	59425	8824	369465	393178	290644		0.7392
Pooled UnStr Hatch	Estimate e.	Total Passage	0	17954	183956	32251	4789	400926	426658	276892		0.6490

5.22. Year 2019

2019		Brood-Year 2017 Prosser Wild Tally	Pre-March15489	March 3937	April 10596	May 23290	Post- May 63	Total53374	Expanded Elastomer 53374	Genetic Sample Analysis not yet available		
Wild												
	American	WDFW Percent Estimated Prosser Tally	0	0	0	0	0	0	0			
	Naches	WDFW Percent Estimated Prosser Tally	0	0	0	0	0	0	0			
	Upper Yakima	WDFW Percent Estimated Prosser Tally	0	0	0	0	0	0	0			
		Yakima Passage Wild Tally	0	0	0	0	0	0	Expanded Elastomer	Calibrated Total	PIT- Tag/Total	Calibratio n Index
McN Str Wild	Estimate a.	Detection Efficiency	18.5\%	18.5\%	18.5\%	39.6\%	39.6\%					
		Total Passage	83879	21319	57385	58761	158	221503	221503	168119		0.7590
		American Passage	0	0	0	0	0	0	0	0		
		Naches Passage American \& Naches	0	0	0	0	0	0	0	0		
		Passage	0	0	0	0	0	0	0	0		
		Upper Yakima Passage	0	0	0	0	0	0	0	0		
McN UnStr Wild	Estimate b.	Detection Efficiency	27.1\%	27.1\%	27.1\%	27.1\%	27.1\%					
		Total Passage	57169	14530	39111	85963	231	197005	197005	154848		0.7860
		American Passage	0	0	0	0	0	0	0	0		
		Naches Passage American \& Naches	0	0	0	0	0	0	0	0		
		Passage	0	0	0	0	0	0	0	0		
		Upper Yakima Passage	0	0	0	0	0	0	0	0		

YKFP Project Year 2019 M\&E Annual Report, Appendix C, Chandler Certification

Pooled Str Wild	Estimate c.	Detection Efficiency	20.1\%	20.1\%	20.1\%	35.9\%	35.9\%					
		Total Passage	77184	19618	52827	64908	175	214712	214712	175427		0.8170
		American Passage	0	0	0	0	0	0	0	0		
		Naches Passage American \& Naches	0	0	0	0	0	0	0	0		
		Passage	0	0	0	0	0	0	0	0		
		Upper Yakima Passage	0	0	0	0	0	0	0	0		
Pooled UnStr Wild	Estimate e.	Detection Efficiency	27.9\%	27.9\%	27.9\%	27.9\%	27.9\%					
		Total Passage	55458	14095	37941	83390	224	191108	191108	154530		0.8086
		American Passage	0	0	0	0	0	0	0	0		
		Naches Passage American \& Naches	0	0	0	0	0	0	0	0		
		Passage	0	0	0	0	0	0	0	0		
		Upper Yakima Passage	0	0	0	0	0	0	0	0		
Hatchery		Prosser Hatchery Tally	0	904	24775	76824	198	102701	Expanded Elastomer	Expanded PIT	PIT- Tag/Total	Calibratio n Index
McN-Str Hatch	Estimate a.	Total Passage	0	4897	134169	193833	500	386839	409539	310836	0.0554	0.7590
McN-UnStr Hatch	Estimate b.	Total Passage	0	3337	91444	283561	732	425176	450126	353803		0.7860
Pooled Str Hatch	Estimate c.	Total Passage	0	4506	123513	214108	552	369465	391145	319579		0.8170
Pooled UnStr Hatch	Estimate e.	Total Passage	0	3237	88707	275073	710	400926	424452	343212		0.8086

Appendix D

Survival to McNary Dam for PIT-tagged Spring Chinook Salmon smolts released at Roza Dam from 1999-2019

Prepared by:
Shubha Pandit (Ph.D.), Mark Johnston and Bill Bosch
Yakama Nation Fisheries
P.O. Box 151, Toppenish, WA 98948, USA

August 04, 2020

Table of Contents

EXECUTIVE SUMMARY 3
1.0 INTRODUCTION 5
2.0 METHODOLOGY 6
3.0 RESULTS AND DISCUSSION 12
3.1 FISH SIZES 12
3.2 Yakima River flow below Prosser Dam 13
3.3. TRAVEL TIME FROM THE RELEASE SITE (RozA DAM) TO MCNARY DAM 15
3.4. SURVIVAL RATE OF HATCHERY- AND NATURAL-ORIGIN SMOLT 17
3.5. EFFECT OF RIVER FLOW ON THE SURVIVAL RATE 19
3.6. Comparison of Natural- and Hatchery-Origin Smolt Survival to McNary Dam of Roza releases during the "Late" release period 23
3.7. Comparison of Early and Late Natural-Origin Smolt Survival to McNary 24
3.8. Weekly survival rate of natural- and hatchery-origin Smolt 24
4.0 ACKNOWLEDGMENT 31
5.0 REFERENCES 31

Executive Summary

This report summarizes the results of an evaluation to estimate survival rate and travel time of juvenile Spring Chinook Salmon (Oncorbynchus tshanytscha) released at the Roza Dam bypass during 2019. This evaluation is part of an ongoing study that was initiated in 1999. Differences between natural and hatchery rearing environments have a significant influence over the demographic attributes of natural- (born in the natural) and hatchery-origin Chinook salmon beginning in early developmental stages of fish. Moreover, hatchery-origin smolts released into the natural environment experience in-stream conditions that are dramatically different from a controlled hatchery rearing environment. Therefore, attempts to infer the survival rate for natural-origin smolts based on survival of hatchery-reared smolts (or vice versa) can be biased by relative differences in fish size, behaviors such as outmigration timing, fitness, and environmental conditions encountered during outmigration. Our investigation of interannual variation in survival rate and travel time for both natural- and hatchery-origin emigrating smolts will inform managers in the implementation of effective strategies for conserving abundances and viability of the natural spring-run Chinook Salmon population in the Upper Yakima River Basin.

In 2019, we tagged 2,238 hatchery-origin smolts and 238 natural-origin smolts with passive integrated transponder (PIT) tags at Roza Dam. Tagged fish were released from April 02 through May 10 at the Roza Dam bypass system. The size of tagged and released hatchery-origin smolts ranged from 88 mm to 187 mm (average 121 mm). Hatchery fish were significantly larger than PITtagged natural-origin fish, which ranged in size from 77 mm to 147 mm (average 118 mm).

Our results indicated variable travel times for hatchery- and natural-origin smolts in the population, based on travel between the Roza Diversion Dam's bypass (about 206 kilometers upstream from the mouth of the Yakima River) and the downstream detection site at McNary Dam, a distance of 64 rkm. Most fish in each group were released during the month of April, and fish generally exhibited immediate outmigration behavior after released. In 2019 the travel time from Roza Dam to McNary Dam for hatchery-origin smolts ranged from 4 to 40 days (mean \pm SE 18.13 ± 0.9 days). By comparison, the travel time for natural-origin smolts ranged from 9 to 37 days (19 ± 2.49 days). Mean travel times in 2019 appeared to be shorter for both groups compared to the 2018 outmigration year (24.81 ± 0.89 days, and 36.81 ± 3.08 days for hatchery- and natural-origin fish respectively). Travel time was positively related with rate of river flow during emigration (outmigration), and results of analysis of variance (ANOVA) showed an interaction effect between fish size and groups (hatchery
and natural) on travel time. Specifically, hatchery fish which were larger on average exhibited shorter travel times (days to reach McNary Dam) compared to travel times of smaller, natural-origin fish. These results are consistent with Melnychuk et al. (2010) who found that in small rivers, downstream travel speed increased with increasing body length. In addition, downstream emigration timing and travel days are believed to be affected by many environmental variables, including photoperiod, river discharge, precipitation, lunar phase, air and water temperature, and fish size (Duston and Saunders 1995; McCormick et al. 1995; McCormick 2012; Sykes and Shrimpton 2009; Zydlewski et al. 2014).

In this study, the survival rates from release location to downstream detection at McNary Dam were estimated using the Cormack-Jolly-Seber (CJS) mark-recapture model, which has been commonly used within the Federal Columbia River Power System (FCRPS) to estimate survival rates for juvenile anadromous fish species (salmon and steelhead, see Tuomikoski et al. 2013). The model uses multiple detections of individual marked fish at several dams with PIT-tag detection capabilities. Rather than the CJS model, the data collected in prior years (1999 to 2018) was based on a logistic regression model described in the 2018 annual report. We further evaluated the effects of river flow on survival rate by introducing flow as a covariate in the CJS model. Results indicated that survival rate between the Roza Dam release site and the McNary Dam detection site was 28% and 31% for natural- and hatchery-origin fish, respectively; a similar result was observed in 2017 and 2018. Results also revealed that survival rate increased with increasing river flow during the downstream migration time but the effect was not significantly different between hatchery- and natural-origin smolts. However, when using mean survival rate of all previous years (21 years, 1999-2019), the survival rate was significantly higher for the natural-origin fish ($\mathrm{F}_{1,34}=0.778, \mathrm{p}=0.028$). Since all fish were released in April (late release) last year, no comparisons were made between early and late periods (i.e. monthly) for the last year, 2019. Further, we were unable to estimate juvenile survival rates by weekly basis for some of the groups because of high standard errors (SE) in some weeks or because the model failed to converge (convergence issue), indicating insufficient sample sizes for estimating it on weekly basis especially for natural-origin juveniles.

1.0 Introduction

In recent years, naturally spawning Pacific salmon populations have declined relative to historical abundances, resulting in many ESA listings, and heightened conservation concerns (Prince et al. 2019; Rand et al. 2012; Ford 2011; Gustafson et al. 2007). The recovery of depressed stocks is contingent on obtaining accurate and precise estimates of survival through the hydro system. Juvenile salmon emigrating from the Yakima Basin must navigate downstream through several dams in the Yakima and Columbia rivers during migration to the ocean. For over a decade, hatchery production in Yakima basin has been used to supplement natural salmon populations in order to benefit fisheries opportunities, and to boost declining natural populations. These hatchery programs are likely to continue and possibly increase significantly within the Columbia River Basin (WDFW 2019).

Since 1999, the Yakama Nation has been conducting a study to examine juvenile salmon survival, with a focus on understanding whether or not survival, and the factors affecting survival, are similar between hatchery-origin and natural-origin components of the population. The study involves annual releases of hatchery-origin and natural-origin Chinook salmon (smolt) that have been inserted with passive integrated transponder (PIT) tags. There is some evidence to suggest that captiverearing of salmon under certain hatchery protocols (e.g. segregated programs) confers a genetic fitness deficit (domestication) to hatchery fish released into the natural environment compared to naturally reared salmon (Lynch and O' Hely 2001; Ford 2002; Frankham et al. 2002). This is especially poignant for hatchery-origin smolts that are exposed to highly inconsistent environments between captive rearing conditions and the natural in-river conditions they experience after release. Differences between natural and hatchery rearing environments have a significant influence over the demographic attributes of natural- and hatchery-origin Chinook salmon beginning in early developmental stages of fish. Inferring survival rates for natural-origin smolts based on survival rates for hatchery-rearing smolt can be misleading due to differences in fish size, behavior, fitness, and environmental conditions encountered during outmigration (e.g., predisposition or acclimation). Hatchery-origin smolts are often larger owing to feed regimens and accelerated growth rates implemented during hatchery rearing.

Further, the survival rate, which is also dependent on river flow and fish size during the outmigration period (Zabel and Achord, 2004). With regard to survival, juvenile outmigration (and
travel time) is a particularly critical phase in the overall life history of salmon (NPPC, 1992). Mortality rate is likely to increase as a function of migration distance (often hundreds of miles), where risk is compounded by exposure to several factors, including predation, extreme temperatures and diseases (Miller et al., 2014), and entrainment at diversions or dams. Furthermore, outmigration is concurrent with the smoltification process, where a fish undergoes physiological, behavioral and biochemical changes in preparation for saltwater habitat (Hoar 1976). Therefore, it is vital that the coordination between smoltification, outmigration, and arrival time to the estuary be preserved (Folmar and Dickhoff 1980); that is, outmigration and travel time must remain commensurate (on schedule) with physiological readiness for saltwater.

The downstream emigration timing and travel days are believed to be affected by many environmental variables, such as fish size, photoperiod, discharge, precipitation, lunar phase, water temperature and type of origin (natural vs. hatchery) (Duston and Saunders 1995; McCormick et al. 1995; McCormick 2012; Sykes and Shrimpton 2009; Zydlewski et al. 2014). In order to determine whether or not downstream survival rate and downstream migration dynamics (e.g., travel time) of juvenile Chinook (Smolt) differ between natural and hatchery populations, our study focused on the following objectives:

1) evaluate the survival rate from the released location (Roza dam) to McNary Dam (McN) between hatchery- and natural-origin smolts based on PIT-tag detections,
2) determine if survival rate is significantly different between early and late release groups,
3) determine the effect of river flow on survival rate for both groups (hatchery- and natural-origin), and
4) determine whether or not downstream migration dynamics (e.g., travel time) differ between natural and hatchery smolts in Yakima river.

2.0 Methodology

We queried the PTAGIS database (https://www.ptagis.org/) in February 2020 to retrieve available PIT-tag detection information for all spring Chinook Salmon smolts (hatchery- and natural-origin) released at Roza Dam in the Yakima Basin between 2015 and 2019 (Roza bypass; Fig. 1). A total of

2238 hatchery-origin smolts and 238 natural-origin smolts with passive integrated transponder (PIT) tags were released from April 02 through May 10, 2019 at the Roza bypass system (Fig. 2).

Hatchery-origin juveniles were acclimated at three sites upstream of Roza Dam (Jack Creek, Easton, and Clark Flat; Fig. 1). Travel time and survival estimates were compared between PIT-tagged hatchery-origin smolts and PIT-tagged natural-origin smolts beginning when hatchery-origin juveniles were tagged/released at the Roza Dam bypass. Natural-origin smolts were identified as "early" for those sampled and PIT-tagged before the first hatchery-origin smolts were sampled, and "late" for those sampled and PIT-tagged once hatchery-origin fish were released in the Roza bypass sample. In each release year, survival-estimate comparisons were made between late and early natural smolts, and travel time was measured as the difference between the release date at the Roza bypass and recovery/detection date at the downstream dam/detection facilities at McNary Dam.

Although the survival rate from Roza Dam to McNary Dam in each year from 1999^{+}to 2018 was estimated using weighted logistic regression (see Neeley, 2018), the survival rates for both groups (natural- and hatchery-origin smolts) for the last 5 years (2015-2019) were estimated using the Cormack-Jolly-Seber (CJS) mark-recapture model (see, White and Burnham 1999; Lebreton et al. 1992; Williams et al. 2002; Conner et al. 2015), in accordance with Federal Columbia River Power System (FCRPS) methodology (Tuomikoski 2013). The CJS model uses multiple detections of individual marked fish at several dams equipped with PIT-tag detection capabilities. The assumption of the CJS model is that there is no immigration or emigration during capture and recapture intervals, which is valid in the hydrosystem (which involves passage at several hydroelectric dams) because fish behavior is relatively consistent (all fish are moving in one direction and over a relatively short period; see Conner et al. 2015). The CJS model was originally conceived to calculate time-interval survival of tagged animals by recapturing individuals and estimating survival and recapture probabilities using maximum likelihood. A spatial form of the CJS model can be used for species that migrate uni-directionally, and are recaptured/detected within a discrete migratory corridor (Burnham 1987; Henderson et al. 2018). We used individual fish encounter histories to estimate the likelihood that a fish would survive and be detected at each tag receiver facility (i.e. dams; Lebreton et al. 1992).

The CJS model was run for different groups by year based on an encounter history constructed

[^11]from the number of fish released at Roza dam and subsequent detection events at McNary and Bonneville Dams. Similar to previous studies (Neeley 2018), all smolt releases were grouped into seven-day periods for analyses. For example, smolts released during ordinal days 1-7 and 8-14 were treated as two distinct release groups. These groups are referred to as Julian/ordinal periods. The estimated survival rates were compared among release groups where the sample sizes were sufficient to provide statistical confidence. Analysis of variance (ANOVA) was performed to evaluate differential survival between hatchery- and natural-origin smolts, using group (hatchery-origin vs. natural-origin) and release period (early and late) as factors and years as replicates. Note that there were no PIT-tagged smolts released for our study in 2014 due to the occurrence of a radio-tagged study being conducted at Roza in that year. Although a radio-tag study was also conducted in 2016, the temporal overlap with PIT-tag releases in our study was minimal, enabling estimation of Roza-to-McNary survivals based on a smaller number of releases.

Several environmental factors are known to influence downstream smolt survival, and river flow is among the most impactful (Raymond 1968; Connor et al. 2003; Tiffan et al. 2009). We therefore further evaluated survival rate with the effects of river flow by introducing flow rate as a covariate in the CJS model. Bureau of Reclamation (BOR) flow data were accessed at:
https://www.usbr.gov/pn/hydromet/yakima/yakwebarcread.html. The average travel time from Roza Dam to McNary Dam was about 20 days (both hatchery-origin and natural-origin smolts) so that the time series river flows were averaged by 20 days using a moving averaging technique. For example, a fish released on April $1^{\text {st }}$ would reach McNary Dam by about April 20 th , and the 20-day average flow rate for that time period would be assigned for that fish to determine the effect of river flow survival.

Several CJS candidate models were built and compared using every possible combination of variables in the models with river flow. For example, candidate models were defined using a combination of 1) two temporal variation in survival probability: time variation, which assumed that survival probability (ψ) varies by year; and no time variation which assumed that ψ remains constant for all years; and 2) two temporal variation in detection probability: time variation, which assumed that detection probability varies by year; and no time variation which assumed that detection remains constant for all years; 3) variation of survival and detection probabilities between natural- and Hatchery-origin, and 4) influence of river flow on the survival and detection probabilities. Altogether, 49 models were built using these combinations (see table 3).

To determine the rank of the different models (49 models), we used the difference in QAICc score relative to the top model. For models with the difference of QAICc (QAICc) <2, we selected the model with the lowest QAICs and fewest parameters as the best model (Burnham and Anderson 2002). We tested the Goodness of Fit (GOF) of competing models using the Bootstrapping Goodness of Fit Approach ("Bootstrap GOF") in program MARK (Cooch and White 2012) to estimate the variance inflation factor for the model constructed to have the most parameters while remaining biologically meaningful (hereafter referred to as the "global model"). All subsequent models were then corrected for over-dispersion using c-hat (\hat{c}). Using the best selected model, we estimated the effect of river flow on downstream survival rate (Roza Dam to McNary Dam) for both groups (hatchery- and natural-origin smolts). The CJS models and program MARK (White and Burnham 1999) were run within the RMark package (Laake and Rexstad 2019) in R statistical software, version 3.3.6 (R Core Team 2019).

Figure 1. Showing Yakima river and Roza Dam where the fish (hatchery- and natural-origin) were captured/tagged/released. Survival rate and travel time were estimated between Roza Dam and McNary Dam. Hatchery-origin smolt exited either from Easton, Jack Creek or Clark Flat acclimation sites during March 9 through May 16, 2019. The map was adopted from Fast et al., (2015).

Figure 2. Number of spring Chinook tagged/released at Roza Dam (Hatchery-origin smolt, red; and natural-origin smolt, blue) for each year from 2015-2019. The value on the top of the bar diagram represents the total number of released smolt on that specific day of that year. Total released number of released PIT taggs fish (natural and hathery-origin) of each are also given in the figure.

Date of release in 2019

3.0 Results and Discussion

3.1 Fish sizes

During the last five years (2015-2019), fish with passive integrated transponder (PIT) tags were released for this study from early February to May at the Roza bypass system. Releases started in February and ended on May in 2015, whereas from 2016-2019, fish were released from the second week of March through the $1^{\text {st }}$ week of May (see figure 2).

Last year 2019, 2238 hatchery-origin smolt and 238 natural-origin smolt with PIT tags were released and the size of the released hatchery-origin smolt that were PIT-tagged at the dam ranged from 88 mm to 187 mm (mean 121 mm), whereas the range of the size of the natural-origin smolt was 77 mm to 147 mm (mean 118 mm size; figure 3). The size of released hatchery-origin smolts was significantly larger than that of natural-origin smolts ($\mathrm{F}_{1,8}=16.87, \mathrm{p}<0.01$).

Figure 3. Frequency distribution of the fish size of the populations (hatchery and natural-origin smolt) released with PIT tags at Roza Dam. Size of the fish was measured at the time of tagging for each year 2015-2019 before release.

3.2 Yakima River flow below Prosser Dam

The river flow below Prosser dam (gauging station YRPW, which represents the reach between Prosser Dam and the Chandler Power Plan outfall) during the month of April (fish tagged/released month) in the year 2019 was about 4,444 cubic feet per second (cfs), which was slightly lower than the flow of that month during 2016 and 2017 but it was higher than April 2015 (see figure 4, table 1). For all years, the river flow from June to August was generally less than 800 cfs.

Figure 4. Average daily River flow (cfs, blue line) and 20-day average flow (20 day moving average, yellow line) of Yakama River near Prosser dam from January to December for 2015-2019. The boxes with red color are the period in which the fish (natural- and hatchery-origin) were tagged/released during that year.

Table 1. Average monthly river flow (cfs) of Yakama River below Prosser dam for 2015-2019.

| | Month | | | | | | | | | | | |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Year | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| 2015 | 4793 | 4420 | 2523 | 1043 | 895 | 420 | 387 | 526 | 581 | 892 | 3549 | 5237 |
| 2016 | 2632 | 8603 | 7982 | 8600 | 3437 | 983 | 822 | 519 | 517 | 2086 | 2582 | 1920 |
| 2017 | 1696 | 3460 | 9492 | 8778 | 6959 | 2697 | 640 | 666 | 657 | 1463 | 3585 | 2434 |
| 2018 | 3038 | 4138 | 2632 | 5183 | 6183 | 994 | 574 | 604 | 542 | 1054 | 1489 | 1775 |
| 2019 | 1389 | 1536 | 3066 | 4444 | 1860 | 563 | 560 | 749 | 568 | 1041 | 1458 | 2122 |

3.3. Travel time from the release site (Roza Dam) to McNary Dam

The study showed that the travel time (days) of smolts from the release site (Roza Dam) to McNary (McN) dam during 2019 varied between hatchery- and natural-origin smolt (figure 5). Most of the populations were released during the month of April and most of the fish generally exhibited immediate outmigration behavior after release. One of the hatchery-origin smolts was detected at McN only 4 days from the date of release at Roza Dam. In 2019 the travel time from Roza Dam to McNary Dam for hatchery-origin smolts ranged from 4 to 40 days (mean \pm SE 18.13 ± 0.9 days). By comparison, the travel time for natural-origin smolts ranged from 9 to 37 days (19 ± 2.49 days). Mean travel times in 2019 appeared to be shorter for both groups compared to the 2018 outmigration year (24.81 ± 0.89 days, and 36.81 ± 3.08 days for hatchery and natural-origin fish respectively). Variation of the travel time among years might have occurred due to the variation of the river flow among years. The study further showed the travel time from Roza to McNary dams decreased as river flow at the time of fish release increased (figure 6 B). Similarly, travel time varied between groups (hatchery- and natural-origin) due to fish size because the hatchery-origin smolts were larger than natural-origin smolts (figure 6A). Travel time was positively related with rate of river flow during emigration, and results of analysis of variance (ANOVA) showed an interaction effect between fish size and groups (hatchery and natural). Specifically, hatchery fish, which were larger on average exhibited shorter travel times (days to reach McNary Dam) compared to longer travel times for smaller, natural-origin fish. These results are consistent with Melnychuk et al. (2010) who found that in small rivers, downstream travel speed increased with increasing body length. In addition, downstream emigration timing and travel days are believed to be affected by many environmental variables, including photoperiod, river discharge, precipitation, lunar phase, air and water temperature, and fish size (Duston and Saunders 1995; McCormick et al. 1995; McCormick et al. 2000; McCormick 2013; Sykes and Shrimpton 2009; Zydlewski et al. 2013; Zydlewski et al. 2014).

Figure 5. Number of detections of PIT-tagged smolts released at Roza dam during 2015 to 2019 at McNary Dam by day (month/day; e.g., 3/31 means March 31, and so on). The table in each year shows the summary of the travel time from Roza to McNary dams.

Figure 6. The relationship between travel days from Roza dam to McNary (McN) dam and fish size at the time of tagging of both groups (hatchery- and natural-origin) during 2015-2019 ([A.]); and the relationship between the average travel time (days) from release site (Roza dam bypass) to McNary dam and the average river flow during the months in which these fish were released for 2015-2019 ([B.]).

3.4. Survival rate of hatchery- and natural-origin smolt

Based on CJS model, the average survival probability from Roza Dam to McNary Dam for the populations (a combination of hatchery- and natural-origin smolt) released at Roza dam during 2019 was $31.6 \pm 6.60 \%$ (mean \pm SE), however the hatchery-origin survival rate was $31.8 \pm 7.00 \%$, which was slightly higher than the natural-origin smolt ($28.80 \pm 17.40 \%$ (see Table 2). A similar result was observed in 2017 and 2018. The results further showed the standard error of the mean for the natural-origin in 2019 was relatively larger than the error for hatchery-origin smolt estimates. The SE can be reduced if released population size increases.

Table 2. Released and detected population at McNary (McN) and Bonneville (BON) Dams and Roza-to-McNary survival rate for all (combination of hatchery- and natural-origin), hatchery- and natural-origin juvenile (smolt) for the last five years (2015-2019). Note: there were 5 groups and each group contains the number which represent the number of fish and detected events at the downstream dams. " $1-0-0$ " is represented as the number of fish released at Roza dam (1) but not detected at both $\mathrm{McN}(0)$ and BON (0) dams; similarly, "1-0-1" represents the number of fish released at Roza dam (1) and not detected at $\mathrm{McN}(0)$ but detected at BON (1) dam. "1-1-0" represents the number of fish released at Roza dam (1) and detected at McN (1) but not detected at BON (0) dam. "1-1-1" represents the number of fish released at Roza dam (1) and detected at both McN (1) and BON (1) dams.

Year	Groups	Type		
		$\begin{gathered} \text { All } \\ (\mathrm{H}+\mathrm{W}) \end{gathered}$	Hatchery-origin (H)	Natural-origin (W)
2019	1-0-0	2312	2044	268
	1-0-1	115	105	10
	1-1-0	87	74	12
	1-1-1	17	15	2
	Survival rate	0.316 ± 0.066	0.318 ± 0.070	0.288 ± 0.174
2018	1-0-0	2799	2435	364
	1-0-1	41	39	2
	1-1-0	108	93	15
	1-1-1	12	11	1
	Survival rate	0.179 ± 0.043	0.183 ± 0.047	0.125 ± 0.10
2017	1-0-0	1848	1674	174
	1-0-1	32	28	4
	1-1-0	79	76	3
	1-1-1	5	5	0
	Survival rate	0.316 ± 0.128	0299 ± 0.12	***
2016	1-0-0	1070	946	124
	1-0-1	31	31	0
	1-1-0	125	113	12
	1-1-1	14	14	0
	Survival rate	0.360 ± 0.077	0.370 ± 0.079	***
2015	1-0-0	1807	1334	473
	1-0-1	37	28	9
	1-1-0	101	62	39
	1-1-1	11	8	3
	Survival rate	0.249 ± 0.064	0.22 ± 0.065	0.321 ± 0.154

*** indicates the models failed to converge so that the survival rate was not able to be estimated.

Figure 7. The box plot showing the 20 -year average survival probabilities of natural-origin (Natural) and hatchery-origin (Hatchery) smolt (see table 4 for the data). A. is the comparison of Late hatchery- and natural-origin smolt; and B. is the comparison between Early and Late natural-origin Smolt.

3.5. Effect of river flow on the survival rate

We further evaluated whether the river flow affects the outmigration survival rate for hatchery- and natural-origin smolts. Among the 49 models (see table 3), the top two models had the lowest QAICc. The difference between first and second models was less than 2, indicating that both models seemed to be the best models to describe the relationship. However, the model that included an effect of river flow on the survival rate for the groups but varied by years had the lowest QAICs and therefore this model was selected to illustrate the effects of river flow on survival. Based on the best model, the survival rate between Roza and McNary Dams was positively related with the river flows for all years (2015-2019) (see table 3 and figure 8).

Table 3. Candidate models and associated statistical parameters. The models are ranked based on Quasi-likelihood Akaike's Information Criterion adjusted for over-dispersion (QAIC ${ }_{c}$). The model with the lowest $\mathrm{QAIC}_{\mathrm{c}}$ value was considered 'best'. "Wt" represents the weight of the model. S and p represent survival and capture probability, respectively. "npar" represents the number of parameters used in the model. The models were built using last 5 years data.

SN	Models	npar	QAICc	Delta(Δ)	Wt
1	S(\sim Year + riverFlow) p(\sim Year:RearType + riverFlow)	20	6993.68	0.00	0.46
2	S(~Year:RearType + riverFlow) p(~Year + riverFlow)	24	6995.34	1.67	0.20
3	S(\sim Year:RearType + riverFlow) p(RearType + riverFlow)	21	6996.75	3.07	0.10
4	S(~Year:RearType + riverFlow) p(~Year:RearType + riverFlow)	27	6997.03	3.35	0.09
5	$\mathrm{S}(\sim Y \mathrm{ear}+$ riverFlow) p(Year + riverFlow)	15	6998.96	5.28	0.03
6	S(~Year * RearType) p(~Year:RearType + riverFlow)	21	6999.58	5.90	0.02
7	S(~RearType + riverFlow) p(Year * RearType)	21	7000.06	6.38	0.02
8	$\mathrm{S}(\sim Y \mathrm{ear}$ * RearType) p(~Year + riverFlow)	21	7000.27	6.59	0.02
9		20	7000.91	7.23	0.01
10	S(~Year + riverFlow) p(~Year * RearType)	26	7001.16	7.48	0.01
11	S(~Year:RearType + riverFlow) p(\sim RearType)	20	7002.44	8.77	0.01
12	S(\sim ReleasedYear) p(\sim Year:RearType + riverFlow)	15	7002.58	8.90	0.01
13	S(~RearType) p(~Year * RearType)	21	7002.91	9.23	0.00
14	S(Year:RearType + riverFlow) p($\sim 1)$	19	7003.56	9.88	0.00
15	S(\sim Year:RearType + riverFlow) p(\sim ReleasedYear)	23	7003.71	10.03	0.00
16	S(~ReleasedYear) p(~Year * RearType)	24	7003.84	10.16	0.00
17	S(~Year * RearType) p(~1)	18	7004.69	11.01	0.00
18	S(~Year * RearType) p(~ReleasedYear)	22	7005.63	11.95	0.00
19	S(\sim Year + riverFlow) p(~RearType + riverFlow)	15	7006.76	13.08	0.00
20	S(~Year * RearType) p(~RearType + riverFlow)	23	7007.70	14.02	0.00
21	S(~Year:RearType + riverFlow) p(~Year * RearType)	30	7007.92	14.24	0.00
22	S(~Year * RearType) p(Year * RearType)	27	7008.87	15.19	0.00
23	$\mathrm{S}(\sim$ ReleasedYear) p(Year + riverFlow)	11	7010.73	17.05	0.00
24	S(~Year + riverFlow) p(\sim RearType)	13	7010.81	17.13	0.00
25	S(~Year * RearType) p(~RearType)	18	7014.65	20.97	0.00
26	S(~Year + riverFlow) p(~1)	11	7014.85	21.18	0.00
27	S(~Year + riverFlow) p(ReleasedYear)	15	7015.27	21.59	0.00
28	S(~ReleasedYear) p(~ReleasedYear)	9	7033.68	40.00	0.00
29	S(~RearType + riverFlow) p(ReleasedYear)	10	7062.38	68.71	0.00
30	S(~ReleasedYear) p(\sim RearType)	8	7069.11	75.43	0.00
31	S(\sim ReleasedYear) p(\sim RearType + riverFlow)	10	7070.11	76.43	0.00
32	S(~RearType + riverFlow) p(~Year:RearType + riverFlow)	16	7076.15	82.47	0.00
33	S(~RearType + riverFlow) p(Year + riverFlow)	12	7080.35	86.67	0.00
34	S($\sim 1) ~ p(\sim Y$ Year:RearType + riverFlow)	12	7083.37	89.69	0.00

35	S(~1) p(~ReleasedYear)	6	7083.96	90.28	0.00
36	S(~RearType) p(~Year:RearType + riverFlow)	13	7084.16	90.48	0.00
37	S(~RearType) p(~ReleasedYear)	7	7084.28	90.60	0.00
38	S(~1) p(~Year + riverFlow)	8	7089.89	96.21	0.00
39	S(~ReleasedYear) p(~1)	6	7090.67	96.99	0.00
40	S(~RearType) p(~Year + riverFlow)	9	7090.86	97.18	0.00
41	S(~RearType + riverFlow) p(~RearType + riverFlow)	8	7119.92	126.24	0.00
42	S(~1) p(~RearType)	4	7142.46	148.78	0.00
43	S(~RearType) p(~RearType)	5	7143.57	149.89	0.00
44	S(~RearType + riverFlow) p(~RearType)	6	7144.52	150.84	0.00
45	S(~RearType + riverFlow) p(~1)	6	7145.24	151.56	0.00
46	S(~1) p(~RearType + riverFlow)	6	7145.31	151.63	0.00
47	S(~RearType) p(~RearType + riverFlow)	7	7147.29	153.61	0.00
48	S(~1) p(~1)	2	7168.10	174.42	0.00
49	S(~RearType) p(~1)	3	7168.43	174.75	0.00

Figure 8. The predcited survival rate as a function of river flow based on the best CJS models ("S(\sim Year + riverFlow) p(\sim Year:RearType + riverFlow)", see table 3).

3.6. Comparison of Natural- and Hatchery-Origin Smolt Survival to McNary

 Dam of Roza releases during the "Late" release periodYearly survival estimates based on all contemporaneous late-period smolt are given in Table 4 and Figure 9A. Because natural-origin smolt have spent more time in the natural habitat than hatchery-origin smolt by the time fish pass Roza Dam, it has always been hypothesized that, for smolt contemporaneously released at Roza, the survival to McNary of natural-origin smolt would be greater than that of hatchery-spawned smolt even though the hatcheryorigin fish tend to be larger. However in 2019, the survival rate of hatchery-origin smolts was greater than that of natural-origin smolts (fig. 9A) and a similar result was observed in 2017 and 2018. However, when using mean survival rate of all previous years (21 years, 1999-2019), the survival rate was significantly greater for the natural-origin fish $\left(\mathrm{F}_{1,34}=0.778\right.$, $\mathrm{p}=0.028)($ fig. 7 A$)$.

Table 4. Upper-Yakima Spring-Chinook Roza to-McNary Smolt-to-Smolt Survival for Natural- and Hatchery-Origin (Early and Late) juvenile (smolt). N, Surv. and SE in the table represent the number of released tagged fish, Roza-to-Mcnary Survival probability and standard Error of the survival probability, respectively.

Year	Natural-Origin						Hatchery-Origin					
	Early			Late			Early			Late		
	N	Surv.	SE									
1999				312	0.739		1082	0.591		1082	0.591	
2000	3013	0.331		3196	0.498		2999	0.279		2999	0.279	
2001	755	0.475		1424	0.133		1744	0.175		1744	0.175	
2002	6130	0.216		2588	0.342		1503	0.263		1503	0.263	
2003	6614	0.314		1190	0.309		2146	0.246		2146	0.246	
2004	3699	0.354		232	0.375		1509	0.204		1509	0.204	
2005	1688	0.268		25	0.195		701	0.118		701	0.118	
2006	1833	0.197		500	0.513		3689	0.250		3689	0.250	
2007	1072	0.319		336	0.183		2477	0.406		2477	0.406	
2008	735	0.283		498	0.396		4911	0.260		4911	0.260	
2009	1804	0.430		239	0.484		3931	0.204		3931	0.204	
2010	0			105	0.540		1130	0.320		1130	0.320	
2011	1040	0.231		904	0.311		3051	0.331		3051	0.331	
2012	2482	0.301		191	0.241		4424	0.153		4424	0.153	
2013	2435	0.277		38	0.578		550	0.264		550	0.264	
2014												
2015	167	0.363		358	0.420		1503	0.243		1503	0.243	
2016	97	0.228		39	0.567		575	0.216		575	0.216	
2017	0	0.000		181	0.111		1869	0.216		1869	0.216	

2018	110	0.415	274	0.118		2550	0.214	2550	0.214	
2019	0		292	0.288	0.174	0		2238	0.318	0.07

Note: the estimates for the year from 1999 to 2018 were adopted from the 2018 Annual report (Neeley 2019).

3.7. Comparison of Early and Late Natural-Origin Smolt Survival to McNary

There were no early natural-origin fish releases at Roza prior to passage of hatchery-origin smolt in 1999, 2010, 2017 and 2019; and, as stated earlier, there were no PIT-tagged releases at Roza Dam in 2014. Table 4 and Figure 9B. present the natural-origin early and late smolt survivals from Roza to McNary for all years. Of the 17 years with early releases, late releases had greater Roza-to-McNary survival than that of the early releases but the difference was not quite statistically significant $\left(\mathrm{F}_{1,34}=0.679, \mathrm{p}=0.26\right.$, Fig 7 B$)$. In general, earlier passing smolts are believed to have a greater survival rate. However, the results showed that later releases did not have significantly lower survival rates. A lower survival rate for earlier releases could be due to a lower proportion of out-migrates enter into juvenile bypass systems where PIT tags can be detected. Generally, McNary Dam's bypass is watered up after Julian date 90 , so fish passing earlier would be spilled rather than bypassed, which results in reducing of the detection rate, consequently survival rate become low. It may also be that some of the early natural-origin releases pass McNary Dam before they could be detected in McNary's bypass, in which case the early-release natural survival estimates presented herein may be underestimated.

3.8. Weekly survival rate of natural- and hatchery-origin Smolt

The survival rate (Roza-McNary Dam) varied by week for both groups (natural- and hatchery-origin), however the number of natural-origin releases were not sufficient to estimate the weekly survival rate with statistical confidence. In general, the hatchery-origin smolts that were released early [Julian date 91, which was the week of April 1st to $7^{\text {th }}, 2019$) had higher survival rate $(78.21 \% \pm 7.4 \%)$ than the smolts released during the week Julian date 126] between May 7 and May $12^{\text {th }}, 2019$ ($27.2 \pm 14.88 \%$, see table 5 and figure 10).

Figure 9. Bar-diagram of Upper-Yakima Spring-Chinook Roza to-McNary Smolt-to-Smolt Survival for Late Natural- and Hatchery-Origin juvenile. A. is the comparison of Late hatchery- and Late Natural-origin smolt; and B. is the comparison between Early and Late Natural-origin Smolt.

Table 5. Roza-Dam to McNary-Detection Smolt-to-Smolt Survival probability with respect to Julian week. "Sur" and " N " represent survival probability and the number of smolts tagged and released, respectively.

Origin	Param eter	Julian Date																								Early	Late	Over All
		345	351	359	365	7	14	21	28	35	42	49	56	63	70	77	84	91	98	105	112	119	126	133	140			
1999																												
Natural	Sur																			0.47	0.88	0.64	0.85	0.78			0.74	0.74
	N																			34	37	62	34	145			312	312
Hatchery	Sur																			0.53	0.70	0.65	0.60	0.55			0.59	0.59
	N																			266	103	306	100	307			1082	1082
2000																												
Natural	Sur	0.44		0.20	0.40	0.34	0.34	0.28	0.31		0.49		0.52	0.54	0.42	0.69	0.52	0.65	0.55	0.56	0.17	0.33	0.40			0.33	0.50	0.42
	N	56		47	55	1575	845	435	243		847		506	723	235	46	248	156	92	17	19	23	41			3013	3196	6209
	Sur								0.40		0.48		0.51	0.21	0.24	0.43	0.27	0.23	0.26	0.34	0.32	0.35	0.23				0.28	0.28
Hatchery	N								8		20		20	83	152	103	689	547	346	115	365	272	279				2999	2999
2001																												
Natural	Sur									0.40	0.48	0.39	0.40	0.50	0.64	0.60	0.29	0.33	0.15	0.09	0.09	0.05				0.47	0.13	0.25
	N									32	121	159	145	144	85	69	85	150	155	583	396	55				755	1424	2179
	Sur																0.30	0.25	0.15	0.10	0.17	0.16					0.18	0.18
Hatchery	N																132	465	288	500	293	66					1744	1744
2002																												
Natural	Sur			0.17	0.14	0.29	0.20	0.18	0.16	0.32	0.16	0.25	0.28	0.23	0.32	0.32	0.36	0.34	0.33	0.41		0.35				0.22	0.34	0.25
	N			500	501	295	761	960	533	178	388	328	804	398	484	617	665	277	750	47		232				6130	2588	8718
	Sur															0.51	0.35	0.21	0.24	0.20		0.14					0.26	0.26
Hatchery	N															89	428	144	444	108		290					1503	1503
2003																												
Natural	Sur								0.27	0.29	0.28	0.31	0.32	0.33	0.33	0.51	0.28		0.39	0.37	0.27	0.37	0.19			0.31	0.31	0.31
	N								515	1188	1600	639	794	1284	256	338	441		284	110	85	115	155			6614	1190	7804
	Sur																0.34		0.28	0.25	0.25	0.12	0.13				0.25	0.25
Hatchery	N																431		574	221	411	332	177				2146	2146
2004																												
Natural	Sur		0.22	0.20	0.11			0.29	0.31	0.16	0.37	0.33	0.48	0.45	0.51	0.41			0.40			0.00				0.35	0.37	0.36
	N		184		153			301	603	43	889	276	352	398	344	195			19			18				3699	232	3931
	Sur															0.28			0.22	0.12	0.11	0.09					0.18	0.18
Hatchery	N															220			1036	439	220	253					2168	2168

NA* indicates the model failed to converge so that the estimate was not reported.

Figure 10. Roza-dam to McNary-detection Smolt Survival Rate with respect to Julian Week grouping.

Figure 10 (continued) Roza-dam to McNary-detection Smolt Survival Rate with respect to Julian Week grouping.

4.0 Acknowledgment

We thank all of the crews whose collective fish-tagging efforts over the years made this study possible. We are also grateful to Andrew Matala and David Lind who reviewed and provided valuable comments in the draft report. We would also like to thank Daylen Isaac who provided the hydrological data.

5.0 References

Buckland ST, Burnham KP, Augustin NH. 1997. Model selection: An integral part of inference. Biometrics. 53:603-618.

Conner, M. M., S. N. Bennett, W. C. Saunders, and N. Bouwes. 2015. Comparison of tributary survival estimates of steelhead using Cormack-Jolly-Seber and Barker models: Implications for sampling effort and designs. Transactions of the American Fisheries Society, 144:1, 34-47.

Connor, WP, Steinhorst, RK, and Burge. HL. 2003. Migrational behavior and seaward movement of wild subyearling fall chinook salmon in the Snake River. North American Journal of Fisheries Man- agement 23:414-430.

Duston, J., Saunders, RL, 1995. Increased winter temperature did not affect completion of smolting in Atlantic salmon. Aquac. Int. 3, 196-204.

Fast, D. E., Bosch, W. J., Johnston, M. V., Strom, C. R., Knudsen, C. M., Fritts, A. L., \& May, D. 2015. A synthesis of findings from an integrated hatchery program after three generations of spawning in the natural environment. North American Journal of Aquaculture, 77, 377-395.

Folmar, CF., and Dickhoff, WW. 1980. The parr-smolt transformation (smoltification) and seawater adaptation in salmonids. Aquaculture 21: 1-37

Ford MJ. 2002. Selection in captivity during supportive breeding may reduce fitness in the wild. Conservation Biology. 16:815-825.

Ford, MJ. 2011. Status review update for Pacific salmon and steelhead listed under the Endangered Species Act: Pacific Northwest. U.S. Dept. Commerce. Available: http:

Frankham R, Briscoe DA, Ballou JD. 2002. Introduction to Conservation Genetics. Cambridge

Gustafson, R. G., Waples, R. S., Myers, J. M., Weitkamp, L. A., Bryant, G. J., Johnson, O. W., \& Hard, J. J. 2007. Pacific salmon extinctions: Quantifying lost and remaining diversity. Conservation Biology, 21(4), 1009-1020.

Gustafson, RG., Waples, RS., Myers, J. M., Weitkamp, LA., Bryant, GJ, Johnson, OW, and Hard, JJ. 2007. Pacific salmon extinctions: quantifying lost and remaining diversity. Conservation Biology 21: 1009-1020.

Henderson MJ, Iglesias IS, Michel CJ, Ammann AJ, Huff DD. 2018. Estimating spatialtemporal differences in Chinook salmon outmigration survival with habitat and predation related covariates. Can J Fish Aquat Sci. https://doi.org/10.1139/cjfas-2018-0212

Hoar, W.S. 1976. Smolt transformation: evoluation, behavior, and physiology. J. Fish. Res. Board Can. 33:1234-1252

Jolly, GM. 1965. 'Explicit Estimates From Capture-Recapture Data With Both Death and ImmigrationStochastic Model.', Biometrika, 52(1), pp. 225-47.

Laake, J. (2013) 'RMark: an R interface for analysis of capture-recapture data with MARK'. Seattle WA: US Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Alaska Fisheries Science Center.

Lebreton, JD, Burnham, KP, Clobert, J \& Anderson, DR. 1992. Modeling survival and testing biological hypotheses using marked animals: a unified approach with case studies, Ecological Monographs, 62, pp. 67-118.

Lynch M, O' Hely M. 2001 Captive breeding and the genetic fitness of natural populations. Conservation Genetics.2:363-378.

McCormick, MI. 2012. Lethal effects of habitat degradation on fishes through changing competitive advantage. Proc. R. Soc. Lond. b 279, 3899-3904.

McCormick, SD., Björnsson, BTh., Sheridan, M, Eilertson, C., Carey, JB. \& O’Dea, M. 1995. Increased daylength stimulates plasma growth hormone and gill $\mathrm{Na}+, \mathrm{K}+$-ATPase in Atlantic salmon (Salmo salar). Journal of Comparative Physiology 165, 245-254.

Melnychuk MC., Welch DW., Walters CJ. 2010 Spatio-temporal migration patterns of Pacific salmon smolts in rivers and coastal marine waters. PLoS ONE. 5:e12916. doi: 10.1371

Miller KM, Teffer A, Tucker S et al. 2014. Infectious disease, shifting climates, and opportunistic predators: cumulative factors potentially impacting wild salmon declines. Evol Appl 7:812-855

Murray, C., Wood, C., 2002. Status of Sakinaw lake Sockeye salmon (Oncorhynchus nerka). Canadian Science Advisory Secretariat. Research document 2002-088.

NPPC (Northwest Power Planning Council). 1992. Strategy for Salmon. Northwest Power Planning Council, Portland, Oregon.

Price, MH., Connors, BM., Candy, JR., McIntosh, B., Beacham, TD., Moore, JW., and Reynolds, JD. 2019. Genetics of century-old fish scales reveal population patterns of decline. Conservation Letters.

Rand, PS., BA. Berejikian, A. Bidlack, D. Bottom, J. Gardner, M. Kaeriyama, R. Lincoln, M. Nagata, TN. Pearsons, M. Schmidt, W. W. Smoker, L. A. Weitkamp, and L. A. Zhivotovsky. 2012. Eco-logical interactions between wild and hatchery salmonids and key recommendations for research and management actions in selected regions of the North Pacific. Environmental Biology of Fishes 94:343-358

Raymond, HL. 1968. Migration rates of yearling chinook salmon in relation to flows and impoundments in the Columbia and Snake Rivers. Transactions of the American Fisheries Society 97(4): 356-359.

Sykes, GE. and Shrimpton, JM. 2010. Effect of temperature and current manipulation on smolting in Chinook salmon (Oncorhynchus tshawytscha): the relationship between migratory behaviour and physiological development. Canadian Journal of Fisheries and Aquatic Sciences 67, 191-201.

Tiffan KF, Kock TJ, Haskell CA, Connor WP and Steinhorst RK. 2009. Water velocity, Turbulence, and Migration Rate of Subyearling Fall Chinook Salmon in the Free-Flowing and Impounded Snake River. Trans Am Fish Soc 138:373-384.

Tuomikoski, J., J. McCann, B. Chockley, H. Schaller, S. Haeseker, J. Fryer, R. Lessard, C. Petrosky, E. Tinus, T. Dalton, and R. Ehlke. 2013. Comparative survival study (CSS) of PIT-tagged spring

WDFW. 2019. Proposal to increase hatchery production to benefit southern resident killer whales. Washington Department of Fish and Wildlife, Olympia, Washington, USA.

White, GC., and KP. Burnham. Program MARK: survival estimation from populations of marked animals. Bird Study 46(Supplement): 120—138.

Zabel RW, Achord S. 2004. Relating size of juveniles to survival within and among populations of Chinook salmon. Ecology 85:795-806

Zydlevski GB., Stich DS. \& McCormick SD. 2014.Photoperiod control of downstream movement of Atlantic salmon Salmo salar smolts. Journal of Fish Biology 85: 1023-1041.

Appendix E

Coho Juvenile outmigration (Smolt-to-Smolt) survival study of the Yakima Basin from 1999-2019

Prepared by:
Shubha Pandit (Ph.D.), Todd Newsome and Bill Bosch
Yakama Nation Fisheries

> P.O. Box 151, Toppenish, WA 98948, USA
EXECUTIVE SUMMARY 3

1. INTRODUCTION 7
2. METHODOLOGY 9
2.1. GEOGRAPHICAL DISTRIBUTION: HISTORICAL AND CURRENT 9
2.2. PIT-tag Data 11
2.3 Statistical analyses 14
3. RESULTS AND DISCUSSION 16
3.1. FISH SIZE (FORK LENGTH) At THE TIME OF TAGGING AND RELEASE 16
3.2. Detection rate of the smolt releases at McNary Dam 18
3.3. Detection rate of parr releases at McNary Dam 23
3.4. Travel Time from Release Locations to McNary Dam 26
A. Smolt releases 26
B. Parr releases 27
3.5. Survival Probability (Release Site to McNary Dam) 27
A. Annual survival probability of smolt and parr releases by migration year. 27
B. Comparison of Survival probability among broodstocks (in-basin and out-of-basin) 29
C. Survival probability of smolt and parr releases by release locations 29
C.1. Smolt releases 29
C.1.1. Annual comparison of survival rate release at PROSSER 31
C.2. Parr releases 33
C.2.1. Annual comparison of survival rate release at different streams/tribuatries 36
D. Effect of river flow and release month on survival rate 37
E. Effect of release month on parr survival rate 42
4. ACKNOWLEDGMENT 44
5. REFERENCES. 44

Executive Summary

Coho Salmon (Oncorbynchus kisutch) in the Yakima basin were extirpated in the early 1980s but reintroduction efforts initiated in the mid-1980s have resulted in hatchery-produced coho naturally reproducing in both the Yakima and Naches rivers. In 1984 there was no escapement ($\mathrm{n}=0$) of adult Coho Salmon returning to the Yakima Basin, but the return of hatchery-produced origin fish peaked in 2014 ($>25,000$ adults). Several release strategies for outplanting fish have been implemented in the reintroduction program to evaluate and compare relative survival and escapement. Outplants have been released at both the parr and smolt life stages, including different size classes, released at multiple locations, including different release dates, and outplanted from different broodstock sources. A diverse strategic approach was utilized to maximize the likelihood of achieving stable and abundant returns of natural-origin Coho Salmon to the Yakima River and to enhance the stability and resiliency of the population against potential environmental changes.

An ongoing, long-term monitoring program is being conducted with the aim of improving project objectives and strategies by applying what is learned from the project experiments, monitoring and evaluation, and literature reviews in an adaptive management framework. This evaluation is an update of ongoing annual monitoring that was initiated with the inception of reintroduction efforts in 1996. The report summarizes the results for estimated survival rate and travel time of juvenile (Smolt and Parr) Coho Salmon released from multiple locations in the Yakima basin with a focus on the following objectives:

- Determining survival rate and travel time of smolts released in 2019 and parr released in 2018 (migration year 2019)
- Comparing survival rates between outplants from different broodstock sources (Yakimabroodstock vs. out-of-basin either from Eagle Creek National Fish Hatchery or Washhougal Hatchery)
- Identifying watershed-specific survival rates between the upper Yakima River and Naches River locations for out-migrating juveniles, and identifying whether survival differs as a function of release month (February, March, April)
- Evaluating the effects of river flow (e.g., monthly variation) on outmigration survival rate

In 2019, fish from two brood sources (Yakima and Eagle Creek) were released during the time period March 21 to April 15. Smolts from the in-basin Yakima stock were released in the lower Yakima River at Ahtanum Creek and Prosser Dam and in the upper Yakima River (upstream of Roza Dam) at the Jack Creek Spring Chinook acclimation site and in Wenas Creek. The out-of-basin Eagle Creek smolts were released in the upper Yakima River at Easton and Holmes sites and in the Naches River at the Stiles site; all smolts were released on April 15 ${ }^{\text {th }}$. In total the releases included 20,305 PIT-tagged smolts, ranging in size from 67 mm to 101 mm (average 105.5 mm). There was no significant difference in smolt size between the release groups at the different release locations during 2019.

Unlike smolts which begin emigration immediately after release, the released parr typically outmigrate as yearling smolts in the spring following their release. Parr releases were made into the Yakima and Naches rivers at 10 locations during 2018 or 2019 migration year (Ahtanum Creek, Cowiche Creek, Little Naches River, Naches River, Rattlesnake Creek, Big Creek, Reecer Creek, Swauk Creek, Wilson Creek, and upper Yakima River).

Our results indicated variable travel times to McNary Dam for smolts released at the different locations. Fish released at Prosser Dam exhibited the shortest travel time to McNary Dam (mean 21.32 ± 8.54 days), whereas the Jack Creek release group had the longest travel time (mean $47.14 \pm$ 4.59 days). Travel times for the groups released at the Easton, Holmes and Stiles ponds, Wenas Lake, and Ahtanum Creek ranged from 33 to 39 days. On average, for the 2015-2019 migration years, parr releases were detected at McNary Dam after 320 days following release, ranging from a minimum of 200 days to a maximum of 700 days. Interestingly, 11 fish were detected at the McNary Dam juvenile facility moving downstream after spending almost 2 years in the freshwater in the migration year 2015 and 2016. Moyle (2002) also reported that most coho salmon smolts leaving California streams reportedly are 12 to 15 months old but some juveniles reportedly stay in the stream 2 years before emigration.

The overall smolt detection rate at McNary Dam was $9.96 \% \pm 1.31 \%$ in 2019, which was similar to the detection rate of $9.25 \% \pm 0.9 \%$ in 2018. However, McNary detection rates varied among the Yakima River release groups. The detection rate was highest for the Prosser release group $(20.28 \% \pm 2.7 \%)$, followed by Easton Creek ($5.94 \% \pm 2.3 \%$), Jack Creek and Stiles ($4.76 \% \pm 4.6 \%$), Holmes $(0.2 \% \pm 0.08 \%)$, Ahtanum $\left(0.01 \% \pm \mathrm{NA}^{2} \%\right)$, and Wenas Lake at upper boat lunch $(0.03 \% \pm$
0.02%). In addition, McNary Dam detection rates were generally lower for fish released from upper Yakama River locations in May and June. This is likely due to higher mortality associated with lower river flows and/or increasing water temperature in the lower Yakima River during those months. Flows typically decrease beginning in the first week of May as irrigation diversions become operational in the basin. Similar to smolt releases, detection rates at McNary Dam of smolt for parr releases were variable among years. Only a few McNary Dam detections were observed for parr releases compared to smolt releases.

For data collected in prior years (2007 to 2018), a logistic regression model (see Neeley 2012) was used to estimate survival. Beginning in 2019 and in this report, survival rates from release locations to downstream detection at McNary Dam were estimated using the Cormack-Jolly-Seber (CJS) mark-recapture model, which has been commonly used within the Federal Columbia River Power System (FCRPS) to estimate survival rates for juvenile anadromous fish species (salmon and steelhead, see Tuomikoski et al. 2013). The model uses multiple detections of individually marked fish at several dams with PIT-tag detection capabilities (i.e. antenna arrays).

The average survival probability of Coho Salmon smolts from the release sites to McNary Dam in 2019 was $14.27 \pm 2.64 \%$, which was lower than both the 2017 estimate ($29.06 \pm 3.4 \%$) and 2018 estimate ($24.51 \pm 3.2 \%$), but higher than the 2015 estimate ($10.12 \pm 1.14 \%$). Fish released at the Prosser site had higher ($25.19 \% \pm 2.85 \%$) survival compared to releases at all other locations. The survival rate was higher for the Yakima-stock releases ($17.51 \pm 0.8 \%$), followed by Eagle Creekstock release ($15.04 \pm 2.4 \%$) and Washougal-stock release ($8.49 \pm 1.6 \%$). For the parr-release group, the survival rate of the group was smaller than the survival rate of the smolt-release group, however the inter-annual variation of the survival rates among these years is similar to that for smolt-releases.

Since smolts were released over a three-month period (February, March and April), release date might also have affected survival. Therefore, using PIT-tag data from 2015 - 2019 releases, the effects of river flow and release month were introduced as covariates in the CJS model. The results showed that effect of river flows on outmigration survival rate depend on the release months (February, March and April). However, among the release months fish released in March had a higher survival rate compared to February and April.

Parr were released in the different locations listed above from May to October in the years preceding migration years 2015-2019. Release site-to-McNary survival of the parr-releases was higher for the population released in August $(14 \% \pm 0.020)$ and followed by the group of releases that was released in July $(3.1 \% \pm 0.40)$ and June ($1 \% \pm 0.4$).

1. Introduction

Prior to their extirpation in the early 1980's, Coho Salmon (Oncorhynchus kisutch) in the Yakima Basin were once widely distributed among tributaries of the Yakima and Naches rivers (Fulton 1970; Chapman 1986), with annual adult returns numbering from 44,000 to 150,000 (Kreeger and McNeil 1993). Releases of hatchery reared Coho Salmon in the Yakima Basin began in 1983 with the first release of 324,000 smolts from the Little White Salmon Hatchery (YN 1997). In 1988, the YN and Washington department of Fish and Wildlife developed and implemented a reintroduction program that has successfully shown evidence of natural production in both the Yakima and Naches rivers. The highest return of adults (2014) from hatchery releases was greater than 25,000 fish; whereas in 1984 there was no escapement $(\mathrm{n}=0)$ of adult Coho Salmon returning to the Yakima Basin.

Several alternative release strategies have been utilized in the reintroduction program over time in response to observations in long-term monitoring. For example, smolts were initially only released in the mainstem of the Yakima River (Dunnigan et al. 2002). Subsequently, releases have been expanded to include a range of different locations to understand how variable habitat conditions (geographical area or watershed) affect the survival and productivity of returning adult salmon. Habitat capacity/quality have a significant impact on growth rate and survival, and within the Yakima River Basin human alterations to the environment continue to exacerbate naturally limiting conditions by reducing the quality and quantity of available spawning and rearing habitat. On the other hand, broad habitat restoration programs are concurrently being implemented to improve the habitat condition in many areas of the river. Other exploratory methods for evaluating relative success have included variable life stages (parr vs. smolts) at release, different release times, and use of multiple outplant sources. In past years, the primary sources of Coho outplants have come from Yakima basin returns, Eagle Creek National Fish Hatchery and Washhougal hatchery. In total, about 500,000 juvenile coho have been released each year, directly from acclimation sites or from temporary mobile acclimation facilities operated in upstream locations in tributary streams of the Naches and upper Yakima rivers.

Columbia River Coho Salmon typically spend one year in freshwater before out-migrating as yearling smolts in the spring (April-May). Adults commonly mature at sea for ~ 18 months before returning to natal streams as age-3 spawners. However, precocious, sexually mature males (jacks) may also return to spawn after 6 months at sea. Adult coho salmon generally migrate upstream at water
temperature ranging from $7.2^{\circ} \mathrm{C}$ to $15.6^{\circ} \mathrm{C}$ (Reiser and Bjornn 1979 cited in Laufle et al. 1986) and its spawning occurs from late October to November, sometimes as late as December or January. Spawning normally occurs in riffles or where ground water seepages occur, in minimum water depth of 0.18 m , at water temperatures ranging from $4.4^{\circ} \mathrm{C}$ to $9.4^{\circ} \mathrm{C}$, and velocities ranging from 0.3 to $0.91 \mathrm{~m} / \mathrm{sec}$ (Thompson 1972, BOR 2007). The optimum temperature for coho salmon egg incubation was $4^{\circ} \mathrm{C}$ to $11^{\circ} \mathrm{C}$ (Davidson and Hutchinson (1938 cited in Sandercock 1991). Juvenile coho salmon survive best in low-gradient habitats (generally less than four percent, (Jones and Moore, 1999) and tributaries with a stream gradient less than 3% with complex and deep pools or beaver ponds Bradford et al. (1997) and Reeves et al. (1989). Coho salmon generally spend one growing season in freshwater and two growing seasons (about 18 months) in the ocean before returning as 3 -year-old adults (Hassler 1987) to spawn in their natal streams (Beamish et al. 2004).

An ongoing, long-term monitoring program is being conducted with the aim of improving for project objectives and strategies by applying what is learned from the project experiments, monitoring and evaluation, and literature reviews in the YKFP adaptive management policy. This evaluation (report) is an update of ongoing annual monitoring that was initiated since 2001. This report summarizes the results for estimated survival rate and travel time of juvenile (smolt and parr) Coho Salmon released from multiple locations in the Yakima basin, with a focus on the following objectives:

* Determining survival rate and travel time of smolts released in 2019 and parr released in 2018 (migration year 2019)
* Comparing survival rates between outplants from different broodstock sources (Yakima broodstock vs. out-of-basin either from Eagle Creek National Fish Hatchery or Washougal Hatchery)
* Identifying watershed-specific survival rates among upper Yakima basin and Naches basin locations for out-migrating juveniles, and identifying whether survival differs as a function of release month (February, March, April)
* Evaluating the effects of river flow (e.g., monthly variation) on outmigration survival rate

These objectives have helped to answer a few research questions: such as 1). which released location has a better out-migrating survival rate? 2). What acclimated smolt release timing (early or late; or releases months Feb, March or April) provides the best juvenile survival rate? 3). Which broodstocks (out-of-basin vs. local) has the highest juvenile survival rate? And; 4). What are the effects of the river flow on juvenile outmigration survival rate for the early and late releases?

2. Methodology

2.1. Geographical distribution: historical and current

Coho salmon were native to the Yakima River basin and its spawning area was quite widespread in the Yakima River basin, including the Bumping River (Wydoski and Whitney 2003; Tuck 1995). Historically, it was assumed that Coho were present in low-gradient streams in the Yakima Basin prior to extensive habitat alteration and were widely distributed among tributaries of the Yakima and Naches rivers (Haring 2001; Berg and Fast 2001; Figure 1A). Acclimation and release sites designated in the reintroduction program overlap this historical geographical distribution (Figure 1B).

Figure 1. Historical Coho geographical distribution (A); the tributaries where smolt or parr releases were introduced 2008-2019 (B).

2.2. PIT-tag Data

We queried the PTAGIS database (https://www.ptagis.org/) in February 2020 to retrieve available PIT-tag detection information for all Coho Salmon smolts released at the different locations in the Yakima Basin from 2015 to 2019 (Figure 1). Numbers of PIT-tagged fish released each year among sites in the Yakima Basin ranged from 14,412 in 2017 to 20,305 in 2019 (Figure 1, Table 1).

Two outplant stocks (in-basin:Yakima and out-of-basin:Eagle Creek) were released between March 21 and April 15 in 2019. Smolts from the in-basin Yakima stock were released in the lower Yakima

River at Ahtanum Creek (March 21) and Prosser Dam (April 2), and in the upper Yakima River (upstream of Roza Dam) at the Jack Creek acclimation site (April 11) and Wenas Creek (April 15). The out-of-basin Eagle Creek smolts were released in the upper Yakima River at the Easton, Holmes and Stiles ponds on April $15^{\text {th }}$.

Table 1: Broodstocks, juvenile rearing facilities, and the number of PIT-tagged smolts released at the different locations (*mobile acclimation) for emigration years 2015 to 2019.

Unlike smolts, which begin emigration immediately after release, the released parr typically outmigrate as yearling smolts in the spring following their release. Therefore, PIT-tag data for parr releases was evaluated on the basis of emigration year (2015-2019). A total of 43,294 PIT-tag
detections (for parr) were retrieved for the 2019 migration year, corresponding to 9 locations in the Yakima Basin where parr were released in 2018 (Ahtanum Creek, Cowiche Creek, Little Naches River, Naches River, Rattlesnake Creek, Big Creek, Reecer Creek, Swauk Creek and Wilson Creek; Table 2, Figure 1C). The number of released parr that emigrated in 2019 was higher than other emigration years; no parr were released in 2016 thus there were no parr emigration data available for 2017 (Table 2).

Table 2: Number of parr-releases by migration year from 2015-2019. They were typically released one year earlier than the migration year.

Sub-basin	Released Locations	Migration Year			
		2015	2016	2018	2019
Lower Yakima	- AHTANC - Ahtanum Cr	1349	1648	3009	4453
Naches	- COWICC - Cowiche Cr	3017	3005	3035	3013
Naches	- Inouye Side Channel, Rattlesnake Cr	1606	0	0	0
Naches	-LTNACR - Little Naches River	6036	3008	3042	3006
Naches	- Little Naches_South Fork	3004	0	0	0
Naches	- NATCHR - Naches River	0	3017	0	3550
Naches	- Quartz Cr	3012	0	0	0
Naches	- RSNAKC - Rattlesnake Cr	0	3032	0	3049
Naches	- TIETNR - Tieton River	0	0	0	3010
Upper Yakima	- HundleyPonds_nearNelsonSiding	1531	0	0	0
Upper Yakima	- Big Cr	3003	3013	0	3056
Upper Yakima	- Lake.Cle.Elum	0	3015	0	0
Upper Yakima	- Mercer Cr	0	1543	0	0
Upper Yakima	- Mercer Cr Upstream	0	1523	0	0
Upper Yakima	\bullet REECEC - Reecer Cr	3026	0	3069	3005
Upper Yakima	- SWAUKC - Swauk Cr	0	0	3024	3041
Upper Yakima	- WILSNC - Wilson Cr	3027	3011	3019	3080
Upper Yakima	- Easton reach	,			3009

Upper Yakima	\bullet Colman Creek			3003	
Upper Yakima	\bullet Yakima River ThorpBoat Ramp			3004	
Upper Yakima	\bullet YAKIM2 - Yakima River above-	0	0	3046	
	Naches River				
	Total	30626	27831	23262	41279

2.3 Statistical analyses

Travel times and survival rates for both parr and smolt releases from the different release locations to McNary Dam were estimated each year from 2015 to 2019. Travel time was estimated as the difference between the date of release and the date of detection at McNary Dam. For data collected in prior years (2007 to 2018), a logistic regression model (see, Neeley 2012) was used to estimate survival. However beginning in 2019 and in this report, survival probability from release locations to downstream detection at McNary Dam and detection rate of the released PIT-tagged Coho smolts at McNary Dam were estimated using the Cormack-Jolly-Seber (CJS) mark-recapture model (see, White and Burnham 1999; Lebreton et al. 1992; Williams, et al. 2002, Conner et al. 2015), which has been commonly used within the Federal Columbia River Power System (FCRPS) to estimate survival rates for juvenile anadromous fish species (salmon and steelhead, see Tuomikoski et al. 2013). The model uses multiple detections of individually marked fish at several dams with PIT-tag detection capabilities (i.e. antenna arrays).

Among the several assumptions of the CJS model, one assumption is no immigration or emigration during capture and recapture intervals (detection), which is valid in the hydrosystem because of necessary passage at several hydroelectric dams, and where fish behavior is relatively consistent as fish are moving in one direction over a relatively short period of time (see Conner et al. 2015). The CJS model was originally formulated to calculate time-interval survival of tagged animals by recapturing individuals and estimating their survival and recapture probabilities using maximum likelihood. A spatial form of the CJS model can be used for species that migrate uni-directionally, and are recaptured/detected within a discrete migratory corridor (Henderson et al. 2018, Burnham 1987). We used individual fish encounter histories to estimate the likelihood that a fish would survive and be detected at each tag receiver facility (e.g. dams; Lebreton et al. 1992). The CJS model was run for all smolts released at each location based on an encounter history constructed from the
number of fish released at the different locations and subsequent detection events at McNary and Bonneville (BON) Dams. Similar to previous studies (Neeley 2018), we estimated the survival rate and detection efficiencies for each release group and broodstock source.

Several environmental factors are known to influence downstream smolt survival, and river flow is among the most impactful (Raymond 1968; Connor et al. 2003; Tiffan et al. 2009). Since early and late release groups presumably experience variable flow regimes in the Yakima River, each is likely to incur a different rate of survival associated with temporal river conditions. Therefore, it was necessary to introduce river flow and release month as covariates in the CJS model to estimate the survival rate of the releases. In the model we used the last five years of data (2015-2019) to increase the overall sample size and confidence around our estimates. Fish releases began in February and continued through May each year (2015-2019); however, in 2015, a drought year, only 6 PIT-tagged fish were released in May and this is not a sufficient sample size to estimate survival for the month. Therefore we excluded these 6 tagged fish and evaluated the effects for only three months in 2015 (Feb, March and April).

River flow data were accessed from the Bureau of Reclamation (BOR) website at: https://www.usbr.gov/pn/hydromet/yakima/yakwebarcread.html. The average travel time from Prosser to McNary Dam was approximately 20 days. Accordingly, river flow data were averaged for 20 day intervals. For example, a fish that was detected at Prosser Dam on April $1^{\text {st }}$ would reach McNary Dam about April 20 ${ }^{\text {th }}$, and the 20 day moving average flow rate for that time period would be assigned for that fish to determine the effect of river flow on survival rate.

Several candidate CJS models were built using every possible combination of river flow and release month, with varying or constant survival and detection probabilities at dams in the CJS models. To determine the rank of the different candidate models we used the difference in QAICc score ($\triangle \mathrm{QAICc}$) relative to the top model. For models with $\Delta \mathrm{QAICc}<2$, we selected the model with the lowest QAIC and fewest parameters as the best model (Burnham and Anderson 2002). Selecting the best model, we estimated the effect of river flow on downstream survival rate for each release group. The CJS models were run within the RMark package (Laake and Rexstad 2019) in R statistical software, version 3.3.6 (R Core Team 2019).

3. Results and Discussion

3.1. Fish size (Fork length) at the time of tagging and release

Among the 97,553 smolts released with PIT-tags during 2015-2019, length data were available for only 8545 fish (5%; Table 3). Juveniles from three broodstock sources (in-basin Yakima-stock, Eagle Creek and Washougal out-of-basin stocks) were released in the Yakima Basin in 2015-2019. Some fish were released in late February in 2017 (2/28/2017), but most of the fish were released in March and April. Overall, there was no significant difference in mean smolt fork length among release groups in different months except in 2015 (see figure 2). Fish that were tagged/released in May were the largest, but fish released in March tended to be larger at tagging than fish in the April release groups. This was contrary to expectations since fish should be growing larger over time. This observation was most likely a hatchery effect as March releases were largely comprised of fish reared at the Prosser hatchery where water temperatures are relatively higher compared to the other hatcheries used for rearing Coho juveniles released in the Yakima reintroduction program.

Two outplant stocks (Yakima and Eagle Creek) were released in 2019. Smolt releases began in February at the Ahtanum Creek location (2/21) and the last fish were released in Wenas Creek on April $23^{\text {rd }}$. Altogether 20,305 smolts were released at six locations. Smolts released from the Easton rearing site ranged in size (fork length) at tagging from 71 mm to 188 mm (average 100.20 mm), whereas smolts reared at Holmes and Stiles ponds ranged in size from 67 mm to 126 mm (combined average 101 mm , see table 3 and figure 2). The difference in size of smolts at the rearing sites was not significant among the release groups at the different release locations during 2019.

Figure 2. Fork length (mm) of smolts at the time of tagging by release location, release month and year (2015-2019).

Table 3: Smolt fork length by release location, release month, and year: sample size (N), average fish size (mean), standard error (SE), range (minimum and maximum) Note: information is based on limited data available in PITAGIS ($\mathrm{n}=8545$ out of 97553 total tags).

	Released		Mean				Range	
Year	Location	Month	N	(mm)	SE	min	\max	
2015	Easton	March	431	133.76	0.47	94	166	
2015	Holmes	March	377	126.15	0.48	95	157	
2015	Stiles	March	585	119.78	0.60	72	168	
2015	Ahtanum	May	6	178.50	6.78	151	195	
2016	Easton	April	521	114.49	0.44	63	155	
2016	Holmes	April	1074	112.82	0.29	63	144	
2016	Stiles	April	558	122.07	0.54	82	160	

2016	Prosser	April	303	133.06	0.46	104	155
2016	Ahtanum	March	520	127.28	0.62	75	220
2016	LostCr	April	85	129.96	0.79	110	150
2017	Holmes	March	292	115.83	0.48	85	136
2017	Stiles	April	600	116.08	0.35	88	140
2017	Prosser	March	414	126.72	0.52	91	160
2018	Easton	April	1108	108.56	0.23	83	140
2018	Stiles	April	800	107.40	0.25	83	151
2019	Easton	April	206	100.20	0.62	71	118
2019	Holmes	April	204	101.31	0.75	67	126
2019	Stiles	April	442	100.22	0.52	67	126

3.2. Detection rate of the smolt releases at McNary Dam

A total of 234, 1028, 474, 427 and 192 fish were detected at McNary Dam from 2015, 2016, 2017, 2018 and 2019 release groups, respectively (Figure 3 and table 4). The detection period (range of dates) varied among years. For example, during 2015 McNary dam detections were most numerous in early April and May, whereas in 2017 smolts were first detected on April $07^{\text {th }}$, with the last detection occurring on June $6^{\text {th }}$ (May $7^{\text {th }}$ average detection day; Figure 3). Similarly, in 2019 fish released in the Yakima River were first detected at McNary Dam on April $1^{\text {st }}$ with the last on June $4^{\text {th }}$ (Figure 3)

Table 4: Detection history (number of fish detected/not detected at McNary and Bonneville dams) and survival rate during out-migration of smolt release groups (A) and parr release groups (B) during the period 2015-2019. Enumeration of fish fate (Release/detection histories) is coded by detection (1) and no detection (0): "1.0.0." - no juvenile detection after release, "1.0.1" - not detected at McNary Dam but detected at Bonneville Dam, "1.1.0" - detected at McNary Dam but not at Bonneville Dam, and "1.1.1" - detected at all dams.
A. Smolt releases

Released/Detection	2015	2016	2017	2018	2019
No detection after release (1.0.0)	18167	23128	13601	18356	19775
Detected at BON Dam but not at McNary Dam (1.0.1)	392	621	337	483	338
Detected at McNary Dam but not at BON Dam (1.1.0)	179	825	431	379	168
Detected at all Dams (1.1.1)	55	203	43	48	24
Total detected at McNary Dam	234	1028	474	427	192

Survival rate (\%)	10.12	16.84	29.06	24.51	14.27
Standard Error of the Survival rate (\pm SE $)$	1.14	0.09	3.40	3.20	2.64

B. Parr releases (released parr typically outmigrate as yearling smolts)

Released/Detection	2015	2016	2017	2018	2019
No detection after release (1.0.0)	28547	25473	20614	41175	
Detected at BON Dam but not at McNary Dam (1.0.1)	19	41	333	30	
Detected at McNary Dam but not at BON Dam (1.1.0)	41	283	260	69	
Detected at all Dams (1.1.1)	4	18	37	1	
Total no. of detection at McNary Dam	45	301	297	70	
Survival rate (\%)	0.90	3.82	13.98	5.26	
Standard error of the Survival rate (\pm SE)	0.39	0.74	2.05	5.13	

Note: there was no parr release during 2016 (migration year 2017)

Release groups from 2016 had the highest rate of detection at McNary Dam ($25.06 \% \pm 1.27 \%$), whereas the lowest detection rates were observed among 2018 ($9.25 \% \pm 0.9 \%$) and 2019 $(9.96 \% \pm 1.31 \%)$ release groups. The overall smolt detection rate at McNary Dam in 2019 was $9.96 \% \pm 1.31 \%$, which was similar to the detection rate of 2018 ($9.25 \% \pm 0.9 \%$). Inter-annual variation in detection rates may be due to differences in river discharge, spillway discharge, water temperature, and other factors.

However, among the smolt release groups only within 2019, the detection rate for smolts was highest for the Prosser release group ($20.28 \% \pm 2.7 \%$), followed by Easton ($5.94 \% \pm 2.3 \%$), Jack Creek and Stiles ($4.76 \% \pm 4.6 \%$), Holmes ($0.2 \% \pm 0.08 \%$), Ahtanum Creek ($0.01 \% \pm$ NA $\%$), and Wenas Lake ($0.03 \% \pm 0.02 \%$) groups. No McNary Dam detections were observed for release groups from Wenas Creek above and below Wenas Lake (see Figure 4).

Figure: 3. Number of Coho smolt detections at McNary Dam for Yakima Basin release groups each year (from 2015 to 2019).

Figure 4. Number of PIT-tag detections at McNary and Prosser Dams for the different release locations of the Yakima basin in 2019. The left panel represents out-of-basin Eagle Creek smolts (Eagle Creek), whereas the right panel represents the in-basin Yakima (Yakima) stock. The information given in each row is the average travel time (mean days \pm SE) from release locations to Prosser and McNary Dams.

The study further found that McNary Dam detection rates were generally lower for fish released from upper Yakima River locations in May and June (see figure 5). This is likely due to higher mortality associated with lower river flows and/or increasing water temperature in the lower Yakima

River during those months (further investigation is warranted). Flows typically decrease beginning in the first week of May as runoff declines and irrigation diversions increase in the basin.

Figure 5. Coho smolt detections at Prosser (blue bar) and McNary Dam (red bar), water temperature in degrees Celsius (dotted red line) in the Lower Yakima River and river flow near Prosser Dam. [Note: water temperatures were averaged between measurements at Benton City and Lower Yakima sites obtained from the Yakama Nation's Lower Yakima Predation study. For days with no temperature measurement a linear average value was estimated.. River flow was standardized using a square root transformation.]

In general the Yakima-stock releases had a higher detection rate at McNary Dam (11.27\% $\pm 1.34 \%$), compared to the Eagle Creek stock releases in $2019(2.94 \% \pm 1.02 \%$; tables 4 and 6, figure 4). This is presumably due to a higher detection rate at McNary Dam for the Prosser releases, which were the farthest downstream in the Yakima River and nearest McNary Dam. Release groups farther
upstream in the Yakima River must travel a greater distance, with an associated higher risk of mortality (e.g. predation), resulting in a reduced detection rate at McNary Dam.

3.3. Detection rate of parr releases at McNary Dam

Similar to smolt releases, detection rates at McNary Dam for parr releases were variable among years (table 4, figure 6). Few McNary Dam detections were observed for parr releases compared to smolt releases. Only 45, 301, 297,70 PIT-tagged parr were detected at McNary Dam from the outmigration year 2015, 2016, 2018 and 2019 release groups, respectively (released parr typically outmigrate as yearling smolts). On average, for the 2015-2019 migration years parr were detected at McNary Dam 320 days following release, ranging from a minimum of 200 days to a maximum of 700 days (Figure 7). Interestingly, 11 fish were detected at the McNary Dam juvenile facility moving downstream after spending almost 2 years in freshwater (Table 5, Figure 7). This case was not only in the Yakima River; Moyle (2002) also reported that although most coho salmon smolts leaving California streams reportedly are 12 to 15 months old, some juveniles reportedly stay in the stream 2 years before emigration (Moyle 2002).

Figure: 6. Smolt detections at McNary Dam by date (month/day) for fish released as parr (migration years 2015-2019)

Figure 7. Detection history: total days between parr release date in the Yakima river and detection date at McNary Dam. The red oval is showing the number of fish that were detected at McNary Dam after 650 days from the date of release (also see Table 5 and).

Table 5. Downstream migration date and first downstream detected site (McNary or John Day Juvenile Fish Bypass/Transportation facilities) for 11 fish that spent nearly two years in freshwater after release (also see Figure 7).

Tag Code	Release Date	Release Site	$\begin{aligned} & \text { Migration } \\ & \text { Year } \\ & \hline \end{aligned}$	Detected at		Days After Release	
				McNary	John Day	McNary	$\begin{aligned} & \text { John } \\ & \text { Day } \\ & \hline \end{aligned}$
384.3B23948D92	6/20/2014	NATCHR	2015	4/30/2016		680	
384.3B239533BD	6/20/2014	- Naches	2015	5/20/2016	5/23/2016	700	703
384.3B239625D7	6/20/2014	River	2015	5/5/2016		685	

384.3B23964480	$6 / 20 / 2014$		2015	$5 / 9 / 2016$	689
3D9.1C2DBAE979	$6 / 20 / 2014$		2015	$4 / 30 / 2016$	680
3D9.1C2DBC176B	$6 / 20 / 2014$		2015	$5 / 13 / 2016$	693
3DD.00774599BB	$6 / 23 / 2014$		2015	$4 / 14 / 2016$	$4 / 19 / 2016$
3DD.0077469792	$6 / 23 / 2014$		2015	$4 / 21 / 2016$	661
3DD.00776DA1F4	$7 / 28 / 2015$	CLEFBY -	2016	$5 / 29 / 2017$	668
3DD.00776DB0E6	$7 / 28 / 2015$	CLE -	2016	$5 / 29 / 2017$	671
		Lake Cle			671
3DD.00776DBAD3	$7 / 28 / 2015$	Elum	2016	$5 / 31 / 2017$	

3.4. Travel Time from Release Locations to McNary Dam

Results indicated variable travel times to McNary Dam for smolts released at the different locations, ranging from 33 to 47 days (excluding the Prosser Dam releases; Table 6.A). Fish released at Prosser Dam exhibited the shortest travel time to McNary Dam (mean 21.32 ± 8.54 days), whereas the Jack Creek release group (the farthest upstream site) had the longest travel time (mean 47.14 ± 4.59 days). Mean travel times for the groups released at Easton, Holmes, Stiles, Wenas Lake, and Ahtanum Creek ranged from 33 to 39 days. The travel time often depended on distance (how far is the release location from the dam) and also release month (February, March or April). The fish that were released earlier took more time to travel than the fish that were released later. River flows also affected travel time, but further detailed monitoring is warranted to better understand the unique effects (contributions) of river flow and release month on the travel time. If the Prosser release group is excluded from the analysis, there was no significant difference in travel time between Eagle Creek stock and Yakima-stock releases (table 6.A). For the 2018 parr releases (migration year 2019), the ranged of travel time was from 208 days (the population released at Ahtanum creek) to 316 days (population released at Cowiche Creek, see table 6.B.).

Table 6. Travel time from release site to McNary Dam for [A] smolt releases in 2019, and [B] parr releases in 2018 (migration year 2019).

A. Smolt releases

Stock	Released site	Average travel days \pm SE	
Eagle	\bullet	Easton Pond	38.98 ± 6.32
Creek	\bullet	Holmes Pond	33.32 ± 4.04
	\bullet	Stiles Pond	35.61 ± 5.11

	\bullet	Wenas Cr. above Wenas Lake	$*$
	\bullet	Wenas Cr. below Wenas Lake	$*$
	\bullet Wenas Lake at Upper Boat Launch	34.78 ± 0.58	
	\bullet Ahtanum	36.50 ± 4.44	
Yakima	- Prosser	21.32 ± 8.54	
	\bullet	Jack creek Acclimation site	47.135 ± 4.59

*Indicates the fish released at that location were not detected at McNary Dam.

B. Part releases

Parr_release_site	Average	SE	Min	Max
\bullet	209.33	4.81	200	216
- AHTANC - Ahtanum Creek	307.25	1.55	303	310
- COWICC - Cowiche Creek	316.50	3.50	313	320
- LTNACR - Little Naches River	304.50	6.50	298	311
- NATCHR - Naches River	308.50	1.43	301	317
- RSNAKC - Rattlesnake Creek	300.63	4.97	280	314
-	REECEC - Reecer Creek	310.71	2.06	301
- SWAUKC - Swauk Creek	312.00	NA	312	312
- TIETNR - Tieton River	296.58	3.12	276	310
- WILSNC - Wilson Creek	308.80	1.67	300	317
- YAKIM2 - Yakima River above Naches River	302.17	1.22	300	308

3.5. Survival Probability (Release Site to McNary Dam)

A. Annual survival probability of smolt and part releases by migration year

The average survival probability of Coho Salmon smolts from the release sites to McNary Dam in 2019 was $14.27 \pm 2.64 \%$, which was lower than both the 2017 estimate ($29.1 \pm 3.4 \%$) and 2018 estimate $(24.5 \pm 3.2 \%)$, but higher than the 2015 estimate ($10.1 \pm 1.14 \%$, see Figure 8$)$. The study showed that the average survival probability from the release site to McNary Dam varied among years. In general, downstream smolt migration survival depends on several environmental factors such as water temperature and river flow (Scheuerell et al. 2009; Petrosky and Schaller 2010; Haeseker et al. 2012), which are highly variable among years in the Yakima Basin. For example, in 2015 there was an extremely low snow pack and an early snowmelt, which would have affected flow rate and water temperature. In-stream conditions may have contributed to the poor smolt-to-smolt survival observed in that year. Similarly, the flows during summer were relatively low in 2019
compared to 2017 and 2018 (see figure 11 and table 12), which may be related to the higher survival probability of smolts in those years.

The parr-release groups, which overwintered in freshwater before outmigration, experienced a lower rate of survival compared to that of the smolt-release groups each year (Figure 8), however the interannual variation of parr-release survival rates also corresponds with the variation of the survival rate of smolt-release groups. For example, survival of parr releases was highest in 2017 (among 2015, 2016, 2018 and 2019), similar to the inter-annual variation for the smolt release groups, which suggests that the survival rate for both groups might have been affected by common factors (e.g., higher temperature or river flow).

Figure 8. Overall smolt survival rate ($\pm \mathrm{SE}$) from release site to McNary Dam for the smolt and parr release groups, migration years 2015-2019.

B. Comparison of Survival probability among broodstocks (in-basin and out-ofbasin)

The average survival rate (2015-2019) for smolt releases differed among the stocks (Yakima-stock releases and out-of-basin Eagle Creek-stock and Washougal-stock releases. The survival rate was highest for the Yakima-stock releases ($17.51 \pm 0.8 \%$), followed by Eagle Creek-stock releases (15.04 $\pm 2.4 \%$) and Washougal-stock releases ($8.49 \pm 1.6 \%$). In 2019, when there was no release of the Washougal stock, the survival rate was slightly higher for the Yakima stock compared to the Eagle Creek stock (Tables 7 and 8).

C. Survival probability of smolt and parr releases by release locations

C.1. Smolt releases

In each year from 2015 to 2019, smolts released at the Prosser site had the highest survival among all Yakima River sites (37.2% in 2015; 22.9\% in 2016, 66.5% in 2017, 97.9% in 2018 and $25.11 \% \pm$ 2.98% in 2019; Table 7). Annual survival rates for the Yakima-stock released at Prosser and Stiles ranged from a low of 22.9% in 2016 to a high of 97.8% in 2018 (Tables 8, Figure 9). The high survival estimate for 2018 may be due to low estimated detection efficiencies for that release group, which will need to be verified.

Table 7. Survival probability (from the release location to McNary) for the smolt releases from 2015 through 2019. For 2019 results, average survival rate and its standard errors are also given (mean \pm SE). "NA" represents survival rate was not able to estimate due to the model convergence issue (not enough detections at downstream dams).

Stock	Release site	2015	2016	2017	2018	2019
	• Stiles	8.20%	24.70%	27.40%		
	• Prosser	37.20%	22.90%	66.50%	97.90%	$25.19 \pm 2.98 \%$
	• Easton		13.30%			
	\bullet Buckskin Slough	20.40%		24.10%		
	\bullet South Fk Cowiche Creek			25.30%		
Yakima	• Ahtanum Creek			$0.88 \pm 0.68 \%$		
	• Jack Creek			$6.01 \pm 3.58 \%$		
	• Wenas Lake above Wenas			$0.25 \pm 1.18 \%$		
	Dam (Wenas wildlife area)			NA		

- Wenas Lake at Upper Boat

Launch		$1.59 \pm 1.18 \%$	
• Stiles	25.50%	$16.83 \pm 6.86 \%$	
	\bullet Easton	9.20%	$17.21 \pm 8.03 \%$
Eagle Creek \bullet Holmes		$6.51 \pm 4.09 \%$	
Washougal \bullet Prosser	32.10%		

Note: Estimates for the years 2015-2018 were adopted from Neeley (2018). For 2019, it was found that some of the fish that was releases at different locations was not detected at McNary but it was detected at JohnDay Dam, therefore the survival rate was estimated using the joined detections events of McNary Dam and JohnDay.

Among eight release locations in 2019 (Yakima and Eagle creek stock releases) the Prosser group (below Prosser Dam) had the highest survival rate $(25.19 \% \pm 2.98 \%)$ and the lowest survival was for the group released at Wenas lake (Wenas wildlife area) (Tables 7, Figure 9).

Figure 9. Survival probability (release site to McNary Dam) of the group released as smolt in 2019 (outmigration year 2019).

Release location and Brood stocks

C.1.1. Annual comparison of survival rate release at PROSSER

As shown above, the juvenile outmigration survival rate from the release location to McNary Dam varied by release locations. Prosser release was the highest among the groups that were released at the different locations, however this was also varied among years. The highest estimated survival rate for the group was found to be in 2018, but as mentioned above the survival rate (97.9%) survival seemed not be an accurate estimate (See Table 8). It might be either due to low detection rate at the downstream Dams or methodological errors. When looking at the annual trend except 2018, the highest survival rate was in 2014 (78%), whereas the lowest in 2016 (22.9%, see table 8).

Table 8. Survival to McNary Dam for fish released at the Prosser site for all years in which the Yakima stock was released. Average survival rate (mean \pm SE) is shown only for the 2019 release.

Year	Number released	Release Date	Travel days $($ Mean \pm SE)	Survival Probability (Mean \pm SE)
2007	2499	$4 / 15$	15	62.7
2008				
2009	2506	$4 / 2$	41	65.7
2010	1371	$4 / 4$	24	52.5
2011	5036	$4 / 15$	30	37.6
2012	3811	$3 / 5$	58	33.9
2013	2520	$4 / 15$	8	67.2
2014	3004	$4 / 14$	18	78.0
2015	1265	$3 / 23$	21	37.2
2016	2501	$4 / 4$	19	22.9
2017	2876	$3 / 19$	34	66.5
2018	2509	$3 / 14$	48	97.9
2019	2533	$4 / 2$	21.32 ± 8.54	25.19 ± 2.98

Note: Estimates for the years 2015-2018 were adopted from Neeley (2018)

C.1.2. Annual comparison of survival rate release at STILES

Similar to Prosser, the survival rate (release site to McNarry dam) of the group released at Stiles also varied by years. Last two years, the fish were not released from that location (see Table 9).

Table. 9. Survival from release to McNary Dam for the Yakima stock released at the Stiles location.

Year	Number released	Release Date	Travel days (Mean \pm SE)	Survival Probability (Mean \pm SE)
2001	1240	$5 / 17$	22	43.2
2002				
2003	1249	$5 / 7$	14	40.0
2004				
2005		$4 / 3$	38	32.7
2006	2490	$4 / 5$	41	25.0
2007	2449			
2008		$4 / 15$	36	47.6
2009	2515	$4 / 12$	36	18.7
2010	2501			
2011		$4 / 16$	32	38.0
2012	2526	$4 / 15$	30	44.2
2013	2504	$4 / 16$	25	44.9
2014	2505	$3 / 23$	51	08.2
2015	2520	$4 / 7$	35	24.7
2016	3768	$4 / 17$	31	27.4
2017	5007			
2018	NO RELEASE			
2019	NO RELEASE			

Note: Results from 2007 to 2018 were adopted from Neeley (2018)

In general, the survival rate of the both groups released at Prosser and Stiles were varied by years; and the Prosser release groups had a higher survival rate than the Stiles group (Figure 10). However,
during 2012 and 2016, the smolt outmigration survival rate of Stiles was relatively higher survival rate of the group released in Prosser (Figure 10).

Figure 10. Bar plot showing survival to McNary Dam for the Yakima stock released at Prosser from 2007 through 2019 (red color) and from Stiles (green color) from 2001 through 2019. The 2019 results include average survival rate (mean \pm SE).

C.2. Parr releases

Parr survival varied broadly among years, and the average survival rate for parr releases in the Yakima basin was lower than the average survival rate from smolt releases (see, Figure 8). On average, the survival rate for the migration year 2019 was $\sim 5 \%$ (see Figure 8), with the highest survival rate observed among releases from the Rattlesnake Creek and the lowest survival rate for the Big Creek site and South fork Cowiche (less than 1; Table 10). Survival rate (from Swauk Creek to the McMaster) was also low (0.13%) but its standard Error was very high (75.53%), which indicates that a very few fish were detected at the downstream Dams (table 10, Figure 11). It is therefore recommended to release more PIT tags fish, which can help to reduce bounds of the average survival rate.

Table 10. Survival probability (from the release location to McNary) for the parr releases in 2018 (outmigration year 2019). "NA or *" represent survival rate was not able to estimate due to the model convergence issue (not enough detections at downstream dams).

	Survival Probability	
Released Location	Mean (\%)	SE (\%)
Ahtanum Creek	4.71	1.06
Rattlesnake Creek	15.25	5.07
Big Creek	0.40	0.15
Naches River	4.78	4.42
Easton Reach	NA	
SF Cowiche Creek	0.40	0.28
Reecer Creek	2.56	1.10
Swauk Creek	0.13	75.53^{*}
Tieton River	9.16	8.60
Coleman Creek	4.79	2.92
Little Naches	NA	
Wilson Creek	2.14	0.87
Yakima River ThorpBoatRamp	NA	
All (Pooled)	5.26	5.31

* There was an issue in model convergence because of low or no detections at downstream dams

Figure 11. Survival probability of the group released as parr in 2018 or 2019 migration year. "NA" indicates no estimate of the survival rate due to lack of model convergence (not enough detections at downstream dams).

C.2.1. Annual comparison of survival rate release at different streams/tributaries

Table 11. Estimated survival from release to McNary Dam of coho released as parr, by release location and migration year. For 2019 results, average survival rate and its standard errors are also given (mean \pm SE). *indicates the survival rate that was not able to be computed because of an issue in the model convergence due to no downstream detection.

Released river/ tributary	Year	Released $\operatorname{Pop}^{n}(\mathrm{~N})$	Survival rate (\%)	SE	Stock	Release Location
Cowiche Creek	2008	3001	30.7		Yakima	Cowiche Creek
	2009	6			Wild Parr	Cowiche Creek
	2009	3001	23.3		Yakima	Cowiche Creek
	2010	3004	16.9		Yakima	Cowiche Creek
	2011	3021	19.6		Yakima	Cowiche Creek
	2011	28	81.2		Wild Parr	Cowiche Creek
	2011	3049	20.1		Yakima	Cowiche Creek
	2012					
	2013	3003	11.3		Yakima	Cowiche Creek
	2013	2495	27.5		Yakima	Cowiche Creek
	2014	3014	3.6		Yakima	Cowiche Creek
						Cowiche Cr from
	2014	1249	25.4		Yakima	Mobile Site
	2015	3017			Yakima	Cowiche Creek
						Cowiche Cr from
	2015	1250	15.4		Yakima	Mobile Site
	2016					
	2017					
	2018	3035	16.6		Yakima	Cowiche Creek
	2019	3013	0.40	0.28	Yakima	Cowiche Creek
Reecer Creek	2008	3001	37.41		Yakima	Reecer Creek
	2009	2965	25.21		Yakima	Reecer Creek
	2010	3015	23.24		Yakima	Reecer Creek
	2011	3004	29.24		Yakima	Reecer Creek
	2012	3026	30.52		Yakima	Reecer Creek
	2013	3032	13.35		Yakima	Reecer Creek
	2014	3031	7.46		Yakima	Reecer Creek
	2015	3026	3.26		Yakima	Reecer Creek
	2016				Yakima	Reecer Creek
	2017				Yakima	Reecer Creek
	2018	3069	29.96		Yakima	Reecer Creek
	2019	3005	2.56	1.10	Yakima	Reecer Creek
Little Naches	2009	3000	16.6		Yakima	Little Naches River
	2010	3072	18.3		Yakima	Little Naches River

	2011	3022	9.6		Yakima	Little Naches River
	2012	3014	20.3		Yakima	Little Naches River
	2013	3019	7.6		Yakima	Little Naches River
	2014	3012	6.6		Yakima	Little Naches River
	2015	3026	0		Yakima	Little Naches River
	2015	3004	0		Yakima	Little Naches River
	2015	6030	0		Yakima	Little Naches River
	2016	3008	2.6		Yakima	Little Naches River
	2017				Yakima	Little Naches River
	2018	3042	12.3		Yakima	Little Naches River
	2019	3006	*		Yakima	Little Naches River
Wilson Creek	2008	3000	11.4		Yakima	Wilson Creek
	2009	3007	15.5		Yakima	Wilson Creek
	2010	3050	12.1		Yakima	Wilson Creek
	2011	3008	13.8		Yakima	Wilson Creek
	2012	3020	11.2		Yakima	Wilson Creek
	2013	1518	4.9		Yakima	Above Buried Section
	2013	1502	10.2		Yakima	Below Buried Section
	2014	3024			Yakima	Wilson Creek
	2015	3027	8.2		Yakima	Wilson Creek
	2016	3011	7.1		Yakima	Wilson Creek
	2017		11.6		Yakima	Wilson Creek
	2018	3019	48.5		Yakima	Wilson Creek
	2019	6082	2.14	0.87	Yakima	Wilson Creek
Swauk Creek	2018	3024	2.85		Yakima	Swauk Creek
	2019	3041	0.13	75.5	Yakima	Swauk Creek

D. Effect of river flow and release month on survival rate

One of the objectives of these monitoring efforts was to evaluate the effects of river flow on outmigration survival rate, and to determine whether the effect differed as a function of release month (February, March and April). Data showed that the average river flow measured below Prosser Dam during April of 2019 was approximately 4,444 cubic feet per second (cfs), which was higher than the average flow in April 2015 but slightly lower than the average April flows in both 2016 and 2017 (Figure 12, table 12). In general the river flow from June to September (2015-2019) was considerably lower (800 cfs) than April and May observations. Summer flow below Prosser Dam is maintained by reservoir releases to protect aquatic life, but target flows can vary according to how much water remains in storage.

Figure 12. Average daily Yakima River flow (cfs; blue line) and 20-day average flow (smoothed yellow line) measured near Prosser Dam from January to December (2015-2019). The boxes (red border) highlight the time period when fish were being released at different locations.

Table 12. Average monthly Yakima River flow (cfs) measured below Prosser Dam (gauging station YRPW).

	Month											
Year	1	2	3	4	5	6	7	8	9	10	11	12
2015	4793	4420	2523	1043	895	420	387	526	581	892	3549	5237
2016	2632	8603	7982	8600	3437	983	822	519	517	2086	2582	1920
2017	1696	3460	9492	8778	6959	2697	640	666	657	1463	3585	2434
2018	3038	4138	2632	5183	6183	994	574	604	542	1054	1489	1775
2019	1389	1536	3066	4444	1860	563	560	749	568	1041	1458	2122

A CJS model was used to evaluate the effect of river flows on outmigration survival rate as a function of release month (February, March and April). Among several candidate models considered (Table 13), the model with river flow and release month was the most parsimonious (Table 13); the best competing model was $\varphi(\sim$ Dam:Year:month + RF $)$ p $(\sim$ Dam:Year:month + RF $)$. Based on the best CJS models that included river flow and release months as covariates (the model with the lowest QAICs), we observed a positive correlation between flow and survival rate (survival increased as flow increased) for all months (February, March or April). The highest survival rate was found for the March release group, followed by April releases, and lastly February releases (Figure 12). Since Prosser was the only location with releases in each month, we could not compare the effect of release time (months) for all release groups across all locations. Survival rates among years at the Prosser location (See Figure 13) were highest for the March release groups. However, the sample size for February releases was comparatively small (4% of total releases) compared to March releases (45\%) and April releases (51\%).

Table 13. Candidate CJS mark-recapture models to determine the effect of river flow and release months for the survival parameter (φ); various effects were modelled for φ using release time ("month") and river flow ("RF").

Model	npar	AICc	DeltaAICc	weight	Deviance
φ (\sim Dam:Year:month + RF) p(\sim Dam:Year:month				0	1
+ RF)	33	42603.7	42537.68		
φ (\sim Dam:Year:month + RF) p(\sim Dam:Year:month $)$	28	42714.26	110.5628	0	42658.24
φ (Dam:Year:month) p(\sim Dam:Year:month + RF)	30	42721.47	117.7702	0	42661.45
φ (\sim Dam:Year) p $(\sim$ Dam:Year:month + RF)	26	42764.69	160.9906	0	42712.67
φ (Dam:Year:month + RF) p(\sim Dam:Year $)$	26	42775.92	172.2206	0	42723.9

φ (\sim Year) p(\sim Dam:Year:month + RF)	23	42780.35	176.6486	0	42734.34
φ (\sim Dam:month) p(\sim Dam:Year:month + RF)	24	42795.42	191.7175	0	42747.4
φ (\sim month) p (\sim Dam:Year:month + RF)	22	42806.06	202.3587	0	42762.05
φ (\sim Dam:Year:month) p(\sim Dam:Year:month)	29	42815.02	211.323	0	0.010578
$\varphi(\sim 1) \mathrm{p}(\sim$ Dam:Year:month + RF)	22	42831.59	227.8967	0	42787.58
φ (\sim Dam:Year) p (\sim Dam:Year:month $)$	25	42833.76	230.0655	0	26.75751
φ (\sim Year) $\mathrm{p}(\sim$ Dam:Year:month)	23	42838.45	234.7506	0	35.4445
φ (\sim Dam:Year:month) p \sim Dam:Year)	24	42845.87	242.1765	0	40.86887
φ (\sim month $\mathrm{p}(\sim$ Dam:Year:month)	21	42849.89	246.1888	0	50.88375
φ (\sim Dam:month) p(\sim Dam:Year:month)	23	42852.19	248.4916	0	49.18517
φ (\sim Dam:Year:month) p(\sim Dam:month + RF)	22	42855.15	251.4557	0	42811.14
$\varphi(\sim 1) \mathrm{p}(\sim$ Dam:Year:month)	20	42857.66	253.9599	0	60.65647
φ (\sim Dam:Year:month + RF) p \sim Dam:month $)$	24	42900.19	296.4955	0	42852.18
φ (\sim Dam:Year:month) p(\sim Dam:month)	23	42928.04	324.3406	0	125.034
$\varphi(\sim$ Dam:Year:month + RF) p(\sim Year $)$	21	42941.03	337.3348	0	42899.02
$\varphi(\sim$ Dam:Year:month + RF)p(\sim Dam:month + RF)	24	42992.33	388.6335	0	42944.32
φ (\sim Dam:Year:month) p (\sim Year $)$	20	43006.32	402.6239	0	209.3206
φ (\sim Dam:month) p(\sim Dam:Year)	15	43014.78	411.0783	0	227.7785
$\varphi(\sim$ Dam:Year:month + RF) $\mathrm{p}(\sim$ month $)$	19	43040.51	436.8111	0	43002.5
$\varphi(\sim$ Dam:Year:month + RF) $\mathrm{p}(\sim 1)$	18	43044.37	440.6704	0	43008.36
φ (\sim Dam:Year:month) p (\sim month $)$	19	43063.51	459.8111	0	268.5083
φ (\sim Dam:Year:month) p($\sim 1)$	17	43066.74	463.0397	0	275.7383
φ (\sim Dam:Year) p \sim Dam:month + RF)	16	43067.23	463.535	0	43035.23
φ (\sim Dam:Year) p(\sim Dam:month)	15	43069.94	466.2403	0	282.9405
φ (\sim month) p (\sim Dam:Year)	13	43078.75	475.0572	0	295.7578
φ (\sim Dam:Year) p(\sim Dam:Year $)$	15	43101.07	497.3733	0	314.0731
φ (\sim Year) p(\sim Dam:Year	13	43103.98	500.2792	0	320.98
$\varphi(\sim 1) \mathrm{p}(\sim$ Dam:Year $)$	11	43125.45	521.7532	0	346.4547
φ (\sim Year) p(\sim Dam:month + RF)	11	43170.22	566.5222	0	43148.22
φ (\sim Dam:Year) p (\sim Year	12	43203.23	599.5307	0	422.2322
φ (\sim Dam:month) p(\sim Dam:month + RF)	11	43213.21	609.5172	0	43191.21
φ (\sim month $\mathrm{p}(\sim$ Dam:month +RF$)$	8	43220.8	617.102	0	43204.8
φ (\sim Dam:month) p(\sim Year	10	43239.25	635.5477	0	462.2504
$\varphi(\sim$ Dam:Year $) \mathrm{p}(\sim$ month $)$	10	43248.02	644.3197	0	471.0224
$\varphi(\sim$ Dam:Year $\mathrm{p}(\sim 1)$	8	43267.73	664.028	0	494.7308
$\varphi(\sim 1) \mathrm{p}(\sim$ Dam:month +RF$)$	8	43334.54	730.845	0	43318.54
φ (\sim Year) p (\sim Dam:month $)$	11	43466.9	863.2032	0	687.9055
φ (\sim Year) p \sim Y Year $)$	7	43765.53	1161.832	0	994.535
φ (\sim month $\mathrm{p}(\sim$ Dam:month $)$	8	43789.05	1185.355	0	1016.058
$\varphi(\sim$ Dam:month $\mathrm{p}(\sim$ Dam:month $)$	9	43789.53	1185.828	0	1014.531
$\varphi(\sim 1) \mathrm{p}(\sim$ Dam:month $)$	6	43792.22	1188.525	0	1023.229
φ (\sim Dam:month) p(\sim month $)$	8	43805.27	1201.575	0	1032.278
$\varphi(\sim$ Dam:month $\mathrm{p}(\sim 1)$	6	43807.19	1203.488	0	1038.192

$\varphi(\sim$ month $) \mathrm{p}(\sim$ Year $)$	8	43881.11	1277.415	0	1108.118
$\varphi(\sim 1) \mathrm{p}(\sim$ Year $)$	6	43916.16	1312.466	0	1147.17
$\varphi(\sim$ Year $) \mathrm{p}(\sim$ month $)$	8	44147.57	1543.868	0	1374.571
$\varphi(\sim$ Year $) \mathrm{p}(\sim 1)$	6	44173.49	1569.795	0	1404.5
$\varphi(\sim$ month $) \mathrm{p}(\sim$ month $)$	6	44490.14	1886.443	0	1721.147
$\varphi(\sim$ month $) \mathrm{p}(\sim 1)$	4	44508.87	1905.168	0	1743.872
$\varphi(\sim 1) \mathrm{p}(\sim$ month $)$	4	44531.67	1927.97	0	1766.674
$\varphi(\sim 1) \mathrm{p}(\sim 1)$	2	44555.56	1951.867	0	1794.571

Figure 13. The relationship between survival probability (Release location to McNary Dam) and the river flow at Prosser Dam for the smolt release groups each month. The relationship was devolved using the last five years smolt PIT-tag data (2015-2019).

E. Effect of release month on parr survival rate

Parr were released at the different locations from May to October (Table 14, Figure 14). Survival from release to downstream detection at McNary Dam (outmigration years 2015-2019) was highest
among parr released in August ($14 \% \pm 0.020$), followed by parr releases in July ($3.1 \% \pm 0.40$) and June ($1 \% \pm 0.4$). Lower survival rates for groups released in May and June are likely due to mortality associated with longer exposure to summer conditions. Water temperature increases in most river sections during summer while parr are rearing. In the summertime, coho salmon fry reportedly prefer water temperatures of $50^{\circ} \mathrm{F}$ to $59^{\circ} \mathrm{F}\left(10^{\circ} \mathrm{C}\right.$ to $15^{\circ} \mathrm{C}$; Reiser and Bjornn 1979), while higher temperatures may cause greater mortality in the parr life stage.

Table 14. Total number of PIT-tagged parr released among the different locations in the Yakima Basin, and survival rate (to McNary Dam) for each migration year from 2015-2019.

	Parr release months and number of parr with PIT Tags				
Migration Year	May	June	July	August	October
2015	1349	27262	0	0	0
2016	1648	0	24167	0	0
2018	0	0	0	21244	0
2019	0	0	39837	0	1438
Total released parr with PIT tagged	2997	27262	64004	21244	1438
	0.7	1.0	3.10	14.0	0.00
Survival rate \pm SE	± 0.05	± 0.04	± 0.4	± 2.20	± 0.00

Figure 14. Survival probability (release location-downstream to McNary Dam) of parr released in February, March and April. The relationship was built using tag detections in the last five migration years (2015-2019).

4. Acknowledgment

We thank all of the crews whose collective fish-tagging efforts over the years made this study possible. We are also grateful to Andrew Matala and David Lind who reviewed, edited and provided valuable comments in the draft report. We would also like to thank Daylen Isaac who provided the hydrological data.

5. References

Berg, L. and Fast, D. 2001. Yakima Subbasin Summary. Prepared for the Northwest Power Planning Council. August 3, 2001.

Bradford, M.J., R.A. Myers, and J.R. Irvine. 2000.Reference points for coho salmon (Oncorhynchus kisutch) harvest rates and escapement goals based on freshwater production. Canadian Journal of Fisheries and Aquatic Sciences 57:677-686.

Chapman, D.W. 1986. Salmon and steelhead abundance in the Columbia River in the nineteenth century. Transactions of the American Fisheries Society 115:662-670.

Conner, M. M., S. N. Bennett, W. C. Saunders, and N. Bouwes. 2015. Comparison of tributary survival estimates of steelhead using Cormack-Jolly-Seber and Barker models: Implications for sampling effort and designs. Transactions of the American Fisheries Society, 144:1, 34-47.

Davidson, F.A. and S.J. Hutchinson. 1938. The geographic and environmental limitations of the Pacific salmon (genus Oncorhynchus). Bulletin Bureau of Fisheries (U.S.) 48:667-692.

Dunnigan, J. L., W. J. Bosch, and J. D. Hubble. 2002. Preliminary results of an effort to reintroduce coho salmon in the Yakima River, Washington. Pp. 53-75 in "Hatchery Reform: the Science and the Practice", Proceedings of the International Congress on the Biology of Fish, July, 2002, Don MacKinlay, editor, 555 West Hastings St., Vancouver BC V6B 5G3 Canada.

Fulton, L.A. 1970. Spawning areas and abundance of steelhead trout and coho, sockeye, and chum salmon in the Columbia River Basin-past and present. United States Fish and Wildlife Service. Special scientific report-Fisheries Number 618. Washington, D.C.

Haeseker, S. L., J. A. McCann, J. Tuomikoski, and B. Chockley. 2012. Assessing freshwater and marine environmental influences on life-stage-specific survival rates of Snake River springsummer Chinook Salmon and steelhead. Transactions of the American Fisheries Society 141:121-138.

Haring, D. 2001. Habitat limiting factors in the Yakima River Watershed WRIAs 37-39 final report. Washington State Conservation Commission, Olympia, Washington. 364 pp.

Hassler, T. J. 1987. Species profiles: life histories and environmental requirements of coastal fishes and invertebrates (Pacific Southwest): coho salmon. United States Fish and Wildlife Service, National Wetlands Research Center. Biological Report 82(11.70).

Jones, K.K. and K.M.S. Moore. 1999. Habitat Assessment in coastal Basins in Oregon: Implications For Coho Salmon Production and Habitat Restoration. 329-340. In Knudsen, E. E., C. R. Steward, D. D. MacDonald, J. E. Williams, and D. W. Reiser. Sustainable Fisheries Management: Pacific Salmon. Lewis Publishers, Boca Raton.

Kreeger, K.E., and W.J. McNeil. 1993. Summary and estimation of the historic run-sizes of anadromous salmonids in the Columbia and Yakima rivers. Prepared for Yakima River Basin Coalition, Yakima, WA.

Laake, J. (2019) 'RMark: an R interface for analysis of capture-recapture data with MARK'. Seattle WA: US Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Alaska Fisheries Science Center.

Lebreton, J. D., K. P. Burnham, J. Clobert, and D. R. Anderson. 1992. Modeling survival and testing biological hypotheses using marked animals: a unified approach with case studies. Ecological Monographs 62:67-118.
Moyle, P. B.2002. Inland Fishes of California. Berkeley: University of California Press.
Neeley, D. 2012. Prosser-Passage Estimation Issues. Appendix F in Sampson, Fast, and Bosch, Yakima/Klickitat Fisheries Project Monitoring and Evaluation, Final Report for the Performance Period May 1, 2011 through April 30, 2012. Yakama Fisheries, Toppenish, WA.
Petrosky, C. E., and H. A. Schaller. 2010. Influence of river conditions during seaward migration and ocean conditions on survival rates of Snake River Chinook Salmon and steelhead. Ecology of Freshwater Fish 19:520-536

R Core Team. 2020. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Available: https://www.R-project.org/.
Raymond, H. L. 1968. Migration rates of yearling chinook salmon in relation to flows and impoundments in the Columbia and Snake Rivers. Transactions of the American Fisheries Society 97(4): 356-359.
Reeves, G.H., F.H. Everest, and T.E. Nickelson. 1989.Identification of Physical Habitats Limiting the Production of Coho Salmon in Western Oregon and Washington. Gen. Tech. Rep. PNW-GTR-245. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. 18 p .

Reiser, D. W. and T. C. Bjornn. 1979. Influence of Forest and Rangeland Management of Anadromous Fish Habitat in Western North America- Habitat Requirements of Anadromous Salmonids. USDA Forest Service General Technical Report PNW-96.

Sandercock, F.K. 1991.Life History of Coho Salmon. In Groot, C. and L. Margolis (Eds.). Pacific Salmon Life Histories. UBC Press, Vancouver. 564 p.
Scheuerell, M. D., R. W. Zabel, and B. P. Sandford. 2009. Relating juvenile migration timing and survival to adulthood in two species of threatened Pacific salmon (Oncorhynchus spp.). Journal of Applied Ecology 46:983-990.
Thompson, K. 1972.Determining stream flows for fish life. Pages 31-50 in Proceedings, Instream flow requirements workshop. Pacific Northwest River Basins Commission. Vancouver, Washington.

Tiffan KF, Kock TJ, Haskell CA, Connor WP, Steinhorst RK (2009) Water velocity, Turbulence, and Migration Rate of Subyearling Fall Chinook Salmon in the Free-Flowing and Impounded Snake River. Trans Am Fish Soc 138:373-384.

Tuck, R.L. 1995.Impacts of Irrigation Development on Anadromous Fish in the Yakima River Basin, Washington. M.S. Thesis, Central Washington University, Ellensburg. 246 p.

Tuomikoski, J., J. McCann, B. Chockley, H. Schaller, S. Haeseker, J. Fryer, R. Lessard, C. Petrosky, E. Tinus, T. Dalton, and R. Ehlke. 2013. Comparative survival study (CSS) of PIT-tagged spring

White, G. C., and K. P. Burnham. Program MARK: survival estimation from populations of marked animals. Bird Study 46(Supplement): 120—138.

Williams, J. G. 2006. Central Valley salmon: a perspective on Chinook and steelhead in the Central Valley of California. San Francisco Estuary and Watershed Science [online serial] 4(3): article 2.

Wydoski, R.S. and R.R. Whitney 2003. Inland Fishes of Washington. University of Washington Press. 322 pp. Seattle WA.

Appendix F

Juvenile Outmigration Survival study of Yakima Basin Summer Chinook Smolts to Prosser and McNary Dams, 2009-2019

Prepared by:
Shubha Pandit (Ph.D.), Melinda Davis, Bill Bosch \& Mark Johnston
Yakama Nation Fisheries
P.O. Box 151, Toppenish, WA 98948, USA

August 05, 2020

TABLE OF CONTENTS

EXECUTIVE SUMMARY 3

1. INTRODUCTION 7
2. METHODOLOGY 9
2.1. GEOGRAPHICAL DISTRIBUTION: HISTORICAL AND CURRENT 9
2.2. BROOD STOCKS AND FISH DATA 10
2.3. STATISTICAL ANALYSES 14
2.3.1. Survival and Detection Probability 14
2.3.2. RELATIONSHIP BETWEEN ANNUAL SURVIVAL RATE AND RIVER FLOW 15
2.3.3. RELATIONSHIP BETWEEN SURVIVAL RATE, RELEASE MONTH AND FISH SIZE 15
2.3.4. TRAVEL TIME AND RATE OF MIGRATION OR RATE OF TRAVEL 16
3.0. RESULTS AND DISCUSSION 16
3.1. FISH LENGTH 16
3.2. Detection Probabilities at McNary and Prosser 17
3.3. JuVENILE RELEASE-MCNARY SURVIVAL RATE 19
3.3.1. ANNUAL JUVENILE RELEASE-MCNARY SURVIVAL RATE AND ITS TEMPORAL TREND 19
3.3.2. SURVIVAL RATE AMONG RELEASE LOCATIONS AND RELEASE PERIODS 22
3.3.3. COMPARISONS OF SURVIVAL RATES FROM RELEASE TO PROSSER AND FROM RELEASE TO McNary 25
3.3.4. EFFECT OF RELEASE PERIOD AND FISH SIZE ON SURVIVAL 26
3.4. TRAVEL TIME OR RATE OF MIGRATION 27
3. ACKNOWLEDGMENT 28
4. REFERENCE 28

Executive Summary

Summer-run Chinook salmon were once widely distributed in the Yakima River basin but were extirpated by the 1970s. Since 2009, building on habitat, passage and instream flow restoration efforts, the Yakama Nation has been implementing a reintroduction program, in which summer chinook eggs are brought from Upper Columbia Basin hatcheries to the Yakama Nation's Marion Drain Hatchery for fertilization, incubation and rearing. Subyearling/presmolts are moved from the hatchery to permanent and mobile acclimation sites upriver for release as smolts into different areas of the Yakima basin. Diverse release strategies, such as releasing from different locations and experimenting with different release dates, have been utilized to maximize the likelihood of achieving stable and abundant returns of natural-origin Summer Chinook to the Yakima River basin and to enhance the stability and resiliency of the population against potential environmental changes.

In 2019 a total of 806,000 subyearling Summer Chinook were released, with 41,143 (about 5% of the total release) tagged for monitoring purposes, especially to evaluate juvenile survival rates and release strategies. This evaluation is an update of ongoing annual monitoring that was initiated with the first reintroductions in 2009. The main objectives of the study are to estimate survival rate of the fish released from each location in the Yakima Basin in 2019 and compare the results with previous years' results to evaluate success and discern trends. We further evaluate whether juvenile survival rate is higher in one release location than other or whether the survival rate is a function of release location, release year and month, river flow, size of released fish, or interactions among variables. For data collected in prior years (2009 through 2018), a logistic regression model (Neeley 2012) was used to estimate survival. For the 2019 releases, survival probability from the release locations to downstream dams and detection rate at Prosser and McNary Dams were estimated using the Cormack-Jolly-Seber (CJS) mark-recapture model, along with other statistical analysis of travel time and the effect of river flow to answer the following research questions:

- What was the detection rate of juvenile summer chinook at Prosser Dam and McNary Dam, and do the detection rates vary by year? If there is an annual variation in the rate of detection, what factors cause this variability?

The average rate of detection at McNary Dam for the 2019 PIT-tag release was found to be 7.22% ($\pm 1.36 \%$); whereas the detection for the fish at Prosser Dam was 43.75% ($\pm 6.23 \%)$. Over the years 2009-2019, detection rate varied, and was lowest in 2015, due to poor river conditions in that year.

Annual variation can be due to many factors besides river conditions, such as what proportion of fish pass dams via juvenile bypass systems where detectors are installed. As spill has been increased to improve survival of juvenile fish passing dams within the Federal Columbia River Power System, a lower proportion of outmigrants enter juvenile bypass systems where PIT tags can be detected, and variations in spill percentage can make the detection rate vary among years or even from day to day.

- What was the juvenile survival rate from the release sites to McNary Dam of each of the groups released to different streams during 2019?

In 2019, the overall juvenile outmigration survival rates from release to Prosser Dam and from Prosser to McNary Dam were $44.8 \% \pm 4.0$ and $16.9 \% \pm 3.3$, respectively, so that survival rate of the Summer Chinook in 2019 from the release to McNary was $7.6 \% \pm 1.3 \%$. Fish were released at four locations in 2019, and survival rates varied among release locations, ranging from $38.7 \% \pm 2.9 \%$ to Prosser for the group that was released at Roza, to $0.15 \% \pm 0.14 \%$ to Prosser for the Wapatox release group. Among the releases of these four locations, highest survival rate from the released locations to McNary Dam was $17.9 \% \pm 3.7 \%$ for the group released just below Prosser Dam, the second highest was for the group released at Roza Dam ($11.0 \% \pm 4.2 \%$), followed by the Buckskin Slough group at $2.3 \% \pm 2.1 \%$. There were no detections of the Wapatox group at or below McNary Dam, thus no survival rate for that group.

- Did the survival rate vary by year from 2009 through 2019, and among the groups released in different locations?

Survival rates varied by year over the period from 2009 through 2019. The highest average annual survival rate was in $2011(40.15 \% \pm 1.94 \%)$ and the lowest was in $2015(0.73 \% \pm 0.47 \%)$. For 2019, the average survival rate from the combined release locations to McNary Dam was $7.22 \% \pm 1.35 \%$, which was higher than 2018's overall survival rate ($2.58 \% \pm 0.41 \%$).

Overall survival rates for the period 2009 through 2019 varied among release locations as well. The highest survival rate from release to McNary Dam was for the group released from Stiles Pond ($20.3 \% \pm 11.03 \%$) and the second highest survival rate was for the Buckskin Slough group (19.2% $\pm 6.81 \%)$. The lowest survival rate was for the group released from Wapatox Dam ($0.15 \% \pm 0.14 \%$).

- If survival rates varied by year, was the variation in survival rate correlated with variation in river flow?

Yes, the relationship between the average of May and June river flow measured below Prosser Dam and the annual survival rate (release location to McNary Dam from 2009 through 2019 was strong and statistically significant $\left(\mathrm{r}^{2}=0.45, \mathrm{p}=0.03\right)$ indicating that survival rate was a function of river flow in May and June. Higher flow in these months results in higher survival of juvenile Summer Chinook outmigrants.

- With smolts released in different months (April, May and June) to increase temporal distribution, was fish size different for different release dates? What was the effect of fish size and release month on survival rate from the release sites to Prosser Dam, and from Prosser Dam to McNary Dam?

There was an interaction effect between release periods (April, May and June) and fish size (fork length) on the juvenile survival rate for both segments (release site to Prosser Dam; and Prosser Dam to McNary Dam). Release period affected survival of small fish from release to Prosser Dam more than survival of large fish through the same reach. From Prosser to McNary Dam, the relationship of size to survival rate was similar for April and May releases, but release in June depressed the Prosser-to-McNary survival rate over the entire range of fish sizes.

- Did fish released earlier (April) enter the Columbia River estuary earlier (based on detections at Bonneville Dam) than fish released later (June), or did earlier outmigrants travel slower in order to prepare physiologically for saltwater, so that all groups entered the estuary near the same time regardless of when they were released?

The Summer Chinook releases generally exhibited immediate outmigration behavior after release, regardless of release date, but later outmigrants showed greater urgency. Travel days from Prosser Dam to Bonneville Dam for the groups released in April were 73.08 ± 37.77 days, whereas the fish released in June took only 32.70 ± 9.89 days to reach Bonneville Dam.

- What was the rate of rate of travel from Prosser Dam to Bonneville Dam of the groups released in April, May and June?

The rate of travel to Bonneville Dam was $7.19 \mathrm{~km} /$ day for the group released in April, but the rate of travel more than doubled ($16.64 \mathrm{~km} /$ day) for the group released in June. This indicates that fish released earlier spent more time in the mainstem in order to go through the series of physiological and morphological changes that allow for a transition to life in salt water. The study suggests that regardless of when they were released, the Summer Chinook seemed to enter the ocean at nearly the same time, although outmigration survival rate was higher for the early release.

1. Introduction

The Summer Chinook (Oncorhynchus tshanytscha) is one of the three historical chinook runs in the Yakima River basin. Adults of the summer run first enter the Yakima River from the ocean in June, and the remainder of the summer run is shaped by flow and temperature in the lower Yakima River, which is strongly influenced by irrigation withdrawals and return flow. Unfavorable conditions can delay entry of the latter part of the summer run from the Columbia River until near the fall spawning season. Juvenile Summer Chinook typically leave the Yakima River from late spring to early summer of the year after spawning. Summer Chinook were once widely distributed in the Yakima and Naches rivers (Figure 1) but were extirpated from the Yakima basin by 1970. For decades, several programs such as habitat restoration and species reintroduction were implemented in the Yakima River. With improving spawning and rearing habitat conditions made possible by habitat and instream flow restoration, with improved juvenile and adult passage in the mainstem Columbia River, and with improved ocean conditions, reintroduced adult summer chinook, along with supplemented fall chinook, are returning to the Yakima basin. Annual abundance of summer/fall Chinook at Prosser Dam on the lower Yakima River has increased from an average of just over 1000 fish from 1983 through 1999 to over 4,300 fish on average during the period 20002018). We have successfully achieved some level of natural production and local adaptation, however it is still unstable.

Based on 2009-2019 release data, an annual average of 238,629 Summer Chinook juveniles were released in the Yakima basin (Table 1). Usually each year, eggs of the species are brought either from the Entiat or Wells hatchery (Entiat and Wells stocks) to the Yakama Nation's Prosser Hatchery for fertilization, incubation and rearing through the fall and winter. The following spring, subyearlings are moved to the acclimation sites upriver and are released directly from permanent acclimation sites on the Yakima and Naches rivers or from temporary mobile acclimation facilities operated on smaller tributary streams. Several release strategies have been utilized to maximize the likelihood of achieving stable and abundant returns of natural-origin Summer Chinook to the Yakima River and to enhance the stability and resiliency of the population against potential environmental changes. The strategies include releasing the juveniles into different tributaries (spatial variation) and also different months (temporal variation). Whether one release strategy performs better than other
strategies in terms of juvenile survival and smolt-to-adult return (SAR) are fundamental questions in determining whether species management and production goals are being reached.

On average each year about 12% of the total release is PIT-tagged as part of an ongoing, long-term monitoring program to help improve project objectives and strategies by applying what is learned from experimentation, monitoring, evaluation and literature reviews as an adaptive management framework. This evaluation is an update of ongoing annual monitoring that began with the first reintroductions in 2009.

In general juvenile survival rate often vary by seasons and years. This variation can be associated with rearing history and environmental conditions. For example, Zabel and Achord (2004) found that juvenile survival rate of wild salmonids was related to fish size (fork length), with larger juveniles having higher downstream survival. Similarly, survival rate increases as river flow increases. Although the Yakima River is highly controlled by storage reservoirs and irrigation and hydropower withdrawals, there is still a large variation in the flow pattern within and across years, which can affect the survival rate of juvenile salmon. Even the ocean-type summer and fall chinook, which naturally outmigrate from Columbia River tributaries in late spring and early summer, can be harmed by rising water temperature as they attempt to leave the Yakima Basin. Based on the effect of temperature, one can postulate that survival rate should be lower if the fish are released in later months, e.g. June, than fish released as early as April. However, individuals released earlier are likely to be smaller than fish released later and closer to natural outmigration timing. There may be an interaction between fish size and release timing on survival, but that has not been explored so far in the previous studies.

The primary objectives of the study are to explore the effect of release date and fish size on survival. More specifically, our objectives are to determine the survival rate from release sites to Prosser Dam or McNary Dam of groups released at different locations in the Yakima Basin during 2019; and understand how other factors (fish size and release date) affect juvenile survival rates using the last 10 years' data (2010-2009). The information is critical for recovery of depressed Chinook stocks.

To achieve these objectives, we focused on the following research questions:

- What was the detection rate of juvenile summer chinook at Prosser Dam and McNary Dam, and do the detection rates vary by year? If there is an annual variation in the rate of detection,
what factors cause this variability?
- What was the juvenile survival rate from the release sites to McNary Dam of each of the groups released to different streams during 2019?
- Did the survival rate vary by year from 2009 through 2019, and among the groups released in different locations?
- If survival rates varied by year, was the variation in survival rate correlated with variation in river flow?
- With smolts released in different months (April, May and June) to increase temporal distribution, was fish size different for different release dates? What was the effect of fish size and release month on survival rate from the release sites to Prosser Dam, and from Prosser Dam to McNary Dam?
- Did fish released earlier (April) enter the Columbia River estuary earlier (based on detections at Bonneville Dam) than fish released later (June), or did earlier outmigrants travel slower in order to prepare physiologically for saltwater, so that all groups entered the estuary near the same time regardless of when they were released?
- What was the rate of rate of travel from Prosser Dam to Bonneville Dam of the groups released in April, May and June?

2. Methodology

2.1. Geographical distribution: historical and current

Chinook (spring, summer, and fall runs) were native to the Yakima River basin and their historical spawning area was quite widespread in the basin (Figure 1A) but their spawning area has been reduced (Figure 1B). A major objective of the summer-run Chinook reintroduction program, begun in 2009, is to re-establish spawning in the primary historical spawning areas for this run, which are upstream of Wapato Dam to the Yakima River canyon above Roza Dam and from the confluence of the Tieton and Naches Rivers (Figure 1C). The uppermost acclimation and release sites designated in the reintroduction program were located to facilitate adult homing throughout this historical geographical distribution, while the lower sites (Marion Drain downstream to the river mouth) were chosen to maximize survival rates and improve opportunities to collect returning adults as we work to establish a localized brood source (Figure 1D).

Figure 1. Historical (A) and current (B) Summer Chinook spawning area; and the locations/tributaries/river segments where Summer Chinook juveniles were introduced from 2009 through 2019.

2.2. Brood stocks and fish data

Every year, eggs of summer Chinook have been brought to Yakima basin either from the Wells Hatchery which is located in Pateros, WA (especially for the years from 2008-2019) or Entiat Hatchery (2018-2019) or Wenatchee Stock from Eastbank Hatchery (2010) (See Figure 2). The adult fish were spawned at either Wells or Entiat; and green eggs and milt were transferred to the YN Prosser Hatchery for fertilization, incubation and rearing. Presmolt subyearling juveniles were
moved to five acclimation sites upriver (Stiles Pond, Buckskin Slough, Marion Drain, Roza Dam and Wapatox Diversion).

On average 32,570 juvenile Summer Chinook were PIT-tagged per year (the range was 49,894 in 2011 to 17,539 in 2017) prior to release between April and June (Figure 2), directly from the acclimation sites listed above or from temporary mobile acclimation facilities operated in upstream locations in tributary streams of the Naches and Yakima rivers (Table 2, Figure 1.D). In 2019, a total of 806,000 subyearling summer Chinook were released from the Buckskin, Roza and Wapatox sites, along with a group released directly from Prosser Hatchery, including 41,152 fish with PITtags (Table 1), all within a week between May $13^{\text {th }}$ and May $19^{\text {th }}, 2019$ (Figure 2).

Table 1. Total release of Summer-Chinook run (with and Without PIT-tags) and the percentage of PIT-tag. Total release by released location can be found figure 2.

	Total Release		
Year	Total release (with \& without PIT-tag)	With PIT-tag	PIT-tag Percentage (\%)
2009	180,911	30,045	16.61
2010	200,747	29,997	14.94
2011	215,770	49,893	23.12
2012	197,103	29,996	15.22
2013	136,563	40,507	29.66
2014	254,881	30,278	11.88
2015	277,448	34,457	12.42
2016	37,000	37,000	100.00
2017	244,499	34,826	14.24
2018	74,000	30,131	40.72
2019	806,000	41,143	5.10
Average	238,629	35,298	26%

All regional PIT tag detection data including release and detection history are available in the PTAGIS database maintained by the Pacific States Marine Fisheries Commission. We queried

PTAGIS (https://www.ptagis.org/) in April 2020 to retrieve available PIT-tag detection information for all Summer Chinook juveniles released in the Yakima Basin from 2010 through 2019 (Table 2). For each fish with a PIT-tag code, we constructed a detection history, or record indicating all detection locations and whether the tagged fish was detected or not detected at each juvenile detection site, focusing on Prosser, McNary, John Day and Bonneville dams (PRO, MCJ, JDJ, B2J, BCC), and by the Estuary Towed Experimental Array (TWX).

Figure 2. Number of released subyearling Summer Chinook with and without PITtags from 2009 through 2019 at different acclimation sites (Marion Drain Hatchery, Nelson Springs, Prosser Hatchery, Roza Dam, Stiles Pond and Wapatox Diversion) color-coded by broodstock (WENN, WELL/ENT and WELL). The blue, red and gray boxes represent the "Wenatchee Hatchery Stock (WENN)", "either Wells Hatchery (WELL) stock or from Eastbank Hatchery (ENT) [WELL/ENT]", and "Wells Hatchery Stock (WELL)", respectively. The value in each plot is the number of fish that was released with (green colour) or without PIT-tags (red colour).

Table 2. The number of PIT-tagged subyearling Summer Chinook released at the different locations and dates (Early, Mid and Late) from release years 2009 through 2019. Note: Fish have usually been released during April, May and June every year. Releases on or before May 10, May 11 through May 25; and after May 25 are represented as Early, Mid and Late release periods, respectively.

	Stiles	Buckskin		Marion	Roza			Prosser		Yakima Mouth Early	$\frac{\text { Wapatox }}{\text { Mid }}$	Total
Year	Mid Late	Early	Mid Late	Mid	Early	Mid	Late	Early	Mid			
2009	$30037^{\text {a }}$											30,037
2010	29865a											29,865
2011	$20000^{\text {b }}$	$29894^{\text {a }}$										49,894
2012			9999 a	9998 ${ }^{\text {a }}$					9999a			29,996
2013			15065 ${ }^{\text {a }}$				$1490{ }^{\text {a }}$					29,972
2014			10086a $10102^{\text {a }}$				10042a					30,230
2015			$10266^{\text {a }}$		10012a	$9520{ }^{\text {a }}$		4031a				33,829
2016										$35619^{\text {a }}$		35,619
2017						$15026^{\text {a }}$			2513a			17,539
2018						15082a					15048 ${ }^{\text {a }}$	30,130
2019			$10365^{\text {c }}$			$10266^{\text {c }}$			$10266^{\text {c }}$		$10266^{\text {c }}$	41,163

$\mathrm{a}=$ Wells Hatchery, $\mathrm{b}=$ Wenatchee stock, $\mathrm{c}=$ either from Wells Hatchery or from Entiat Hatchery Stock.

2.3. Statistical analyses

2.3.1. Survival and Detection Probability

The juvenile survival probability (Juvenile to Prosser and McNary) was estimated for each release (four locations and three release dates), for each release year from 2009 through 2019. We estimated the average annual survival rate by pooling the data for each year. For releases from 2009 through 2018 a logistic regression model Neeley 2012) was used to estimate survival. Beginning in 2019 and in this report, survival probability from release locations to downstream detection at McNary Dam and the detection rate of PIT-tagged Summer Chinook smolts at Prosser and McNary dams were estimated using the Cormack-Jolly-Seber (CJS) mark-recapture model (see, White and Burnham 1999; Lebreton et al. 1992; Williams, et al. 2002, Conner et al. 2015), which has been commonly used within the Federal Columbia River Power System (FCRPS) to estimate survival rates for juvenile salmon and steelhead (Tuomikoski et al. 2013). The model uses multiple detections of individually marked fish at several dams with PIT-tag detection capabilities (i.e. antenna arrays). One of the assumptions of the CJS model is that there is no immigration or emigration during capture and recapture intervals, which is valid for discrete tag groups migrating through the hydrosystem (which involves passage at several hydroelectric dams) because fish behavior is relatively consistent
(all fish are moving in one direction and over a relatively short period; see Conner et al. 2015). All of the assumptions of the CJS models are considered to be met.

Similarly, to determine how release period (April, May and June) and fish size affect the survival rate from the release location to Prosser, and Prosser to McNary, we introduced fish size and release period as covariates in the CJS model. This CJS model was built within RMark (Laake 2019) in R, an extension of Program MARK (White and Burnham 1999). The detailed methodology is found in another study that is about Spring Chinook Salmon smolt released at Roza Dam (Appendix C).

2.3.2. Relationship between annual survival rate and river flow

Several environmental factors are known to influence downstream smolt survival, and river flow is among the most impactful (Raymond 1968; Connor et al. 2003; Tiffan et al. 2009). We therefore further evaluated whether there was a relationship between the annual survival rate and the average river flow for two summer months (May and June) measured below Prosser Dam. We chose only May and June because most of the juvenile Summer Chinook were released from the end of April $\left(29^{\text {th }}\right)$ to the first week of June $\left.\left(5^{\text {th }}\right)\right)$ from 2009 through 2019 (See Figure 2), and they usually start to migrate downstream from 2 or 3 days after release, leaving the Yakima River within 3 or 4 weeks after release. Given this timing, May and June's flow can be the most influential factor for the outmigration of this species. For the river flow data, we downloaded river flow data for the Bureau of Reclamation gaging station (YRPW) located below Prosser Dam in the Yakima River, using the Hydromet site: https://www.usbr.gov/pn/hydromet/yakima/yakwebarcread.html, which was accessed in April 2020.

2.3.3. Relationship between survival rate, release month and fish size

Among the available PIT-tagged fish, only a few had fish length information, so we selected only those tag groups with fish length information for the analysis. Fish release dates were categorized by month. As mentioned under subheading 2.3.1, we used fish length and release month as covariates in the CJS model. Using this model, the average survival rates from release location to Prosser Dam, and from Prosser to McNary Dam were estimated for release groups with different release months (April. May, June) and different average fish lengths.

2.3.4. Travel time and rate of migration or rate of travel

Travel time was estimated as the difference between the date of release or the date of detection at Prosser Dam and the date of detection at Bonneville Dam. For fish released below Prosser, we estimated travel time as the difference between the release date and the date of detection at Bonneville Dam. For fish released above Prosser Dam (PRO), travel time from Prrosser to Bonneville was estimated as the difference between the date of detection at Prosser Dam and the detection date at Bonneville Dam. We estimated travel time for each of three release months (April, May and June). Migration rate or rate of travel was calculated as length of the reach of interest (km) divided by travel time.

3.0. Results and discussion

3.1. Fish length

A total of 327,834 PIT-tagged juvenile Summer Chinook were released from 2010 through 2019, but some information such as fish size at tagging was not available in the downloaded PIT tag data. Only 42,868 had the fish size information, which was about 13% of the total PIT tagged fish released during this period. Based on the available data, the average size of the fish (fork length) at the time of tagging was 67.78 mm (See Figure 3). However, the size of the fish of the groups released in different months (March, April and May) was found to be different. Our expectation was that fish released later would be bigger than the fish released earlier, but we found that fish released in May were bigger than the fish released in June. The average fork lengths of the groups released in April, May and June were $66.98 \pm 0.115 \mathrm{~mm}, 74.17 \pm 0.06 \mathrm{~mm}$, and $61.88 \pm 0.105 \mathrm{~mm}$ at the time of tagging, respectively. Not getting the same result as we expected might be due to a number of reasons. One possible reason is that the sample sizes (N) were different among the groups released in different months. There was a very large number of lengths in the May release group $(38,874)$, whereas the June release group had only 1844 measured fish (Figure 3). It is likely the smaller sample size did not represent the actual range of sizes of the fish released in June. Another reason could be the effect of temperature. The fish released later (June) might have been brought from the hatchery, which was located in other area of the Yakima basin. The fish reared at Prosser Hatchery grow faster than the fish reared in other hatcheries in the Yakima Basin because the surface water and groundwater used to rear fish are warmer.

Figure 3. Frequency (count) by fish length (fork length, mm) at the time of tagging for all releases made in April, May and June.

3.2. Detection Probabilities at McNary and Prosser

The rate of detection of juvenile Summer Chinook at McNary Dam varied among years (Table 3). The highest detection rate of this run was in $2013(23.89 \pm 1.20 \%)$, whereas the lowest detection rate was in 2015 ($6.88 \pm 4.70 \%) .2015$ was a drought year and less water in the Yakima basin. In general, the detection rate depends upon the proportion of fish that pass dams via juvenile bypass systems where detectors are installed. In recent years, increasing spill and the use of surface-passage structures (RSWs, TSWs) at dams are a primary management strategy to increase survival of juvenile fish passing dams within the Federal Columbia River Power System. Greater use of spillways results in a lower proportion of fish entering juvenile bypass systems where PIT tags can be detected (Widener et al. 2018), and fluctuations in spill and flow can produce variable detection rates among years or within a migration season.

Table 3. Annual detection rate (in percent) at McNary Dam (and its Standard Error, SE); and the detection history (number of fish detected/not detected at McNary and Bonneville Dams) during outmigration of the released Summer Chinook during the period from 2010 through 2019. Enumeration of fish fate (release/detection histories) is coded by detection (1) and no detection (0). The code "1.0.0." means no juvenile detection after release, "1.0.1" means not detected at McNary Dam but detected at Bonneville Dam, "1.1.0" means detected at McNary Dam but not at Bonneville Dam, and "1.1.1" - detected at both Dams (McNary and Bonneville Dams).
Note: The number of detections attributed to Bonneville Dam (BON) includes fish that were detected either at John Day Dam (JDJ), Bonnevile Dam (B2J or BCC), or by the Estuary Towed Array (TWX).

Year	Release/detection history (Number of PITtagged fish)				Detection Probability \% (p)	
	1.0.0.	1.0.1.	1.1.0.	1.1.1.	p	SE
2010	28021	700	865	161	18.70	1.32
2011	44591	2251	2151	328	12.50	0.60
2012	27335	1469	830	187	11.29	0.70
2013	27618	920	1360	288	23.89	1.20
2014	29796	300	361	67	18.25	2.00
2015	33785	27	15	2	6.88	4.70
2016	32451	932	1933	230	19.79	1.16
2017	16545	604	308	77	11.30	1.21
2018	29867	123	11	27	18.00	3.14
2019	40592	334	199	26	7.22	1.36

In 2019, a total 41,071 juvenile Summer Chinook with PIT tags were released from the 4 locations (Buckskin Slough, Roza juvenile bypass, Wapatox juvenile bypass and below Prosser Dam). The average rate of detection at McNary Dam for the 2019 release was found to be $7.22 \%(\pm 1.36 \% \mathrm{SE})$, see table 4), whereas the detection at Prosser was about $43.75 \pm 6.23 \%$. The highest detection rate for a release group at McNary Dam was for Prosser releases $(7.22 \pm 1.36 \%$, see Table 4$)$. However, there were no detections at McNary Dam for the group released into the juvenile bypass at Wapatox Dam on the Naches River (Table 4). The group released below Prosser would be expected to have low mortality compared to the groups released into other areas, which are relatively far from the McNary Dam compared to the Prosser site. In general, travel distance is considered to be an important factor influencing survival rate. As travel distance increases, mortality also increases.

For all upstream release groups combined, the average (pooled) detection rate at Prosser for 2019 groups was about $43.75 \pm 6.23 \%$; whereas the average detection rate at McNary was only $7.22 \pm 1.36 \%$.

Among the release groups, the highest detection rate at Prosser was $57.4 \pm 6.1 \%$ for the group released below Roza Dam, whereas the detection rate of this group at McNary Dam was about $5.94 \pm 2.4 \%$ (Table 4).The fish released at Wapatox had only 129 detections at Prosser, and there were no detections of this group at or below McNary Dam (Table 4).

Table 4. Release/detection history and detection rate at Prosser (PRO) and McNary Dam (McN) for the groups of Summer Chinook released in 2019.

4A. Detection rate at Prosser Dam (PRO)

Release/detection history	Number of fish (juvenile or smolts)		
	Buckskin	Roza	Prosser
Wapatox			
1. No juvenile detection after release (1.0.0)	9321	8186	10137
2. Not detected at PRO but detected at McN $(1.0 .1)$	7	33	0
3. Detected at PRO but not detected at McN $(1.1 .0)$	1031	2001	129
4. Detected at both Dams (111)	6	34	0
Detection rate at PRO $\%(\pm \mathrm{SE})$	46.1 ± 9.1	57.4 ± 6.1	NA

4B. Detection rate at McNary Dam (McN)

Release/detection history	Number of fish (juvenile or smolts)			
	Buckskin	Roza	Prosser	Wapatox
1. No juvenile detection after release (1.0.0)	10335	10092	9899	10137
2. Not detected at McN but detected at BON (1.0.1)	17	95	222	0
3. Detected at McN but not detected at BON (1.1.0)	12	61	126	0
4. Detected at both Dams (111)	1	6	19	0
Detection rate at McN \% (\pm SE)	5.5 ± 5.4	5.94 ± 2.4	7.9 ± 1.7	NA

Note: Some of the juveniles were detected at John Day Dam but not detected at BON. The number of detections attributed to Bonneville Dam (BON) includes fish that were detected either at John Day Dam (JDJ), Bonnevile Dam(B2J or BCC), or by the Estuary Towed Experimental Array (TWX).

3.3. Juvenile Release-McNary Survival rate

3.3.1. Annual juvenile Release-McNary Survival rate and its temporal trend

Among the years from 2010 through 2019, the survival rate of juvenile Summer Chinook from release to McNary Dam varied among years (Figure 4; Table 5). The highest average annual survival rate was in $2011(40.15 \pm 1.94 \%)$ and the lowest was in 2015 ($0.73 \pm 0.47 \%)$. The average annual
survival rate from all release locations to McNary Dam for 2019 was $7.22 \pm 1.35 \%$, which was higher than 2018's survival rate ($2.58 \pm 0.41 \%$).

Figure 4. Average annual survival rate (release to McNary Dam) of juvenile Summer Chinook released from 2010 through 2019.

It is important to understand why the survival rate varied among years. It was high in 2011 but low in 2015. The juvenile survival might have been affected by many factors such as different brood stocks, release timing or river flow and including other variables. On average the survival rate in 2011 was very high (Table 5 and Figure 4). Looking at individual groups in 2011, the highest survival rate was for the group released into Buckskin Slough on the lower Naches River, which was released before May $10^{\text {th }}$, and its brood stock was Wenatchee (Eastbank hatchery, see Figure 2). For Stiles Pond, also on the lower Naches, in 2011, the survival rate was also high even though these fish were released in the middle period (May 11 through May $25^{\text {th }}$). The brood stock for Stiles was from Priest Rapids Hatchery.

Despite different brood stocks, release times and release locations, both groups (Stiles and Buckskin) had relatively high survival rates in 2011 compared to other years. These results suggest that other external factors might have played a role in increasing the survival rate. We further explored whether the river flow at Prosser has an effect on survival rate. We built the univariate relationship between the average river flow for May and June and the annual survival rate, and found that survival rate was strongly influenced by the May and June average river flow $\left(\mathrm{R}^{2}=0.45, \mathrm{p}=0.03\right.$, see Figure 5). It
indicates that survival rate was a function of river flow, but even though this relationship was statistically significant, it explained only about 45% of the annual variation in survival rate. Temperature or predation or interactions effect between temperature and flow or other factors might also have affected the survival rate. Further investigations, especially into how release period and fish size survival rate, are discussed in a later section (See 3.3.4. Effect of release period and fish size on survival).

Table 5. Total released smolt population, survival rate from release locations to McNary Dam and its Standard Error (SE) and the average river flow for May and June of each year from 2010 through 2019.

Outmigration /Released Year	Released Juvenile (smolts)	Survival Rate (\%)		Average River flow (cfs)
		18.44	1.22	
2011	49321	40.15	1.94	8476
2012	29821	30.20	1.89	7791
2013	30186	22.89	1.09	4475
2014	30524	7.68	0.79	4303
2015	33829	0.73	0.47	1074
2016	35546	30.74	1.73	6612
2017	17534	19.41	1.88	8177
2018	30028	2.58	0.41	5915
2019	41071	7.22	1.35	3482

Figure 5. Relationship between river flow (average of May and June) and the annual survival rate of juvenile Summer Chinook from release to McNary Dam for the years 2010 through 2019. The point with bar is the average survival rate and its 95% confidence interval (CI) for each year. The dotted line with the shaded area is the predicted linear trend (survival rate vs. river flow) and its $95 \% \mathrm{CI}$.

3.3.2. Survival rate among release locations and release periods

As mentioned above, the average annual survival rate (from release site to McNary Dam) varied by year. The survival rate also varied by release location (Table 6 and Figure 6). In the experimental design, fish were not released at one or two location between Early, Mid and Late for a couple of years, it was therefore statistical comparisons among release-period comparisons were problematic to evaluate whether the survival rate had an effect of the release locations or release time or year effect. However, when the data were pooled by release period (Early, Mid and Late), the groups released earlier had about 19.39 ± 10.75 \% survival rate, whereas the mid and late releases had survival rates of $16.27 \pm 3.23 \%$ and $7.6 \pm 4.48 \%$, respectively. When releases were pooled by location, the highest survival rate was for the group released from Stiles Pond (20.3 $\pm 11.03 \%$) and the second highest survival rate was for the Buckskin Slough group ($19.2 \pm 6.81 \%$). The lowest survival rate was for the group that was released from the Wapatox bypass ($0.15 \pm 0.14 \%$, see Figure 7). Low survival for the release was must likely due to the low flow in the bypass because the bypass was designed for
a much higher flow. To overcome the problem, we built a release pipe form the mobile units to the top of the entrance of the exit pipe in the bypass to the river to release the fish. We had an expectation that the pipe would drop fish directly into the water above the entrance of the exit pipe. However still the survival rate was low. We had planned to release two raceways via this new pipe and transport two raceways directly across the road into the river for comparison. However, this year (2020) was not possible to test the strategy due to the current circumstance (COVID), we had to release all fish directly into the river with no tags, but will test the release strategy next year to understand why the survival rate for this release is low.

Table 6. Survival rate (\%) of the Summer Chinook from release site -to-McNary Dam from 2009 through 2019 released year (outmigration year) for the different releases (Stiles, Bucksin, Marin drain, below Roza bypass, Below Prosser Dam, Lower Yakima and Wapaptox). The survival rate and its standard Error (SE) are given for the 2019 estimates. Early, Mid and Late indicate released through 10th May; After 10th May Through May 25th; and After 25th; respectively.

	Stiles		Buckskin			Marion drain	Roza			Prosser		Yakima River Mouth	Wap atox
Year	Mid	Late	Early	Mid	Late	Mid	Early	Mid	Late	Early	Mid	Early	Mid
2009		1.5											
2010	19.7												
2011	39.7		43.7										
-2012.				37.2		35.8					20.8		
2013				29.8					20.9				
2014					3.2				4.8				
2015				0.01	0		0.07	0		2.6			
2016												31.2	
2017								19.4			19.6		
2018								4.9					0.3
2019				$\begin{array}{r} 2.3 \\ \pm 2.1 \end{array}$				$\begin{array}{r} 11.0 \\ \pm 4.2 \end{array}$			$\begin{array}{r} 17.9 \\ +3.7 \end{array}$		00

Note: the survival rate estimates from 2009 through 2018 were taken from the previous report (Neeley 2019, Appendix G).

Figure 6. Juvenile survival rate from release site to McNary Dam for Summer Chinook groups released at different locations from 2009 through 2019.

Figure 7. Average survival rate of juvenile Summer Chinook to McNary Dam by release location from 2009 through 2019. Marion Drain and Yakima basin had only one estimate so that there was no variance.

3.3.3. Comparisons of survival rates from release to Prosser and from release to McNary

Survival rates from release to McNary in 2019 were much lower than survival from release to Prosser. For example, the survival rate for the group released from Buckskin Slough was about 21.4% to Prosser, but from Prosser to McNary it was only 10.5% for an overall survival rate from release to McNary of 2.3% (Table 7 and Figure 8), indicating that significant mortality can be observed in the lower Yakima river, probably because of higher water temperature and increased predation in the lower Yakima River, especially at the Yakima/Columbia river delta. From the delta, fish must travel 69 river kilometers (rkm) down the Columbia River to detection facilities at McNary Dam in addition to the 76 rkm from Prosser Dam to the delta, but on the basis of Columbia River smolt survival studies it is likely that most of the observed juvenile Summer Chinook mortality occurs in the Yakima River from Prosser to the delta.

Table 7. Juvenile Summer Chinook survival rate from each release site to Prosser Dam, from Prosser to McNary Dam, and from release site to McNary in 2019. "N" is the number of PIT-tags.

Released Site	N	Release site to PRO		PRO to McN		Release site to McN	
		Survival rate	SE	Survival rate	SE	Survival rate	SE
Buckskin	10365	0.214	0.042	0.105	0.100	0.023	0.021
Roza	10254	0.387	0.029	0.284	0.110	0.110	0.042
Prosser	10266			0.179	0.037	0.179	0.037
Wapatox	10266	0.001	74.100*	0.000	0.000	0.000	0.000

* Indicates the model convergence issue due to no downstream detections.

Figure 8. Juvenile Summer Chinook survival rate from each release site to Prosser Dam, from Prosser to McNary Dam, and from release site to McNary in 2019.

3.3.4. Effect of release period and fish size on survival

As mentioned in the methodology section, we built the CJS model with release period (month) and fish sizes as covariates using the fish size information available ($\mathrm{N}=42,868$, see chapter 3.1, Fish size). Figure 9 (left side) shows that release period affected survival of small fish from release to Prosser Dam more than survival of large fish through the same reach. It shows if we release the fish with the size of 50 mm in April, the survival rate (the release site to Prosser Dam) would be above
50%, whereas if the same fish size released in June, its survival rate would be about only 10%. However, for large fish, there seemed to have no effects on the survival rate.

From Prosser to McNary Dam (right side of Figure 9), the relationship of size to survival rate was similar for April and May releases, but release in June depressed the Prosser-to-McNary survival rate over the entire range of fish sizes. Standard errors for the groups released in April and May were found to be large, which might be due to small sample size. As mentioned in 3.1., the sample size was relatively low for the group release in April $(2,155)$ and June $(1,844)$ compared to May release $(38,874)$

Figure 9. Effect of release time and fish size on the rate of survival from the release site to Prosser, and from Prosser to McNary Dam. The shaded area is the standard Error (SE).

3.4. Travel time or rate of migration

The Summer Chinook releases generally exhibited immediate outmigration behavior after release, regardless of release date, but later outmigrants showed greater urgency. Travel days from Prosser Dam to Bonneville Dam for the groups released in April were about 73.08 ± 37.77 days, whereas the fish released in June took only 32.70 ± 9.89 days to reach Bonneville Dam.

Table 8. Travel days \pm SE and rate of travel ($\mathrm{km} /$ day \pm SE) from Prosser to Bonneville Dam for the groups released in April, May and June from 2010 through 2019.

Release Month	Number of PIT Tags	Travel days		Rate of migration $(\mathrm{km} /$ day $)$
April	24,555	73.08 ± 37.77		7.19 ± 0.10
May	28,318	65.08 ± 14.03		8.15 ± 0.04
June	20,140	32.70 ± 9.89		16.64 ± 0.03

The distance between Prosser Dam and Bonneville Dam is normally given as 381 rkm and the rate of travel over that distance was $7.19 \mathrm{~km} /$ day for the group released in April; but the rate more than doubled ($16.64 \mathrm{~km} /$ day) for the group released in June. The slower rate of travel for earlier releases indicates that fish released earlier spent more time in the mainstem in order to go through the series of physiological and morphological changes that allow for a transition to life in salt water. Before entering the ocean, anadromous species must change their osmoregulation process, undergoing physical adaptations of their gills and kidneys that build a tolerance to salt water. The study suggests that regardless when they were released, the Summer Chinook seemed to enter the ocean at nearly the same time, although outmigration survival rate was higher for the early release.

4. Acknowledgment

We thank all of the crews whose collective fish-tagging efforts over the years made this study possible. We are also grateful to David Lind who reviewed and provided valuable comments in the draft report. We would also like to thank Daylen Isaac who provided the hydrological data.

5. Reference

Conner, MM, S. N. Bennett, W. C. Saunders, and N. Bouwes. 2015. Comparison of tributary survival estimates of steelhead using Cormack-Jolly-Seber and Barker models: Implications for sampling effort and designs. Transactions of the American Fisheries Society, 144:1, 34-47.

Laake, J. 2013 'RMark: an R interface for analysis of capture-recapture data with MARK'. Seattle WA: US Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Alaska Fisheries Science Center.

Lebreton, JD, Burnham, KP, Clobert, J \& Anderson, DR. 1992. Modeling survival and testing biological hypotheses using marked animals: a unified approach with case studies, Ecological Monographs, 62, pp. 67-118.

Neeley, D. 2012. Prosser-Passage Estimation Issues. Appendix F in Sampson, Fast, and Bosch,

Yakima/Klickitat Fisheries Project Monitoring and Evaluation, Final Report for the Performance Period May 1, 2011 through April 30, 2012. Yakama Fisheries, Toppenish, WA.

Tuomikoski, J, J. McCann, B. Chockley, H. Schaller, S. Haeseker, J. Fryer, R. Lessard, C. Petrosky, E. Tinus, T. Dalton, and R. Ehlke. 2013. Comparative survival study (CSS) of PIT-tagged spring

White, GC., and K. P. Burnham. Program MARK: survival estimation from populations of marked animals. Bird Study 46(Supplement): 120-138.

Widener, DL., James R. Faulkner, Steven G. Smith, Tiffani M. Marsh, and Richard W. Zabel. 2018. Survival Estimates for the Passage of Spring-Migrating Juvenile Salmonids through Snake and Columbia River Dams and Reservoirs, 2017. Northwest Fisheries Science Center, NOAA. Submitted to Bonneville Power Administration, 2018 February

Williams, B. K., Nichols, JD, \& Conroy, MJ. 2002. Analysis and Management of Animals Populations. San Diego, CA: Academic Press.

Zabel, RW, Achord S. 2004. Relating size of juveniles to survival within and among populations of Chinook salmon. Ecology 85:795-806

Zydlevski, GB, Stich DS \& McCormick SD. 2014.Photoperiod control of downstream movement of Atlantic salmon Salmo salar smolts. Journal of Fish Biology 85: 1023-1041.

[^0]: ${ }^{1}$ 2008-2018 average.

[^1]: ${ }^{1}$ Average combined hatchery- and natural-origin smolt counts for the years which would comprise the age-3, -4 , and -5 adult return components for each adult return year. For example, the "Prosser Average Smolts" for adult return year 1988 is the average of hatchery- and natural-origin Prosser smolt estimates for juvenile migration years 19831985.

[^2]: ${ }^{1}$ Including minor tributaries.

[^3]: ${ }^{1}$ Carcasses sampled in 1997 had a mix of MEHP and POHP lengths taken. Only POHP samples are given here.
 ${ }^{2}$ Mean of mean values for 1996-2016 post-eye to hypural plate lengths.
 Appendix B. Yakima River / CESRF Spring Chinook Salmon - Yakama Nation Data Summary
 2019 Annual Report, May 29, 2020

[^4]: ${ }^{1}$ Mean of mean values for 1996-2014 post-eye to hypural plate lengths.

[^5]: ${ }^{1}$ Including minor tributaries.

[^6]: ${ }^{1}$ All marked fish observed in spawning ground carcass surveys in the Naches Basin are assumed to be CESRF fish.
 ${ }^{2}$ Water temperatures in the lower Yakima River were greater than $68^{\circ} \mathrm{F}$ for much of the late spring/summer migration since 2015 which likely caused many fish returning in recent years to seek cooler water in other parts of the Columbia Basin.

[^7]: BIO = BioVita (BioOregon Protein Inc.) or control diet; EWS = EWOS (EWOS Canada Ltd.). All fish were switched to BioVita diet beginning May 3, 2007. All fish are progeny of wild/natural parents unless denoted as HH which designates the hatchery control line. "Avg BKD" denotes the average BKD ELISA ranking of the female parents whose progeny were in these ponds.
 ${ }^{2}$ The number of fish released is estimated as the total number of fish counted at marking less mortalities documented from mark to release.

[^8]: ${ }^{1} \mathrm{BIO}=$ BioVita (BioOregon Protein Inc.) or control diet; STF = salt-water transition diet at acclimation sites. All fish are progeny of wild/natural parents unless denoted as HH which designates the hatchery control line beginning with brood year 2002. "Avg BKD" denotes the average BKD ELISA ranking of the female parents whose progeny were in these ponds.
 ${ }^{2}$ The number of fish released is estimated as the total number of fish counted at marking less mortalities documented from mark to release.

[^9]: ${ }^{1}$ All fish are progeny of wild/natural parents unless denoted as HC which designates the hatchery control line beginning with brood year 2002. "Avg BKD" denotes the average BKD ELISA ranking of the female parents whose progeny were in these ponds. PRO=BioPro diet, VIT=BioVita diet, Bio-Oregon products.
 ${ }^{2}$ The number of fish released is estimated as the total number of fish counted at marking less mortalities documented from mark to release.

[^10]: 'All fish are progeny of wild/natural parents unless denoted as HC which designates the hatchery control line beginning with brood year 2002. "Avg BKD" denotes the average BKD ELISA ranking of the female parents whose progeny were in these ponds. PRO=BioPro diet, $\mathrm{VIT}=$ BioVita diet, Bio-Oregon products.
 ${ }^{2}$ The number of fish released is estimated as the total number of fish counted at marking less mortalities documented from mark to release.
 ${ }^{3}$ Due to problems at the acclimation site, Jack Creek raceways $5 \& 6$ were closed and all fish transferred and split between raceways 1-4 in February 2019.

[^11]: ${ }^{1}$ The first outmigration year of Upper Yakima River hatchery-reared Spring Chinook

