YKFP WDFW M\&E Report

BPA Project \# 1995-063-25
Report covers work performed under BPA contract \#(s) 61480, 65604
Report was completed under BPA contract \#(s) 65604
1/1/2014-12/31/2014

Anthony L. Fritts ${ }^{\text {a }}$, Gabriel M. Temple ${ }^{\text {a }}$, Christopher L. Johnson ${ }^{\text {a }}$, Timothy D. Webster ${ }^{\text {a }}$, Scott W. Coil ${ }^{\text {a }}$, Trenton De Boer ${ }^{\text {a }}$, Nicholas D. Mankus ${ }^{\text {a }}$, Chad A. Stockton ${ }^{\text {a }}$, Todd W. Kassler ${ }^{\text {a }}$, Cherril M. Bowman ${ }^{\text {a }}$, and Vanessa Smilansky ${ }^{\text {a }}$

${ }^{\text {a }}$ Washington Department of Fish and Wildlife (WDFW), 600 Capitol Way North, Olympia, WA 98501

This report was funded by the Bonneville Power Administration (BPA), U.S. Department of Energy, as part of BPA's program to protect, mitigate, and enhance fish and wildlife affected by the development and operation of hydroelectric facilities on the Columbia River and its tributaries. The views in this report are the author's and do not necessarily represent the views of BPA.

This report should be cited as follows: WDFW, YKFP WDFW M\&E Report, 1/1/2014 -
12/31/2014 Annual Report, 1995-063-25

Table of Contents

Table of Contents 2

1. Executive Summary 2
a. Fish Population RM\&E 2
b. Hatchery RM\&E 3
2. Introduction 4
a. Fish Population RM\&E 4
b. Hatchery RM\&E 9
3. Methods: Protocols, Study Designs, and Study Area 10
4. Results 10
a. Fish Population RM\&E 10
b. Hatchery RM\&E 39
5. Synthesis of Findings: Discussion/Conclusions 40
a. Fish Population RM\&E 40
b. Hatchery RM\&E 56
6. References 57
Appendix A: M\&E Project Publication List. 66
Appendix B: Use of Data \& Products 74
Appendix C. Performance measures relative to project quantitative objectives 75
Appendix D. DNA-Based Parentage Assignments of Chinook Salmon from the Cle Elum Spawning Channel in 2013 77
Appendix E. DNA-Based Population-of-Origin Assignments of Chinook Salmon Smolts Outmigrating Past Chandler Trap at Prosser Dam (Yakima River) in 2013 90

1. Executive Summary

a. Fish Population RM\&E

The Yakima/Klickitat Fisheries Project's (YKFP) monitoring and evaluation (M\&E) project was established to evaluate critical uncertainties associated with spring Chinook salmon supplementation in the Yakima Basin. The YKFP is co-managed by the Yakama Nation (lead entity) and the Washington Department of Fish and Wildlife with guidance from the Northwest Power Planning Council and is funded predominantly by the Bonneville Power Administration. The M\&E project historically, and is currently collecting information under several disciplines associated with the supplementation of spring Chinook salmon, including ecological interactions and ecological risk containment monitoring, domestication monitoring, genetic monitoring, competition/capacity/habitat saturation monitoring, natural production monitoring, and monitoring the relative reproductive success of fish in the program, consistent with the Columbia Basin’s Fish
and Wildlife Program. Results from the project have been presented in public and professional forums, and are intended to inform others throughout the region on the information learned under the project. The current investigations included in this report provide summarized results of ongoing studies and should be considered preliminary until published in the peer reviewed literature.

Status and trends in abundance, productivity, distribution, and diversity of spring Chinook, and non-target taxa were collected during this contract period. Preliminary results of ongoing studies suggests operating the YKFP's production program has provided a demographic benefit to the population, has not impacted valued fish taxa beyond acceptable levels and the risk containment monitoring program is working as planned, some small levels of domestication in the context of predation vulnerability and competitive dominance may have occurred although the evidence is not compelling, genetic stock partitioning of mixed stock smolt migrants remains a viable method to estimate population specific juvenile chinook smolt abundance and productivity, rearing habitat saturation has likely been met in several years under current conditions, very low levels of naturally produced precociously maturing chinook have been observed on the spawning grounds.

b. Hatchery RM\&E

The YKFP M\&E project was established to monitor the progress of the Cle Elum Supplementation and Research Facility (CESRF) progress at meeting spring Chinook production and biological objectives established for the YKFP's production program. The objectives were explicitly stated in the YKFP's monitoring and evaluation plan (Busack et al. 1997) and more recently, as Quantitative Objectives for the project. The project Quantitative Objectives provide benchmark values against which the performance of the project can be monitored and evaluated relative to fixed standards. Quantitative objectives have been established for the Spring Chinook supplementation program and include objectives for natural production, harvest, genetics, ecology, habitat, and science. While all of these objectives evaluate the performance of the Yakima/Klickitat fisheries project at some level, we focused on the hatchery RM\&E strategy for natural production and uncertainties research in this report. Monitoring the demographic benefit of the supplementation program has been thoroughly described in the Yakama Nation annual reports. This report extends the findings to cover uncertainty research of factors that may limit supplementation success and the projects performance relative to the natural production, ecological, and genetic quantitative objectives. It should be noted that the program strategies of hatchery RM\&E and fish population RM\&E are highly intertwined under this project and are not necessarily independent from one another. The hatchery RM\&E evaluations included in this report provide summarized results of ongoing studies and should be considered preliminary until published in the peer reviewed literature.

2. Introduction

The Yakima-Klickitat Fisheries Project is a cooperatively managed project with the Yakama Nation (YN; lead entity) and the Washington Department and Fish and Wildlife (WDFW) with supported in large part by the Bonneville Power Administration (BPA) with the oversight and guidance from the Northwest Power and Conservation Council (NPCC; Sampson et al. 2013). The Yakima Klickitat Fisheries Project’s (YKFP) Monitoring and Evaluation (M\&E) program has been described as the "Omnibus" scientific component of the broader YKFP (ISRP review 20060831). The M\&E project provides a rigorous assessment of the assumptions of supplementation and the application in the Yakima Basin to increase the natural production of salmon throughout the basin. The YKFP is an adaptively managed supplementation program designed "to test the assumption that new artificial production can be used to increase harvest and natural production while maintaining the long-term genetic fitness of the fish population being supplemented and keeping adverse genetic and ecological interactions with non-target species or stocks within acceptable limits" (BPA 1996). The M\&E project was designed to evaluate the YKFP progress towards addressing these four questions:

1) Can integrated hatchery programs be used to increase long-term natural production?
2) Can integrated hatchery programs limit genetic impacts to non-target Chinook populations?
3) Can integrated hatchery programs limit ecological impacts to non-target populations?
4) Does supplementation increase harvest opportunities?

This contract supports ongoing M\&E activities and research conducted by the Washington Department of Fish and Wildlife under the YKFP. The WDFW previously produced a minimum of 4 technical reports annually as deliverables under this contract (Competition/Capacity monitoring; Ecological Risk Containment monitoring; Genetics; Domestication Research and Monitoring) but with the new streamlined BPA reporting guidance and requirements, the reporting structure (and timelines) have been reduced to the summarized information herein. The work and reporting under each the topics of ecological interactions, domestication selection, competition/capacity, and genetic investigations are in varying stages of development and should be considered preliminary until published in the peer reviewed literature. Finally, this project has produced numerous publications that provide detailed evaluations under each topical research area (Appendix A).

a. Fish Population RM\&E

F\&W Program Strategy: Assess the status and trend of adult natural and hatchery origin abundance of fish populations for various life stages.

F\&W Program Management Question: What are the status and trend of adult abundance of natural and hatchery origin fish populations?

Adult status and trend data for spring Chinook salmon are collected and presented annually under the Yakama Nation contracts and reports associated with the YKFP (Project 1995-063-25; Sampson et al. 2013).

Adult status and trend population data are also collected for non-target taxa (NTT) under the ecological risk containment monitoring program under this WDFW contract. The status and trends of 15 non-target taxa of concern (NTTOC) are collected annually to ensure the operation of the YKFP's production scale salmon supplementation program does not adversely affect the status of these taxa. Benchmark values were established during the pre-supplementation period and changes in the population status for these NTTOC are judged relative fixed standards termed containment objectives. Acceptable levels of change were established as containment objectives for each NTTOC under the project (Pearsons et al. 1998) and change in the population status are monitored within the risk containment and adaptive management framework (Temple and Pearsons 2012).

F\&W Program Strategy: Assess the status and trend of juvenile abundance and productivity of natural origin fish populations.

F\&W Program Management Question: What are the status and trend of juvenile abundance and productivity of fish populations?

Non-target taxa of concern monitoring

The general approach for assessing and containing risks to non-target taxa of concern (NTTOC) that may result from supplementation of spring Chinook, and reintroduction of coho salmon, in the upper Yakima River basin was most recently detailed in Temple and Pearsons (2012), culminating from years of development (Pearsons 1998; Pearsons and Hopley 1999; Ham and Pearsons 2000; Pearsons 2002; Temple and Pearsons 2012). Briefly, we use the sieve approach to risk containment monitoring. First, overlap in the distribution between the target taxa (spring Chinook and coho salmon, and NTT) are identified. Distributional overlap that exceed acceptable levels, termed containment objectives (Pearsons 1998), warrant more rigorous evaluation, and we proceed to the next step in the evaluation. Second, when spatial and temporal overlap exceeds the containment objectives, a before/after comparison of monitoring variables (abundance, size, biomass) is evaluated. In cases where before/after comparisons of monitoring variable for a given NTTOC exceed acceptable levels, we proceed with the next step in the evaluation; a causation analysis in attempt to determine the cause of the decline. Causation analysis generally consists of rigorous evaluation of the data, but may include additional experiments or focused research to determine the mechanism for declines in NTTOC monitoring variables. Finally, the risk containment analysis is conducted under the adaptive management framework such that adjustments to the supplementation or reintroduction program will be made to alleviate unacceptable impacts to NTTOC.

Spring Chinook habitat saturation and limiting factors

The status and trend of juvenile spring Chinook salmon abundance and productivity are collected annually for rearing spring Chinook (target-taxa) under the spring Chinook competition/carrying capacity program under the YKFP’s, M\&E contract. The carrying capacity of a watershed is an important factor in determining whether supplementation is a viable technique of increasing natural production. In the Yakima River Basin, carrying capacity can limit the number of naturally produced spring

Chinook salmon even when supplementation mechanics are operating perfectly (Busack et al. 1997). Preliminary analysis suggests that density dependent mechanisms affecting spring Chinook survival exist in the upper Yakima River after fall spawning and prior to or during the parr stage the following fall (Johnson et al. 2009). If the Yakima River is at capacity for rearing sub-yearlings in some years, then supplementation efforts can only serve to increase the number of naturally produced smolts when natural production is below that capacity. Therefore, identifying the factors that limit natural production is critical if restoration efforts aimed at maintaining or increasing natural production are to achieve their intended biological goals. The spring Chinook habitat saturation and limiting factors work aims to identify juvenile life-stage survival bottlenecks that may limit supplementation success in some years.

Spring Chinook residual/precocious male monitoring

Artificial propagation of Chinook salmon has the potential to alter the age that fish mature and result in undesirable interactions with natural origin fish (Knudsen et al. 2006). This is a particular concern for conservation hatcheries where the goal is to increase natural production while maintaining the characteristics of the natural population (Mobrand et al. 2005). Although most Chinook salmon are anadromous (Healey 1991), some salmon complete their entire life cycle in freshwater, even when they have access to the ocean. These salmon are generally small, male, precociously mature, short-lived and are referred to as residents, precocious males, or minijacks (Gebhards 1960; Mullan et al. 1992; Zimmerman et al. 2003). The occurrence of precocity in salmon has been credited to genetic factors and environmental and physiological cues (Thorpe 1987; Bohlin et al. 1990; Foote et al. 1991). Age-at-maturation has been shown to be heritable in salmon (Heath et al. 1994; Unwin et al. 1999); and although it has been known for some time that hatcheries can produce large numbers of precocious Chinook salmon (Robertson 1957; Mullan et al. 1992; Larsen et al. 2004a; Beckman and Larsen 2005), there have been relatively few studies that have investigated the abundance and distribution of these fish in rivers during the spawning season. Previous research indicated that the Yakima Supplementation and Research Facility had produced and released an average of 129,249 precocious males/year into the upper Yakima basin between 1999 and 2008 (Larsen et al. 2004a; Larsen et al. 2008; Yakima/Klickitat Fisheries Project, Unpublished data). Our primary objectives are to 1) estimate the annual abundance of hatchery origin precocious males on the spawning grounds, and 2) quantify the annual distribution of hatchery precocious males on and away from the spawning grounds. We also present information about the abundance and distribution of natural origin precocious males so that we can determine how hatchery precocious males might differ.

Spring Chinook reproductive success/spawning channel

Although hatcheries have been extensively utilized in Chinook salmon management for over 100 years, only recently have rigorous experiments been developed to measure the relative reproductive success of hatchery- and natural-origin spawners in a shared natural setting. Some of the difficulty in designing informative studies has stemmed from the challenges of controlling entry to natural spawning areas and collecting representative samples of recently hatched fry. Furthermore, if control could
be established over the potential spawners in the spawning area, the measurement of individual reproductive output still would require a means of associating individual fish captured in one year with individuals that spawned in a previous year. The spawning behavior of Chinook salmon adds to the complexity of quantifying individual reproductive output through behavioral observations: at a redd site, a female might be courted by several males that compete for access to the female, providing opportunities for multiple paternity in a single redd. In areas with moderate to high spawning densities, males might attend females on several adjacent redds. Microsatellites, a class of highly polymorphic, codominant DNA markers, provide a means to quantify individual spawners' reproductive output. A suite of 10 to 15 highly variable microsatellites can resolve individual identity in a moderate to large population, and through a simple inheritance model, can illuminate parent-offspring relationships.

Washington Department of Fish and Wildlife (WDFW) and the Yakama Nation (YN) are cooperating on a study of Chinook salmon reproductive success in a presumably closed access spawning observation channel at the Cle Elum Hatchery. Viewing blinds line the channel, allowing researchers to observe spawning activities.

Chinook salmon carrying visible external marks were released into the spawning channel in September 2012. Hatchery-control line (two generations of hatchery influence) males and females were released into three of six shared spawning areas and supplementation hatchery line (one generation of hatchery influence) males and females were released into the other three shared spawning areas to select and compete for mates. Prior to the release of the potential spawners, researchers collected and preserved samples of fin tissue to enable genetic characterization of the potential spawners and to allow subsequent inference of parent/offspring relationships after juveniles were collected and genotyped. One group of researchers examined morphological characteristics of these potential parents and observed and recorded spawning area behaviors and interactions. The results of the morphological and behavioral work are described in a separate report.

The potential parents' fin tissue samples and the collected progeny (fry) were delivered to the WDFW Molecular Genetics Laboratory in Olympia, Washington for genetic screening and parentage analysis following the same protocols that have been used from 2002 - 2007, 2009 - 2013 (Young and Kassler 2005, Kassler 2005, Kassler 2006, Kassler and Von Bargen 2007, 2008, and 2010, Kassler et al. 2011; Kassler and Peterson 2012, 2013). The genetic analyses provide direct, quantitative estimates of fry production by individual spawning Chinook salmon. This report presents the parentage results for the 2012 - 2013 Cle Elum spawning channel experiments.

Spring Chinook Genetic stock separation-juveniles

Production and survival of the Yakima River basin spring Chinook stocks (American River, Naches River, and upper Yakima River) are monitored, as part of the Yakima/Klickitat Fishery Project supplementation evaluation program. However, in the lower Yakima River, where the best facilities to collect samples exist, the three spring Chinook stocks are mixed with one another and with the Marion Drain and Yakima River fall Chinook stocks, during downstream juvenile migration. Thus, methodologies for
discriminating stocks in an admixture are vital for development of stock-specific estimates. Domestication monitoring plans require discrimination of the three spring Chinook salmon stocks in the basin, and a complete analysis of migration timing and stock abundance for all Chinook requires discrimination of the two fall stocks as well. Accurate assignments of Chinook smolts captured at the Chandler fish passage facility to population-of-origin will allow researchers and managers to estimate production by the three spring Chinook stocks, assess smolt-to-smolt survival of the three spring Chinook stocks, and could be utilized to evaluate stock-specific environmental condition factors.

F\&W Program Strategy: Assess the status and trend of spatial distribution of fish populations.

F\&W Program Management Question: What are the status and trend of spatial distribution of fish populations?

The spatial distribution of adult Spring Chinook salmon (target taxa) are best described in the Yakama Nation's annual reports (Sampson et al. 2013) where the spawning distribution for spring Chinook is intensively monitored and reported annually.

The spatial distribution of rearing naturally produced spring Chinook in the upper Yakima basin is monitored under the ecological risk containment monitoring program and is of interest in the context of distributional overlap with non-target taxa of concern. Lack of spatial overlap between the target taxa and non-target taxa are thought to preclude negative effects of species interactions. The distribution of spring Chinook is monitored annually in tributary and mainstem Yakima River index monitoring sites. The ecological effects of distributional overlap with NTTOC are currently monitored in the risk containment monitoring framework (Temple and Pearsons 2012).

Spatial distribution of early rearing spring Chinook in the upper Yakima basin is monitored under the spring Chinook Competition/Capacity program. Previous work in the upper Yakima River (Johnson et al. 2009) has suggested density dependent constraints to spring Chinook production prior to fall estimates of abundance. One primary objective of this program is to identify life-stage specific factors limiting to survival and development in the natural environment. Such data can then be used to educate management decisions in selecting actions to most effectively increase natural production.

F\&W Program Strategy: Assess the status and trend of diversity of natural and hatchery origin fish populations.

F\&W Program Management Question: What are the status and trend of diversity of natural and hatchery origin fish populations?

Operating a production scale supplementation program may have unintended effects that alter the diversity of both natural and hatchery origin fish populations through selective forces imposed by the hatchery environment. The domesticating effects of hatchery culture are being intensively monitored for spring Chinook in the Yakima under the Domestication monitoring program. The YKFP's domestication monitoring plan was
developed to determine if the spring Chinook supplementation program affects a large number of phenotypic and morphometric traits of the Yakima population (Busack et al. 2006.

Domestication Predation and competitive dominance description

Raising fish in hatcheries can cause unintended behavioral, physiological, or morphological changes in Chinook salmon due to domestication selection. Domestication selection is defined by Busack and Currens 1995 as: "changes in quantity, variety, or combination of alleles within a captive population or between a captive population and its source population in the wild as a result of selection in an artificial environment." Selection in artificial environments could be due to intentional or artificial selection, biased sampling during some stage of culture, or unintentional selection (Busack and Currens 1995). Genetic changes can result in lowered survival in the natural environment (Reisenbichler and Rubin 1999). The goal of supplementation or conservation hatcheries is to produce fish that will integrate into natural populations and increase the number of grandchildren relative to fish that live entirely in natural environments. Conservation hatcheries attempt to minimize intentional or biased sampling so that the hatchery fish are similar to naturally produced fish. However, the selective pressures in hatcheries are dramatically different than in the wild, which can result in genetic differences between hatchery and wild fish. The selective pressures may be particularly prominent during the freshwater rearing stage where most mortality of wild fish occurs. We are attempting to evaluate the effects of domestication on the vulnerability of spring Chinook to predators, and on competitive dominance of spring Chinook salmon.

b. Hatchery RM\&E

F\&W Program Strategy: Evaluate the effectiveness of hatchery safety-net/conservation programs and the effectiveness of hatchery reform actions on the achievement of biological performance objectives.

F\&W Program Management Question: Are hatchery improvement programs and actions achieving the expected biological performance objectives?

The YKFP has a long history built upon a strong foundation of hatchery RM\&E. The larger YKFP was built upon developing responsible hatchery operations and production protocols consistent with many of the general (and specific) hatchery reform actions and recommendations that have recently been advised by the Hatchery Scientific Review Group for many hatchery programs throughout the Columbia basin and much of the Pacific Northwest. Much of the hatchery effectiveness monitoring information is presented in the Yakama Nation's annual technical report of the YKFP (Sampson et al. 2013). The YKFP established a long list of performance measures, termed quantitative objectives, and the project's performance relative to these standards are monitored and reported annually (Fritts 2012; Appendix C).

F\&W Program Strategy: Assess and investigate as appropriate critical uncertainties regarding the effects of artificial propagation on the viability of wild fish populations.

F\&W Program Management Question: What deleterious effects does artificial production have on natural populations of anadromous fish?

This M\&E project was founded upon monitoring and evaluating the effects of artificial production on natural populations and anadromous fish. The monitoring tasks described throughout this report covering the disciplines of domestication, genetics, ecological investigations, and competition/capacity work all strive towards answering critical uncertainties associated with artificial production in the Yakima Basin. Results from this work are intended to inform others throughout the Columbia River Region.

3. Methods: Protocols, Study Designs, and Study Area

Protocol Title: Ecological Interactions (1995-063-25) v1.0
Protocol Link: http://www.monitoringmethods.org/Protocol/Details/113
Protocol Title: Genetics (1995-063-25) v1.0
Protocol Link: http://www.monitoringmethods.org/Protocol/Details/115
Protocol Title: Natural Production (1995-063-25) v1.0
Protocol Link: http://www.monitoringmethods.org/Protocol/Details/116

4. Results

a. Fish Population RM\&E

Non-target taxa of concern monitoring

General approach

The inclusion of 2014 NTTOC monitoring data in the risk containment monitoring sieve evaluation provide similar results to last year. The degree of trout overlap with salmon was highest in main stem areas, intermediate for cutthroat and rainbow trout in tributaries, and absent for bull trout (Figure 1). There was no overlap of salmon and bull trout in our index sites. In fact, the shortest distance between the uppermost distribution of Chinook salmon and the lowermost distribution of bull trout was approximately 8 km . Cutthroat trout and supplemented spring Chinook overlapped in distribution in both tributary and main stem Yakima River areas. The distributional overlap in tributary streams was approximately 11%, confined to relatively moderate elevations, and was less than the 40% containment objective (Figure 1). Salmon overlapped 100% of the main stem distribution of cutthroat trout (Figure 1). In tributaries, salmon overlapped 50% of the distribution of rainbow trout. Overlap was predominately confined to lower portions of tributaries (e.g., Swauk Creek 1 and Umtanum Creek 1) and farther upstream in the North Fork Teanaway River. However, salmon did not overlap rainbow trout in high elevation portions of tributaries.

There was also extensive overlap between rainbow trout, sucker species, and mountain whitefish and salmon in the main stem (100\%; Figure 1). Salmon overlapped in distribution with longnose dace (59\%) and speckled dace (72\%) in tributaries, although mean overlap was less than the containment objectives for both species. Salmon overlapped sculpin species 17% in tributaries but this was less than the containment objective. Finally, there was 23% overlap in distribution between sucker species and salmon in tributary streams, although this was also less than the containment objective.

Data that were collected at similar times and sites by snorkeling and electrofishing methods were consistent with each other. For example, in areas that we found salmon, rainbow trout, cutthroat trout or bull trout, they were detected with both electrofishing and snorkeling methods. In addition, we did not capture any salmon when we electrofished areas where bull trout were present.

Figure 1. Map of species distributions in the upper Yakima Basin. Spring Chinook and coho salmon distributions are shaded grey. The lowest elevation observations of bull trout and cutthroat trout in tributary streams are marked with stars and bars, respectively. Cutthroat trout, suckers and mountain whitefish distribution in the main stem is marked as a dashed line. The Cle Elum hatchery facility is marked with a black square and hatchery acclimation sites are marked with open squares. Rainbow trout are widely distributed throughout the basin and are not marked on the map.

Before-After Analysis

Rainbow (age 1) and cutthroat trout (<250mm), mountain whitefish, and sucker species in the main stem, and rainbow trout in tributaries (all ages; analog for steelhead) exhibited distributional overlap with salmon that were outside the containment objectives and therefore we compared their abundance, size, and biomass (salmonids) before and after stocking began. The mean abundance and 90% CL of sympatric rainbow trout (all ages) was $32 \pm 16 \%$ higher in the tributaries and $36 \pm 16 \%$ higher in the main stem (age 1) in the years when supplementation occurred than during the baseline phase (Figure 2). The mean abundance of cutthroat trout ($<250 \mathrm{~mm}$) was $565 \pm 396 \%$ CL higher in the main stem during supplementation than during the baseline phase (Table 1; Figure 2). The mean abundance of sub-adult mountain whitefish increased $109 \pm 40 \%$ CL during supplementation period, while the mean abundance of sucker species adults decreased 44 $\pm 6 \%$ CL and the decrease was significant ($P<0.01$), although it was within our containment objectives (Figure 3). Finally, we observed a $26 \pm 18 \%$ CL increase in subadult sized sucker abundance (analog for mountain sucker) during supplementation and the lower 90% CL did not exceed our containment objective (Figure 3).

During the supplementation period, the mean and 90% CL of rainbow trout size (age 1) in the main stem indicated that size decreased by $5 \pm 2 \%$ (Table 1; Figure 2). Slopes between log length-log weight of age 1 rainbow trout in the main stem were not significantly different before and during supplementation ($P=0.82$). An ANCOVA revealed the average weight of fish for a given length was significantly greater during the supplementation period ($P=0.002$, Figure 4). In addition, biomass increased by $18 \pm$ 15% CL. Similarly, the mean and 90% CL of cutthroat trout size ($<250 \mathrm{~mm}$) in the main stem indicated a $1 \pm 3 \%$ CL decrease, and an increase in biomass of $941 \pm 893 \%$ CL (Table 1; Figure 2). The size of rainbow trout in the tributaries (all ages) was similar during both periods ($1 \pm 2 \%$ CL; Table 2; Figure 2). Slopes between log length-log weight for rainbow trout in tributaries (all ages) were not significantly different before and during supplementation $(P=0.34)$. An ANCOVA indicated the mean weights at each length were slightly greater during the supplementation period than the before period, although not significantly so ($P=0.06$; Figure 4). Additionally, tributary rainbow trout biomass (all ages) increased by $27 \pm 11 \%$ CL (Table 2; Figure 2). Our index of mountain whitefish size indicated that the proportions of subadults observed increased 10 $\pm 2 \%$ CL during the supplementation period (Figure 3). Our index of sucker species size indicated that the proportion of adults decreased $41 \pm 12 \%$ during supplementation, and although the decrease was significant ($P<0.001$), it was still well within our containment objectives (Figure 3). Our index of mountain sucker size indicated a $26 \pm 8 \%$ CL increase in the proportion of subadults during the supplementation period (Figure 3).

The mean abundance, size, and biomass of catchable sized main stem rainbow trout (>249 mm) did not decrease during supplementation. The mean abundance of rainbow trout greater than 249 mm increased by $13 \pm 14 \%$ (mean $\pm 90 \% \mathrm{CL}$), mean size increased by $2 \pm 1 \%$, and biomass increased by $41 \pm 16 \%$ during supplementation when compared to baseline conditions.

The only NTT with parameter estimates outside of the containment objectives was steelhead, which uses rainbow trout as an analog. The lower 90% CL for age 1
rainbow trout size in the main stem and rainbow trout size (all ages) in the tributaries were exceeded, so we tested whether the decrease was caused by supplementation.

Table 1. Annual abundance (fish/km), size (mm, FL), and biomass (kg/km) estimates and associated 95% confidence intervals of age 1 rainbow trout and cutthroat trout less than 250 mm fork length in the main stem Yakima River.

Year	Abundance		Size		Biomass	
	RBT	CUT	RBT	CUT	RBT	CUT
1990			210 ± 33	237 ± 5		
1991	189 ± 67	11 ± 14	205 ± 27	237 ± 11	19 ± 14	1.6 ± 3.2
1992	151 ± 28	1	217 ± 31	242	18 ± 7	0.1
1993	193 ± 48	6 ± 17	232 ± 36	238 ± 3	27 ± 11	0.8 ± 3.5
1994	180 ± 33	2 ± 1	217 ± 32	225 ± 17	21 ± 8	0.3 ± 1.4
1995	190 ± 54	6 ± 17	235 ± 34	239 ± 6	28 ± 12	0.9 ± 3.5
1996	182 ± 27	5 ± 11	217 ± 32	239 ± 10	22 ± 7	0.7 ± 2.4
1997	272 ± 49	10 ± 44	203 ± 35	239 ± 5	27 ± 10	1.4 ± 8.9
1998	130 ± 20	16 ± 84	212 ± 34	230 ± 5	15 ± 6	2.0 ± 16.8
1999	182 ± 25	12 ± 25	217 ± 33	236 ± 5	22 ± 7	1.8 ± 5.1
2000	214 ± 40	13 ± 1	210 ± 36	227 ± 13	24 ± 10	1.8 ± 1.4
2001	384 ± 81	18 ± 85	206 ± 32	238 ± 7	41 ± 16	2.5 ± 17.1
2002	207 ± 39	7 ± 42	203 ± 31	232 ± 6	20 ± 9	0.9 ± 8.4
2003	230 ± 41	10 ± 34	207 ± 30	234 ± 7	24 ± 9	1.3 ± 7.0
2004	275 ± 19	16 ± 34	223 ± 32	234 ± 5	35 ± 15	2.3 ± 6.9
2005	272 ± 20	28 ± 142	213 ± 32	229 ± 5	30 ± 9	3.4 ± 28.6
2006	150 ± 12	16 ± 11	216 ± 34	235 ± 5	17 ± 7	2.1 ± 2.5
2007	233 ± 17	22 ± 35	210 ± 33	233 ± 5	26 ± 8	3.1 ± 7.1
2008	264 ± 26	24 ± 61	204 ± 33	229 ± 7	26 ± 9	3.0 ± 12.3
2009	156 ± 29	44 ± 138	188 ± 29	231 ± 3	12 ± 3	5.8 ± 27.8
2010	233 ± 48	32 ± 111	197 ± 36	230 ± 5	21 ± 7	$4.1+22.3$
2011	273 ± 23	39 ± 63	199 ± 34	227 ± 4	26 ± 9	5.0 ± 12.8
2012	270 ± 30	70 ± 250	192 ± 33	226 ± 5	23 ± 8	8.7 ± 50.3
2013	$359+38$	237 ± 335	196 ± 34	290 ± 9	32 ± 10	75.6 ± 68.0
2014	342 ± 46	176 ± 168	206 ± 34	276 ± 8	36 ± 11	44.4 ± 41.0

Table 2. Annual abundance (fish/km), size (mm, FL), and biomass (kg/km) estimates and associated 95% confidence intervals for rainbow trout in Yakima River Basin tributary streams.

Year	Abundance	Size	Biomass
1990	241 ± 129	136 ± 8	8 ± 13
1991	204 ± 102	131 ± 8	6 ± 8
1992	375 ± 240	130 ± 5	11 ± 24
1993	317 ± 158	131 ± 7	9 ± 17
1994	328 ± 129	132 ± 8	11 ± 15
1995	213 ± 118	139 ± 8	7 ± 14
1996	165 ± 109	133 ± 8	5 ± 11
1997	294 ± 119	132 ± 5	8 ± 11
1998	442 ± 174	138 ± 7	15 ± 25
1999	288 ± 175	135 ± 8	12 ± 27
2000	318 ± 135	144 ± 8	11 ± 21
2001	464 ± 178	129 ± 3	12 ± 17
2002	321 ± 131	132 ± 6	10 ± 15
2003	291 ± 142	132 ± 5	8 ± 14
2004	243 ± 135	142 ± 5	9 ± 15
2005	349 ± 163	127 ± 5	9 ± 16
2006	434 ± 171	134 ± 5	13 ± 20
2007	368 ± 153	138 ± 4	12 ± 18
2008	331 ± 166	138 ± 7	11 ± 19
2009	256 ± 123	138 ± 12	9 ± 19
2010	548 ± 243	127 ± 5	15 ± 25
2011	486 ± 215	124 ± 7	12 ± 20
2012	490 ± 163	124 ± 4	13 ± 15
2013	571 ± 232	129 ± 5	16 ± 24
2014	282 ± 139	134 ± 5	10 ± 14

Figure 2. Abundance (n / km), size (FL mm), and biomass ($\mathrm{kg} / \mathrm{km}$) of tributary rainbow trout, main stem Yakima River rainbow trout (age 1) and cutthroat trout ($<250 \mathrm{~mm}$) before and during supplementation. Main stem cutthroat trout abundance, size, and biomass are associated with the right y-axis. The horizontal dashed line represents the 0% containment objective (CO) for steelhead in the main stem and tributaries, and the 10% CO for mainstem cutthroat trout. The solid horizontal line represents the 10% CO for main stem rainbow trout and 40% CO for tributary rainbow trout. Error bars represent 90% confidence intervals.

Figure 3. Abundance (fish/km) and size (percent by size class) of mountain whitefish, suckers, and mountain suckers before and during supplementation. Error bars represent the 90% confidence interval. Dashed lines represent the 40% containment objectives for mountain whitefish, 90% for sucker species (Spp), and 5% for mountain suckers.

Figure 4. Mean length-weight relationships of tributary and age 1 main stem Yakima River rainbow trout before (1990-1998) and during (1999-2013) the supplementation period. Each data point represents the mean from a sample site.

Causation

Since the lower 90\% confidence limit for our steelhead size index was exceeded in both the Yakima River main stem (age 1 rainbow trout) and Yakima Basin tributaries (all ages of rainbow trout), we tested if the changes could be reasonably attributed to supplementation. We did not detect a statistically significant decrease in our steelhead size index (age 1 rainbow trout; BACIP; $P=0.97$) in the main stem downstream from the Clark Flats acclimation facility. Interestingly, we did not detect a significant relationship between our steelhead abundance and size index relationship ($\mathrm{R}^{2}=0.11$; $P=0.11$) suggesting density dependence was probably not influencing our steelhead size index. For tributary comparisons, we did not detect significant differences in our steelhead size index in comparisons between the North Fork Teanaway River down stream from the Jack Creek acclimation facility (treatment sites) and the West (BACIP; $P=0.11$) and Middle Fork (BACIP; $P=0.52$) Teanaway River reference sites. Additional comparisons of our steelhead size index in the main stem Teanaway River relative to the West and Middle Fork Teanaway River reference sites were not consistent with an impact (i.e. all changes were positive). Thus, at this time, the weight-of-evidence suggests declines in our steelhead size index are not likely the result of salmon supplementation activities in the basin.

Although the before vs. after comparisons of rainbow trout abundance did not indicate declines warranting a refined analysis of abundance, we erred on the side of caution and conducted the analysis given our concerns related to the depressed steelhead size index. A comparison of rainbow trout abundance in index monitoring sites located downstream from the Jack Creek Acclimation Facility (e.g., North Fork and Main stem Teanaway Rivers) relative to reference sites in the Middle and West Fork Teanaway Rivers revealed substantial reductions in the abundance of rainbow trout relative to the control streams (BACIP). We attempted to account for factors that may influence abundance such as movement and angler induced mortality. Motion activated cameras mounted in both treatment and reference sites during the open angling season in 2011 indicated that the reduction in abundance was probably not angler induced. In addition, we have not detected large scale movements of tagged rainbow trout between treatment and reference streams that would be consistent with a largescale displacement of trout. However, we do have evidence that the North Fork of the Teanaway River produces a higher proportion of anadromous steelhead smolt migrants than the reference streams and significant migrant production may contribute to reduced resident trout abundance. We will continue this investigation in the coming year in cooperation with the Yakima Steelhead VSP project.

Spring Chinook habitat saturation and limiting factors

Post-emergent growth

In a multiple year analysis (2009-2014), observed growth rate differed significantly among years (Homogeny of slopes model: $F_{5,192}=4.90, P<0.01$; Figure 5). Mean length, accounting for sampling date, was also detectably different among years (Separate slopes model: $F_{4,192}=5.22, P<0.01$). Post-hoc analysis revealed significantly greater
mean length in 2010 and in 2014 in comparison to 2009, which had the smallest observed mean length within the six-year dataset.

Figure 5. Comparison of mean growth rate among years in the upper Yakima River basin 2009-2012. The observed rate of growth was greater in 2010 (heavy dashed line) when compared to other survey years; 2009 (solid grey line), 2011 (smaller dashed line), 2012 (solid black line), 2013 (dashed grey line), and 2014 (dotted black line).

Rearing abundance and habitat use

A total of 64 sites were surveyed in the two study reaches between July 7th and August 25th, 2014 (Table 3.) for a total of 128 total replicates. We did not detect a significant difference in sub-yearling Chinook density between study reaches in 2013 ($t=$ $1.0, \mathrm{df}=126, P=0.31$), or in a multi-year analysis (ANOVA: $F_{1,1095}=0.03, P=0.90$). Mean density was significantly greater in 2010 when compared all other years (ANOVA: $F_{6,1090}=7.29, P<0.01$; Tukey post-hoc: $P<0.01$; Figure 6.). Summer and fall mean spring Chinook densities trended, but were not significantly correlated with our chosen alpha of $0.05\left(\mathrm{R}^{2}=0.56, P=0.06\right)$. Further, although the relationship is near significant, and the proportion of variation potentially explained is high, it appears as though the 2010 data point is highly influential in the relationship (Cook's D = 1.46). Therefore, additional data points, over a range of fall densities (e.g. between 150 and 200 spring Chinook per kilometer) will be required in order to fully evaluate any potential correlation between summer and fall estimates of spring Chinook rearing density.

We did not detect a significant difference in spring Chinook density among habitat types in 2014 (ANOVA: $F_{5,122}=0.64, P=0.67$; Table 3). However, a multi-year
analysis suggests greater relative densities in pool and deep riffle habitats (Tukey HSD, P < 0.01; Figure 7).

Table 3. Physical parameters of 2014 snorkeling survey sites by sampling reach.

Habitat Classification	n	Mean site length (m)	SD	n	Site width (m)	SD
Easton						
Deep Riffle	4	35.0	4.1	4	18.9	3.2
Glide	11	80.7	21.0	11	20.2	7.2
Pool	5	47.4	16.0	5	20.9	3.6
Rapid	1	30.0	n / a	1	20.3	n / a
Riffle	6	54.8	17.4	6	19.2	6.7
Run	10	53.3	16.5	10	17.6	5.2
	Nelson					
Deep Riffle	3	53.3	23.1	3	25.9	
Glide	11	89.4	17.7	11	31.3	1.3
Pool	3	43.3	12.6	3	22.1	2.5
Rapid	1	45.0	n / a	1	29.0	n / a
Riffle	85.0	n / a	1	36.3	n / a	
Run	1	91.8	19.9	8	31.0	6.6

Figure 6. Multi-year analysis of observed abundance among years in two upper Yakima River study reaches with similar temperature and flow characteristics (Easton and Nelson). Significantly greater densities of spring Chinook sub-yearlings were detected in 2010.

Figure 7. Mean spring Chinook observed abundance by habitat type, 2008-2014. Error bars represent 95 percent confidence intervals.

Water temperatures during sampling ranged between 12.0 and 18.1 degrees Celsius (mean, 15.4; SD, 1.7). Temperatures at the time of sampling were not detectably different between survey reaches $(t=-0.05, \mathrm{df}=109, P=0.96$, or among habitat classifications (ANOVA: $F_{5,114}=0.01, P=0.96$). Overall, temperatures in 2014 were positively correlated with observed abundance of spring Chinook, but explained only five percent of the variation ($\mathrm{n}=112, \mathrm{R}^{2}<0.05 P<0.02$). Visibility while sampling ranged between 0.5 and 3.2 meters (mean, 1.5; SD, 0.5) and was not significantly correlated with estimates of abundance ($\mathrm{R}^{2}<0.01, P=0.87$).

Territory size (log transformed) was significantly correlated with fish fork length $(\mathrm{mm})\left(\mathrm{R}^{2}=0.29, P<0.01\right.$; Figure 8), and differed significantly among years (ANCOVA: $F_{8,329}=19.2, P<0.01$). Mean territory size, adjusted for length was highly correlated with estimates of fall abundance ($\mathrm{R}^{2}<0.90, P<0.01$), and with redd counts (YKFP 2014) from the previous year ($\mathrm{R}^{2}<0.58, P<0.03$). The proportions of feeding strikes were significantly different between categorical distances (1-4 body lengths) from the focal position (Friedman ANOVA: $\chi_{3}^{2}, 694=1166.9 ; P<0.01$; Figure 9). Agonistic strikes were also significantly different between categorical distances (1-4 body lengths) from the focal position (Friedman ANOVA: $\chi_{3}^{2}, 314=170.2, P<0.01$; Figure 9). The observed ratios of agonistic to feeding were not significantly different among grouped distances from the focal position (Friedman ANOVA: $\chi_{9,3}^{2}=7.1, P=0.07$; Figure 10).

Figure 8. Relationship between spring Chinook fork length (mm) and observed territory size in the spring and summer of 2006-2013 (black points) and 2014 (white points).

Figure 9. Proportion of rearing spring Chinook feeding and agonistic strikes with increasing distance from the observed focal position in body lengths 2006-2014.

Figure 10. Mean ratio of agonistic strikes per feeding strike with increasing distance from the observed focal position 2006-2014.

Velocities were higher adjacent to spring Chinook focal positions in 72.1 percent of the observations in 2012, 86.0 percent of the observation in 2013, and 53 percent of the observations in 2014. A summary of microhabitat variable measured around Chinook focal positions is presented in table 4.

Table 4. Summary physical parameters measured at observed spring Chinook focal positions in 2012, 2013 and 2014.

	Temp ${ }^{\circ} \mathrm{C}$	Spc length (mm)	Focal depth (m)	Total depth (m) Focal velocity (m/s)	
	2012 (n=111)				
Mean	15.9	69.7	0.3	1.3	0.2
SD	1.0	7.4	1.1	5.7	0.1
			$2013(\mathrm{n}=43)$		
Mean	16.3	79.5	2.3	0.9	0.2
SD	0.7	9.5	9.3	4.2	0.1
			$2014(\mathrm{n}=60)$		
Mean	16.5	78.3	0.2	0.9	0.2
SD	0.9	10.2	0.2	0.3	0.1

Spring Chinook residual/precocious male monitoring

The estimated number of natural origin age 0 , natural origin age 1 , and hatchery precocious males on the spawning grounds during the peak of spawning ranged from 5 to 718, 0 to 92, and 0 to 78 between 1999 and 2014 respectively (Table 5). Differences in the number of observed precocious males on or associated with active redds were detectable among age classes, and origin. Differences in the mean abundance of precociously mature males of different age and origin were detectable among years (ANOVA: $F_{2,45}=14.0, P<0.01$). Post-hoc analysis determined that natural production age 0 precocious males were greater in abundance than both natural and hatchery production age- 1 males (Tukey test: $P<0.01$). There were no detectable differences in abundance between age 1 natural and hatchery production precocious males (Tukey test: $P=0.96$). Among years, age 0 precocious males were found on a greater proportion of redds sampled than either age 1 or hatchery origin (ANOVA: $F_{2,45}=13.2, P<0.01$; Tukey test: $P<0.01$), and were greater in number per active redd (ANOVA: $F_{2,45}=19.4$, $P<0.01$; Tukey test: $P<0.01$), (Table 6.).

Table 5. Number of observed and estimated totals of natural (age 0 and age 1) and hatchery origin precocious males by age class at the peak of spawning activity in the upper Yakima River. Estimated totals are extrapolations over redds and/or portions of reaches not sampled.

Survey year	Active redds	(\%) Redds surveyed	(\%) Spawning area sampled	Observed			Estimated total		
				Age 0	Age 1	Hatchery	Age 0	Age 1	Hatchery
1999	36	100	87	4	11	17	5	16	19
2000	316	66	87	103	42	8	128	42	11
2001	276	62	87	336	11	26	555	21	53
2002	304	81	87	138	15	8	228	25	14
2003	230	78	100	204	25	19	267	35	24
2004	1662	27	100	195	16	21	718	65	78
2005	655	99	100	357	17	0	360	17	0
2006	198	90	100	148	2	0	177	3	0
2007	92	100	100	55	0	0	55	0	0
2008	173	82	100	69	55	42	85	67	52
2009	105	99	100	87	15	34	88	15	34
2010	499	48	100	133	42	12	280	92	21
2011	418	73	100	124	40	0	171	55	0
2012	243	63	100	44	17	3	70	27	5
2013	166	66	100	76	10	3	115	15	5
2014	279	191	100	41	1	2	54	1	3

Table 6. Means of the presence and abundance of natural (age 0 and age 1) and hatchery origin precocious males per active redd at the peak of spawning activity in the upper Yakima River.

Survey year	Active redds	Presence/Active redd			Abundance/Active redd		
		Age 0	Age 1	Hatchery	Age 0	Age 1	Hatchery
1999	36	0.11	0.14	0.19	0.14	0.44	0.53
2000	316	0.18	0.10	0.02	0.41	0.13	0.03
2001	276	0.31	0.03	0.04	2.01	0.08	0.19
2002	304	0.23	0.03	0.03	0.75	0.08	0.05
2003	230	0.31	0.06	0.06	1.16	0.15	0.10
2004	1662	0.05	0.01	0.01	0.43	0.04	0.05
2005	655	0.24	0.02	0	0.55	0.03	0
2006	198	0.75	0.04	0	0.89	0.02	0
2007	92	0.18	0	0	0.60	0	0
2008	173	0.08	0.21	0.16	0.49	0.39	0.30
2009	105	0.24	0.09	0.13	0.84	0.14	0.33
2010	499	0.15	0.05	0.03	0.56	0.18	0.05
2011	418	0.24	0.07	0	0.41	0.13	0
2012	243	0.13	0.08	0.02	0.29	0.11	0.02
2013	166	0.20	0.07	0.04	0.69	0.09	0.03
2014	279	0.09	0.01	0.01	0.21	0.01	0.01

Hatchery precocious males were distributed differently than natural origin age 0 (G-test; $P=0.02$), and nearly when compared to natural origin age 0 and age 1 combined on the spawning grounds (G-test; $P=0.05$). A significant difference was not detected between natural origin age 0 and natural origin age 1 fish (G-test; $P=0.69$), or between natural origin age 1 and hatchery precocious males (G-test; $P=0.25$; Figure 11). An average of 28 percent of all hatchery precocious males observed on the spawning grounds were in the lowest spawning reach examined, whereas only 7 percent of natural origin age 0 , and 14 percent of natural origin precocious males were observed in this reach (Figure 11.).

Figure 11. Mean proportion (p) of natural and hatchery origin precocious males by reach within the upper Yakima River at the peak of spawning activity 1999-2014. Error bars represent 95 percent confidence intervals with negative boundaries of zero.

Estimated total abundance of hatchery origin spring Chinook salmon away from redds at the time of spawning in 2013 ranged between 0 and $30 \mathrm{fish} / \mathrm{km}$ among sampling reaches (Table 7). The lower and upper Yakima Canyon averaged 59 percent of the estimated number of precocious males away from redds between 1999 and 2013, and the same percentage in 2014 (Figure 12). The annual abundance of hatchery precocious males away from redds was not significantly correlated with the number observed on redds $(P=0.07)$.

Table 7. Estimated abundance of hatchery origin spring Chinook salmon (HSPC) away from redds in the main stem Yakima River in the fall of 2014. The maximum number of fish netted (n) in one of two electrofishing surveys completed in consecutive weeks is presented (LCYN is the Lower Canyon, UCYN is the Upper Canyon, EBURG is Ellensburg, THORP is Thorp, and CELUM is Cle Elum). Capture probability was generated using rainbow trout of approximately the same size range as hatchery spring Chinook salmon.

Section	n	Capture prob.	Section est.	Section km HSPC/km Reach km	Total est.		
LCYN	13	0.11	123	4.8	26	19.2	490.1
UCYN	29	0.18	158	5.2	30	13.4	407.0
EBURG	10	0.09	107	4.2	25	21.2	540.4
THORP	11	0.09	128	5.7	22	24.1	540.8
CELUM	0	0.09	0	7.4	0	16.2	0
Total	63	n / a	n / a	n / a	104	94.1	1978

Figure 12. Proportional abundance (p) of hatchery spring Chinook sampled away from redds in the fall of 2014, and the mean proportional abundance between 1999 and 2013.

Predation Mortality

The mean lengths of the predators were not different between net pens (ANOVA, $P>0.05$). The rainbow trout ranged from 162 mm FL to 252 mm FL and the torrent sculpin ranged from 96 mm TL to 143 mm TL (Table 8). No significant differences were found between the mean lengths of the three origins of fry within each net pen at introduction (ANOVA, $P>0.05$). Mean lengths never varied more than 0.02 mm (Table 9). The weights of the fry at introduction did not statistically differ. The condition factors were not statistically different between groups in 2014 (ANCOVA, $P>0.05$).

Table 8. Dates, predator replicates, and mean lengths (ranges) of the predators for predation challenges (RBT = rainbow trout; TSC = torrent sculpin).

Date Fry Stocked	Date Fry Removed	Week $\#$	Predator Set	RBT Length $(\mathrm{mm} \mathrm{FL})$	TSC Length $(\mathrm{mm} \mathrm{TL})$
$3 / 25 / 14$	$3 / 27 / 14$	1	1	$190.1(170-245)$	$115.7(104-127)$
$3 / 30 / 14$	$4 / 1 / 14$	2	2	$185.6(164-229)$	$112.8(103-133)$
$4 / 1 / 14$	$4 / 3 / 14$	3	3	$170.5(163-179)$	$110.8(104-119)$
$4 / 6 / 14$	$4 / 10 / 14$	4	4	$197.5(162-252)$	$109.6(96-128)$
$4 / 13 / 14$	$4 / 17 / 14$	5	5	$186.3(163-239)$	$115.3(98-141)$
$4 / 20 / 14$	$4 / 23 / 14$	6	6	$186.2(163-220)$	$110.6(101-129)$
$4 / 27 / 14$	$5 / 2 / 14$	7	7	$177.7(163-220)$	$113.2(103-143)$
$5 / 5 / 14$	$5 / 9 / 14$	8	8	$187.8(164-215)$	$114.3(105-132)$

Table 9. Mean fork lengths (standard deviation) of the hatchery (H), supplementation (S), and Naches (N) fry upon stocking in each net pen during the predation challenges.

Origin	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8
H	36.35	37.47	37.89	39.46	41.04	41.83	43.68	44.03
	$(0.92$	(1.17)	(1.14)	(1.34)	(1.30)	(1.37)	(1.54)	(1.56)
	36.36	37.47	37.89	39.46	41.04	41.83	43.68	44.04
S	(0.92)	(1.17)	(1.14)	(1.34)	(1.28)	(1.37)	(1.54)	(1.56)
	36.34	37.46	37.88	39.45	41.04	41.83	43.68	44.02
N	(0.90)	(1.16)	(1.11)	(1.32)	(1.28)	(1.37)	(1.54)	(1.54)

Predation survival by origin

Overall mean survival between all origins was somewhat similar, with Naches fry survival being slightly higher than both hatchery and supplementation (Table 10). No statistical difference in survival was found between hatchery, supplemental, or Naches fry ($\mathrm{P}>0.05$, Table 11).

During all years of this study, survival between years has varied considerably (Figure 13). This is likely due to varying lengths of time that the fry were exposed to predation during the trials. Within year differences in survival between groups has been relatively small and in most cases the supplementation line has had a slight survival advantage over the hatchery control line. Unfortunately, the Naches group has not been available for all years but has shown greater variability in relative survival from year to year (Figure 13).

Table 10. Percent of hatchery (H), supplementation (S), and Naches (N) fry surviving predator net pen trials at the end of each week and the overall mean survival and standard deviation.

Week	Origin	Pen 1	Pen 2	Pen 3	Pen 4	Pen 5	Pen 6	Mean (SD)
1	H	70.0	64.0	56.0	80.0	70.0	62.0	69.0(10.9)
	S	82.0	54.0	66.0	72.0	60.0	68.0	71.9(11.1)
	N	74.0	64.0	58.0	84.0	58.0	62.0	68.8(10.7)
2	H	68.0	60.0	70.0	60.0	68.0	80.0	
	S	58.0	66.0	64.0	52.0	42.0	76.0	
	N	72.0	66.0	82.0	66.0	54.0	74.0	
3	H	68.0	70.0	64.0				
	S	66.0	76.0	60.0				
	N	64.0	92.0	54.0				
4	H	60.0	94.0	54.0	56.0	60.0	48.0	
	S	84.0	80.0	60.0	66.0	54.0	50.0	
	N	80.0	90.0	64.0	62.0	74.0	56.0	
5	H	54.0	82.0	84.0	72.0	60.0	78.0	
	S	58.0	86.0	76.0	70.0	74.0	82.0	
	N	62.0	86.0	88.0	58.0	72.0	84.0	
6	H	56.0	72.0	68.0	56.0	60.0	70.0	
	S	60.0	62.0	78.0	58.0	84.0	84.0	
	N	70.0	68.0	60.0	66.0	86.0	70.0	
7	H	66.0	84.0	58.0	80.0	68.0	84.0	
	S	72.0	72.0	56.0	74.0	70.0	70.0	
	N	66.0	86.0	82.0	74.0	72.0	68.0	
8	H	84.0	76.0	90.0	72.0	82.0		
	S	82.0	76.0	80.0	72.0	74.0		
	N	80.0	64.0	96.0	74.0	82.0		

Table 11. Results from Wilcoxon matched pairs tests for survival between the three origins of fry, their relative survival ranking, and absolute and relative differences in the mean survivals.

				Relative Survival Ranking	Mean Abs. Difference	Mean Relative Difference
Pairing	Z	N	P			
N vs S	1.92	44	0.06	S=N	3.14%	4.56%
N vs H	1.60	44	0.11	N=H	2.86%	4.15%
S vs H	0.49	44	0.63	S=H	0.27%	0.40%

Figure 13. Percent survival by origin for all previous years of this study. Error bars are 95\% confidence intervals.

Competitive Dominance

Unequal numbers of replicates occurred among pair-wise comparisons because 1) some experiments did not meet the minimum criteria or 2) fish died. The replicates that did not meet experimental criteria or cases where fish died were a small percentage of the replicates that were conducted (Table 12).

Dominance was assessed in 164 replicates of supplementation vs. Naches fish during 2014. Naches fry were 1% more dominant but the difference was not statistically significant (Table 13). The frequencies of the different types of interactions used by supplementation and Naches fish during pair-wise comparisons were not significantly different (Table 14). Differences in aggression between Naches and supplementation fish were not detected. Differences between dominant x dominant and subordinate x subordinate fish trials were also not detected (Table 15). Naches fish grew slightly more and gained slightly less weight than supplementation fish although the differences were not significant (Table 16). Dominant fish regardless of origin grew more length and gained more weight than subordinate fish (Table 19).

Dominance was assessed in 155 replicates of supplementation vs. hatchery fish in 2014. Hatchery fish were 3\% more dominant than supplementation fish in 2014 but the difference was not statistically significant (Table 13). The frequencies of different types of interactions used by supplementation and hatchery fish during pair-wise comparisons were not significantly different (Table 14). Difference in aggression between hatchery fish and supplementation were not detected. Differences between dominant x dominant and subordinate x subordinate fish trials were not detected (Table 15). Hatchery fish grew slightly more and gained slightly less weight than supplementation fish (Table 16). Dominant fish regardless of origin grew more length or lost less weight than subordinate fish (Table 16).

Dominance was assessed in 157 replicates of Naches vs. hatchery fish during 2014. Naches fish were 15% more dominant than Naches fish in 2104 but the difference was not statistically significant (Table 13). The frequencies of different types of interactions used by Naches and hatchery fish during pair-wise comparisons were not statistically significantly (Table 14). Interaction rates of Naches fish were significantly higher than hatchery fish in 2014. Differences between interaction rates of dominant x dominant fish were not detected. Naches subordinate fish had a significantly higher interaction rate than hatchery subordinate fish in 2014 (Table 15). Naches fish grew slightly more and gained slightly more weight than Naches fish although the differences were not significant (Table 16). Dominant fish regardless of origin grew more length or lost less weight than subordinate fish (Table 19).

Table 12. Factors responsible for eliminating contest replicates from analysis.

Origin	Died or Missing	<10 Pellets	No Interactions	Abnormal behavior	Total
Supp Naches Both	6	2	11	1	
Supp Hatchery Both	7	8	8	0	20
Naches Hatchery Both	1				23

Table 13. Comparisons of mean (± 1 SD) of the \% food acquisition, \% habitat occupation, \% agonism dominance (dom. interactions), \% total dominance, sum of the scores used to assess dominance, and P values from Wilcoxon matched pairs test in contest competition experiments between supplementation (Supp.), hatchery, and Naches Chinook salmon.

Origin	n	\% Food	\% Habitat	\% Dom. Interactions	\% Total Dom.	Sum Total Dom. $\%$	P
Supp	164	$48(40)$	$45(44)$	$48(49)$	49	$141(128)$	
Naches	164	$52(40)$	$55(44)$	$52(49)$	51	$159(128)$	0.181
Supp	155	$49(38)$	$48(45)$	$47(49)$	48	$143(128)$	
Hatchery	155	$51(38)$	$52(45)$	$53(49)$	52	$157(128)$	0.342
Naches	157	$56(40)$	$56(45)$	$58(48)$	57	$170(130)$	
Hatchery	157	$44(40)$	$42(45)$	$42(48)$	43	$130(130)$	0.062

Table 14. Comparisons of frequencies of interaction types initiated (mean interaction/fish in each tank (± 1 SD)) by supplementation (S), hatchery (H), and Naches (N) fish and total interactions (total ints.) by origin in contest competition experiments.

						Total	P Origin
Crowd	Threat	Chase	Butt	Nip	Ints.	G-test	
S	$0.16(2.67)$	$2.6(9.84)$	$8.65(20.20)$	$0.70(2.76)$	$0.42(1.48)$	2055	
N	$0.09(1.36)$	$3.55(11.53)$	$11.03(23.44)$	$0.52(1.38)$	$0.45(1.40)$	2565	0.998
S	$0.18(2.30)$	$3.22(14.04)$	$9.14(18.64)$	$0.63(2.70)$	$0.45(2.47)$	2106	
H	$0.11(2.70)$	$4.55(15.83)$	$11.45(21.10)$	$0.81(2.45)$	$0.59(2.83)$	2713	0.999
N	$0.14(1.18)$	$3.98(12.51)$	$9.86(16.48)$	$0.58(3.28)$	$0.44(2.28)$	2355	
H	$0.12(1.27)$	$2.96(12.99)$	$7.65(15.66)$	$0.52(2.83)$	$0.41(4.09)$	1831	0.999

Table 15. Interaction rates (mean interaction/fish/minute) of agonistic interactions initiated by supplementation (Supp.), hatchery and Naches fish in contest experiments.

Origin	$\mathrm{n}^{\text {a }}$	Mean Interaction rate	1 Standard Deviation	$\mathrm{P}^{\text {b }}$
Naches	164	0.76	1.12	
Supplementation	164	0.60	0.97	0.164
Naches Dominant	94	1.29	1.22	
Supp. Dominant	94	1.02	1.11	0.152
Naches Subordinate	94	0.30	0.87	
Supp. Subordinate	94	0.12	0.38	0.053
Supplementation	155	0.65	0.97	
Hatchery	155	0.83	1.17	0.127
Supp. Dominant	80	1.23	1.06	
Hatchery Dominant	82	1.52	1.23	0.120
Supp. Subordinate	82	0.22	0.31	
Hatchery Subordinate	80	0.06	0.75	0.045
Naches	157	0.71	0.90	
Hatchery	157	0.56	0.90	0.006
Naches Dominant	97	1.12	0.93	
Hatchery Dominant	77	1.13	1.02	0.790
Naches Subordinate	77	0.23	0.62	
Hatchery Subordinate	97	0.09	0.42	0.012
${ }^{\text {a }}$ Number of replicates ${ }^{\mathrm{b}} \mathrm{P}$ values from Mann-W dominance, when they	domi	re for comparison and when they w	fish origins r ubordinate.	

Table 16. Comparisons of supplementation (Supp.), hatchery, and Naches fish growth in contest competition experiments. Replicate numbers vary a bit because when equal growth occurred, they were not analyzed.

Origin	n^{a}	Average Growth mm Length	Average Growth Mg Weight
Supp.	164	$0.86(1.25)$	$89.89(266.61)$
Naches	164	$1.04(1.19)$	$52.90(245.84)$
P_{b}		0.206	0.258
		$0.86(1.21)$	$107.63(277.61)$
Supp.	155	$0.92(1.30)$	$104.39(250.17)$
Hatchery	155	0.727	0.925
P_{b}			
		$0.94(1.31)$	$88.97(322.13)$
Naches	157	$0.78(1.19)$	$67.06(252.30)$
Hatchery	157	0.287	0.552
P_{b}			

${ }^{a}$ number of replicates
${ }^{\mathrm{b}} \mathrm{P}$ values for statistical tests
Note: Numbers in parentheses are 1 standard deviation

Over the years, relative percent dominance between the hatchery and supplementation groups has been variable with a slight indication that the hatchery control fish were increasing in dominance during the first generation but has since leveled out (Figure 14). While not available for comparison for all years of study, the relative dominance between hatchery control and Naches fish have tracked very closely to that of hatchery versus supplementation until the last two years (Figure 14). The relative dominance between the supplementation and Naches fish does not show any clear trend relative to the other two comparisons in the earlier years but has since tracked with the hatchery versus Naches.

Year

Figure 14. The relative percent dominance between the pairings of the three populations from 2005 through 2010 ($\mathrm{H}=$ hatchery line; S = supplementation line; $\mathrm{N}=$ Naches wild line).

Spring Chinook reproductive success/spawning channel

Genetic analysis revealed that all 96 fish released or found in the spawning channel had unique genotypes. There were a total of 24 hatchery control line (HC) adult males, 24 HC adult females, 24 supplementation hatchery line (SH) adult males, and 24 SH adult females. Four HC males and four HC females were released into three of the six sections and four SH males and four SH females were released into the other three sections (Table 1, Appendix D). A total of 14 loci were screened and all 14 were used in the analysis (Table 2, Appendix D). Number of alleles ranged from 4-30 (Ots-9 and Omm-1080 respectively) and observed heterozygosity ranged from $0.448-0.958$ (Ots-G474 and Ots201 b respectively). Individual exclusionary power was below 45.4% for five loci (Ogo2, Ogo-4, Ots-G474, Ots-3M, and Ots-9) and above 61.6% for the remaining loci when neither parent was known. Exclusionary power was below 42.1% for three loci (OtsG474, Ots-3M and Ots-9) and above 60.2% for the remaining loci when one parent was known. Cumulative exclusionary power was 1.000000 for analysis using all loci when one parent was known. Parentage assignments were made when genotype data was available for nine or more loci. All 96 parents were genotyped at 10 or more loci while 2,741 of the 2,784 offspring were successfully genotyped at nine or more loci (Table 3, Appendix D). Parentage analysis was conducted independently for each of the six sections using all 96 adults as possible parents. Each fry was assigned a dam-sire-fry combinations (trios) based on the most likely candidate male parents (sires) and female parents (dams). Those assignments yielded possible. Any fry-sire assignments with more than two mismatching loci were excluded from further consideration. Of the total

2,741 fry included in the analysis a total of 2,545, fry were assigned to a single male and female parent (2,545/2,741 = 92.8\%).

Spring Chinook Genetic stock separation-juveniles
A total of 1,200 unknown Chinook smolts were selected and analyzed from those collected at Chandler Trap. Smolt samples that had data for 10 or more loci were included for analysis. A total of 20 individuals were dropped from statistical analyses. The mixture composition estimates for the entire 2013 smolt outmigration indicated that the largest overall percentage of spring smolts was from the upper Yakima River followed by the Naches River and American River in the first four strata. During the migration from January - May, the proportion of the upper Yakima River stocks was between 66.7 and 76.2% while the American River and Naches River spring stocks was between 3.3 and 27.5\%. The proportion of the two fall stocks was between $0.0-22.3 \%$ for the first four time strata and 70.6% in the June - July time stratum (Table 3, Appendix E). A comparison of the morphological assessment to genetic assignment was conducted for all five time strata. A total of 39 smolts in January/February, 82 smolts in March, 724 smolts in April, 140 smolts in May, and 195 in the June/July time strata were scored, and therefore included in the analysis. Results for the time strata were as follows: January/February time stratum - all 39 smolts were assigned identically using morphological and genetic methods (39 spring); March stratum - 81 out of 82 smolts were assigned identically using morphological and genetic methods (81 spring) the one discrepancy was identified as a fall by the genetic analysis and spring with morphological identification; April time stratum - 724 smolts were assigned identically using morphological and genetic methods (724 spring); May time stratum - 136 out of 140 smolts were assigned identically using morphological and genetic methods (100 spring 36 fall), all four of the discrepancies were identified as a spring by the genetic analysis and fall with morphological identification; June/July time stratum - 145 out of 195 smolts were assigned identically using morphological and genetic methods (12 spring and 133 fall), 4 discrepancies were assigned as fall by the genetic analyses while morphological identification was spring, the remaining 46 discrepancies were identified as a spring by the genetic analysis and fall with morphological identification.

b. Hatchery RM\&E

The performance of the YKFP spring Chinook supplementation program has been documented relative to the project quantitative objectives and has been presented annually in the YKFP M\&E project overview (Fritts 2012). Briefly, the project appears to be meeting or is making progress towards achieving the project's objectives (Appendix C).

5. Synthesis of Findings: Discussion/Conclusions

a. Fish Population RM\&E

Non-target taxa of concern monitoring
We failed to reject the hypothesis that early-middle stages of salmon supplementation have impacted valued trout species in the upper Yakima Basin beyond predetermined containment objectives. There were no impacts of supplementation activities on bull and cutthroat trout that inhabited tributary streams because limited or no overlap with hatchery or naturally produced salmon occurred. However, the potential existed for much overlap between salmon and bull and cutthroat trout in the tributaries of the upper Yakima Basin. For example, hatchery steelhead that were released in 1994 very close to the release site in the North Fork of the Teanaway River, migrated upstream into areas containing bull trout and cutthroat trout (McMichael and Pearsons 2001). Hatchery spring Chinook also migrated upstream of the acclimation site in the North Fork of the Teanaway River, but not nearly as far as hatchery steelhead. This finding is consistent with our earlier work and extends the findings into later stages of supplementation (Pearsons and Temple 2007).

It is possible that some overlap occurred at times and places when/where we did not sample. However, substantial overlap was unlikely because we sampled at times and places that overlap was most likely. There are certainly areas outside the upper Yakima watershed where overlap occurs at the times that we sampled. Furthermore, overlap has been detected using the methods we used (e.g. snorkeling). Salmon and bull and cutthroat trout overlap during the summer in another large tributary in the Yakima Basin that parallels the upper Yakima River. In the Naches Basin, which merges with the upper Yakima River near the city of Yakima, substantial overlap exists between bull and cutthroat trout and naturally produced Chinook salmon (T. Pearsons, unpublished data). Hatchery coho salmon are released into that basin and undoubtedly overlap with bull and cutthroat trout. Other studies have also documented overlap between salmon and cutthroat and bull/Dolly Varden trout (Glova 1984; Bisson et al. 1988; Nakano and Kaeriyama 1995; Thurow et al. 1997).

There are a variety of possible reasons why overlap was not detected in tributaries of the upper Yakima River. First, all but one of the acclimation sites for salmon were located in the main stem and the acclimation site in the tributary was located downstream of bull and cutthroat trout. Risks to bull and cutthroat trout were one of many factors that contributed to acclimation site placement. Second, the distribution of juvenile salmon has not increased substantially even though the abundance of adult salmon has increased. We had expected that the distribution of juvenile salmon would have increased with increasing abundance of spawners. Third, high abundance of rainbow trout in lower elevation portions of tributaries may competitively exclude cutthroat and bull trout to higher elevations that salmon do not occupy. Relaxation of competition could result in broader distributions of bull and cutthroat trout and the possibility of greater overlap with salmon. Fourth, salmon, bull trout, and cutthroat trout have different habitat preferences. Salmon typically occupy streams of lower gradient, lower elevation, and warmer water temperatures than cutthroat and bull trout (Glova 1987; Dunham and Rieman 1999).

Glova (1987) concluded that impacts to cutthroat trout could be reduced by stocking coho in areas with gradients greater than 1% and ample fast water habitats. Faster water velocities allow for more resource partitioning and competitive dominance by trout. Most of the tributaries in the upper Yakima Basin met these criteria. We did observe overlap between salmon and cutthroat trout in the main stem, where water temperatures were more suitable for both of these species.

Contrary to our previous findings (Pearsons and Temple 2007), we did detect a significant difference in the abundance of rainbow trout in treatment areas in the North Fork Teanaway River and main stem Teanaway River relative to our control sites (Pearsons and Temple 2010). With each additional year of sampling we will have increased power to detect smaller differences (Ham and Pearsons 2000). However, it is important to note that our "Before-After" detection plan would not have triggered the "Causation" analysis that was used to detect the decline and the decline was isolated to a small area and was small relative to the total population size. Furthermore, we do not yet have evidence to support the decline was due to mortality of fish in the treatment area. Other possibilities may include displacement, and perhaps angler harvest, both of which we are currently evaluating.

Although we observed decreases in the size of rainbow trout during the postsupplementation period, the decline is unlikely to have been caused by supplementation. If supplementation had changed the size structure or growth of the steelhead size index, we would expect to detect this change in areas with high densities of salmon. We did not detect a reduction in the size of rainbow trout in the high-density areas of the target taxa below the Clark Flats acclimation site or below the release site in the North Fork Teanaway River. These areas are likely to have the greatest potential of detecting an impact. One potential explanation for the observed decrease in main stem rainbow trout size is that intraspecific density dependent mechanisms have altered the size of main stem Yakima River rainbow trout. The abundance of rainbow trout increased by approximately 30% (30% increase of age 1 fish, and 29% increase of fish greater than 249 mm) after stocking began. This information and results from small-scale enclosure experiments (McMichael et al. 1997) leads us to believe that the decline in rainbow trout lengths is most likely the result of intraspecific competition.

With the exception of the BACIP results from the Teanaway basin, the lack of detectable impacts to rainbow trout were consistent with results that were derived from smaller scale enclosure experiments between naturally produced spring Chinook salmon and rainbow trout in high elevation tributaries (McMichael and Pearsons 1998). In these experiments, growth and abundance of rainbow trout were not impacted when the density of salmonids was doubled by the addition of naturally produced spring Chinook salmon parr. However, growth of rainbow trout was suppressed when the density was doubled with rainbow trout (McMichael et al. 1997), which supports the previously mentioned idea of intraspecific impacts to rainbow trout growth in the main stem. The current results extend the findings of McMichael and Pearsons (1998) to smolts, residuals, coho salmon, and to lower elevation waters such as the main stem. Our ability to detect impacts with the BACI design and the longer experimental period in this study (higher statistical power) may explain the differences among the studies. Opportunities for
cumulative impacts to manifest and larger sample sizes may be necessary to detect impacts where high natural variation occurs.

It is possible that our abundance estimates in the main stem and tributaries and the size estimates in the tributaries were influenced by the size breaks that we used in our analysis. The lower size breaks were necessary (e.g., 80 mm in tributaries and 100 mm in the main stem), because we capture very few of these fish due to our low electrofishing efficiencies on small fish and hence cannot calculate valid estimates on these fish. This could result in varying proportions of age 0 and 1 fish in our estimate if the length at age varied across years or sites. However, we do not believe that length truncations significantly affected our conclusions. For example, if fish length was negatively impacted then the distribution of fish size would have become smaller, and more age 1 fish could have been pushed below 100 mm . Regardless of how many fish may have been shifted below 100 mm , if the impact occurred to the whole age class then we should have detected a decrease in size for fish above 100 mm (e.g., the whole length frequency curve would be shifted to smaller sizes). Similarly, if many fish were impacted so that they were less than 100 mm then the abundance of age 1 fish would have been negatively biased. In other words, we would expect to detect less fish than we did prior to supplementation. If we had concluded that impacts had occurred, then our length truncations would be a more serious issue.

We did not detect impacts to non-trout NTT that could be attributed to supplementation. In the tributaries, this was because none of the non-trout NTT overlapped with salmon at high enough levels to exceed the CO. All non-trout NTT in the main-stem overlapped completely, but none exceeded the containment objectives.

With the exception of minimum daily stream discharge in the main stem Yakima River, we did not detect changes in the environmental variables that were measured. We hypothesize the increased minimum daily stream discharge observed would benefit NTT. However, the increased minimum daily discharge was not significantly correlated with our NTT monitoring variables suggesting that it did not confound our results. Average and maximum stream discharge and temperature were heavily regulated by upstream irrigation reservoirs providing a relatively stable environment to conduct risk containment monitoring. Although discharge in tributaries is unregulated, summer base flows have not differed drastically during the time of sampling from year to year. The relatively stable environmental conditions observed in both tributary and main stem areas supports the use of time as a control in our evaluation.

Post-emergent growth

In a multiple year analysis (2009-2014), observed growth rate differed significantly among years (Homogeny of slopes model: $F_{5,192}=4.90, P<0.01$; Figure 5). Mean length, accounting for sampling date, was also detectably different among years (Separate slopes model: $F_{4,192}=5.22, P<0.01$). Post-hoc analysis revealed significantly greater mean length in 2010 and in 2014 in comparison to 2009; which had the smallest observed mean length within the six-year dataset.

The development of a growth model has allowed the detection of annual differences in size and growth rate among years. This information provides insight into upper Yakima spring Chinook population dynamics in the fry-to-parr life stage, and contributes to our understanding of environmental factors and/or behavioral responses which may negatively affect growth or survival in years of high spawner density.

The Yakima Basin experienced flow conditions throughout the 2009-2010 incubation period that were lower and far less variable than average for the system (Johnson et al. 2012). These conditions may have resulted in a relaxation of environmental influences on survival, resulting in uncharacteristically high survival and, in effect, an increase in the system capacity for spring Chinook subyearlings. Our data indicate that greater growth and size were present in the early rearing period in 2010, suggesting such a relaxation in limiting factors was present within or before the spring sampling period.

High observed productivity in the fall of both 2010 and also 2011 may give indications of the time period in which density dependent constraints exist under normative conditions in the upper Yakima. Preliminary results from genetic stock separation analysis of 2011 spring Chinook smolts originating from both the Yakima and Naches River basins (2010 fry-parr; WDFW unpublished data) suggests that high productivity in 2010 was not unique to the Yakima River basin. It is possible that a relaxing of capacity constraints occurred as a result of larger scale environmental conditions affecting multiple basins. If this is true, and the larger scale trends temporary, we might expect to observe a slow decrease in productivity in years following high escapement until the system again returns to its previous capacity for spring Chinook production. If this occurs, data collected from years of unusually high system productivity may give additional insight into the specific factors, again present, affecting survival in the upper basin.

Rearing abundance and habitat use

Our data suggest a greater abundance of summer rearing spring Chinook in 2010 than in any other survey year. This is consistent with our detection of greater size and growth in the spring, and also abundance and size in the fall of 2010. These findings, along with a nearly significant correlation between estimates of summer and fall abundance, suggest our methods were successful in tracking relative productivity through three distinct subyearling spring Chinook life-stages. Over time, these data should allow identification of the life-stage in which limitations to growth and survival are occurring; a critical first step in identifying the specific factor or factors negatively affecting the population in some years.

Yakima River spring Chinook redd-to-parr productivity observed in the fall of 2010 (WDFW unpublished data) was much higher than that predicted through the use of a Beverton-Holt recruitment curve developed using data from the previous sixteen years (Johnson et al 2009). Environmental conditions in the spring of 2010 appear to have been very conducive to early survival, perhaps due to an uncharacteristically low number of high-flow events during the incubation period (Johnson et al 2012). The absence of a
detectable response through subsequent life-stages when environmental conditions were not notably different (late spring, summer, and fall), suggests that capacity constraints may exist in earlier developmental periods in years where environmental conditions are more normative.

Documenting the existence of density dependent constraints post-emergence is confounded by the fact that this is often a period of high mortality, even when spawner densities are low. A system's capacity for incubating alevin is generally far greater than its capacity for juveniles, which generally results in low spawning densities, high survival to emergence, and post-emergent thinning of the population (Quinn 2005). However, during high return years, when competition exists for preferred spawning habitats, density dependent limitations to growth and survival may ultimately occur prior to first emergence. Such limitations may be attributable to a number of potentially limiting environmental factors such as increased sedimentation, scour, temperature, and/or decreased dissolved oxygen levels in less optimal spawning habitats. Estimates of lifestage specific growth and abundance during years with a high density dependent response will be necessary to identify limiting factors with any degree of certainty. We will continue to monitor summer parr abundance and to investigate the potential relationship between our summer and fall estimates.

Perhaps as important as the documentation of abundance in the summer rearing period is the identification of the existing habitats most heavily utilized by subyearling Chinook. This information may help in the identification of limiting factors, but will also further our understanding of reach specific productivity in years of low density; a critical metric that is often missing from restoration efforts, which often concentrate only on limitations or "bottlenecks" within the population (Mobrand et al. 1997). Although we encountered high variability in abundance among sampling units, we did find higher densities of rearing Chinook in pool and deep riffle type habitats. Therefore, the summer distribution of rearing subyearlings appears to be in-part due to the presence of certain habitat types. In addition to other, larger scale, environmental factors which may affect movement and subsequent survival (e.g. temperature, flow events) the use of habitat type as an explanatory variable should be beneficial in determining relative productivity among reaches of the upper Yakima River for summer rearing spring Chinook salmon.

Territory size continued to be strongly associated with spring Chinook length, which is consistent with the findings of others (Grant and Kramer 1990, Keeley and Grant 1995). These data suggest that territory may be a reasonable microhabitat metric to measure the degree of competition for space. Previous work in the Yakima Basin was unsuccessful in linking calculated territory based on local abundance to fall abundance (Pearsons et al. 2007). However, the spatial scale of those measures may have been either too large to detect changes in territorial behavior, or measured after any subsequent mortality or out-migration had occurred. Subyearling Chinook decreased the frequency of defense and foraging with increased distance from the holding position. This is consistent with our expectations that increased effort would be required to defend and utilize space away from the position of holding. The frequency of defense may be just as important as the size of the observed territory when evaluating limiting factors. For example, if food is a limiting factor, then we may observe highly defended areas of high
food availability and smaller territory size, and areas of low food availability where the individual is forced to defend a larger area. These two scenarios may be energetically equivalent for the individual. Ranges of focal depth, total depth, and focal velocity during our observations were within the ranges of previous years.

Spring Chinook residual/precocious male monitoring

Despite the large numbers of precocious males that are apparently released from the CESRF annually (Larsen et al. 2004; Beckman and Larsen 2005; Larsen et al. 2006), only a small fraction of these fish appear to reach the spawning grounds. Hatchery precocious males may experience high mortality, migrate out of the study area after release, and/or fail to migrate back to the spawning grounds. Although the occurrence of some of these factors were observed in this or other studies (Larsen et al. 2004; Beckman and Larsen 2005), we do not know the relative contribution of each of these factors towards the low abundance of precocious males on the spawning grounds.

Mortality of hatchery precocious males may be due to high angler exploitation, starvation, or predation. There is considerable angling pressure focused on trout in the Yakima River, and anglers have at times commented on the number of precocious Chinook males caught, particularly in 2001. However, it is illegal to keep Chinook salmon in the upper Yakima River. Furthermore, studies have shown that hatchery origin fish released into the natural environment have lower survival than natural origin fish, presumably because of their inability to find food or avoid predators (White et al. 1995; Weber and Fausch 2003).

It has been documented that some hatchery precocious males move downstream out of the spawning areas and have been detected as far downstream as Bonneville Dam on the Columbia River (Larsen et al. 2004; Beckman and Larsen 2005). In northern Oregon, precocious males were documented to have migrated at least 800 km and past three dams to reach salt water and return to the Umatilla River (Zimmerman et al. 2003). Hatchery precocious males were collected migrating both downstream in the spring and upstream during the summer (Larsen et al. 2004; Beckman and Larsen 2005). The downstream migrations occurred during the smolt out-migration period and the upstream migrations occurred at the time of adult spawning immigration. If precocious males migrate downstream and then environmental conditions turn poor before they are able to migrate back upstream, then they are likely to die. The lower Yakima River becomes lethal for salmonids during many of the hot summer months when precocious males might attempt to ascend the river. If the factors contributing to hatchery fish mortality in the river are reduced or the conditions in the river are favorable for migration back to the spawning grounds (e.g., favorable flows and low angling pressure), then presumably the number of hatchery precocious males on the spawning grounds could increase dramatically. However, the range of conditions that we evaluated in this study, which included both high and low flow years, provide a reasonable range of what can be expected in the future.

Most of the hatchery precocious males that we encountered were located downstream of spawning areas. The lower and upper Yakima Canyon typically contain less than 1% of the upper Yakima Basin redds (Yakama Nation, unpublished data) and yet averaged 59% of the estimated number of hatchery precocious males during the spawning season. Many of the hatchery precocious males on the spawning grounds were observed in a reach that had relatively little spawning activity, whereas the natural origin precocious males were mainly in the areas with high spawning activity. The spawning area where many of the hatchery precocious males were observed was at the lower end of
the spawning distribution. It also happens to be located closest to the Yakima Canyon where the highest abundance of precocious males that were not on the spawning grounds was observed. In the Wenatchee River, very few hatchery precocious males were observed on the spawning grounds, but a considerable number were captured migrating upstream at a location downstream of the spawning areas (Murdoch et al. 2007). These fish may have also distributed themselves below the main spawning areas as we observed in the Yakima Watershed. This behavior is in contrast to natural origin precocious males that are rarely observed moving upstream past dams in the Yakima or Wenatchee watersheds, suggesting that natural origin precocious males have adopted a strategy of remaining on or near the spawning grounds and thus conserving energy and promoting growth and testes development. Some hypotheses as to why sexually mature hatchery precocious males, most of which are exuding milt at the time of sampling, are located in areas away from where most of the spawning activity occurs include: lack of energetic capacity to swim back upstream to the spawning grounds; inappropriate downstream migration behavior for their life-history strategy; late migration timing; and inability to locate areas with spawning females after they had migrated downstream of spawning areas. Younger salmon, such as precocious males and jacks, typically migrate back to the spawning grounds later than older salmon (Knudsen et al. 2006; Murdoch et al. 2007) and may migrate during unfavorable environmental conditions.

Cle Elum Hatchery origin fish are only released at age 1, which eliminates the possibility that age 0 hatchery precocious males will have the potential to spawn. In the absence of hatchery releases, age 0 precocious males are generally more abundant in the spawning areas than age 1 precocious males, so the hatchery is skewing the precocious male composition to an older age and larger size. This is in stark contrast to anadromous hatchery fish which typically mature earlier than wild fish and often at a smaller size-atage (Knudsen et al. 2006). It is interesting to note that few incidences of precocious male maturation at age 0 have been observed in the Yakima hatchery (Larsen et al. 2004). In addition, attempts to experimentally produce age 0 precocious males by high feeding rates in the hatchery did not produce any precocious males in 2002 (Farrell 2003). These fish emerged at the average emergence time of the population. It is possible that only the fish that emerge very early and experience good growth have the potential to precociously mature at age 0 (Larsen et al. 2007). However, because precocious males were not used in the broodstock, we cannot eliminate the possibility that genetics also influenced the absence of precocialism (e.g., Heath et al. 1994; Unwin et al. 1999).

Hatchery age 1 fish may be competitively superior to wild precocious males because hatchery precocious males are larger. Larger salmonids typically dominate smaller ones in behavioral contests (McMichael et al. 1999). We have observed a number of instances where hatchery precocious males displaced wild precocious males from redds or from preferred locations on redds. Behavioral dominance is important because dominant fish are more likely to be close to spawning females and hence more able to fertilize eggs (Garant et al. 2003). Dominant fish are better able to choose which locations pose the best chance for spawning success. Our behavioral observations suggest that per capita fertilization rates of hatchery precocious males should be higher than that of wild precocious males. However, sneaking strategies of smaller individuals may also be successful.

We have identified some issues that could potentially contribute to the underestimation of precocious male numbers during our peak snorkel counts. We may have underestimated the number of active redds by spooking adults or by floating at times when adults are temporarily away from their redds. However, we rarely observed precocious males on redds without adults being present and this finding was also supported by work in the Salmon River drainage (Gebhards 1960). Gebhards (1960) concluded that precocious males were generally only found in areas where there was spawning activity and were usually found in the bowl of the redd, and "the yearling males remained constantly within the redd."

Other reasons include the possibility that precocious males may have been hiding away from the redds, were scared off the redds, were moving between redds, or were present in greater numbers before or after our peak count. Additional snorkeling efforts along the banks in 1998 and 2007 did not find hatchery precocious males in hiding areas such as undercut bank in the vicinity of spawning areas, and multiple reach surveys conducted in 2007 and 2008 did not suggest greater numbers of precocious males on the spawning grounds the week before or after our peak of spawning surveys. We have also observed that repeated counts of precocious males at three different times of the day in the same reach were similar. This suggests that either our counts were accurate or that our bias was consistent. However, our estimates of fish away from redds, that were generated from electrofishing were higher in some years than those generated from snorkeling in the Thorp reach, suggesting that snorkeling may underestimate abundance.

In short, if we underestimated the number of precocious males on the spawning grounds then our numbers should be treated as indices.

Our study suggests that hatchery precocious males are unlikely to contribute a high proportion of genes in the Yakima Watershed when the number of anadromous adult returns is high, but contributions could be high when anadromous adult numbers are low. The highest abundance of hatchery precocious males that we estimated on the spawning grounds during any year was 78 . This is a small proportion of the spawners when anadromous spawners number in the thousands, but relatively large when the abundance of spawners is in the hundreds. This range of anadromous fish abundance has been observed in the upper Yakima Watershed. In a separate DNA pedigree study conducted in an artificial spawning channel (Schroder et al. 2006), hatchery and natural origin precocious males of the upper Yakima spring Chinook salmon stock have been documented to sire offspring. In addition, precocious maturation appears to be highly heritable in Yakima spring Chinook salmon (Pearsons et al. 2007d). In short, it appears that the genetic contribution of hatchery precocious males on the spawning grounds is related to anadromous fish abundance and those factors that influence the abundance of precocious males on the spawning grounds. Variation in the precocious male contribution suggests that domestication risks may vary among years.

Predation Mortality

The wild Yakima River spring Chinook were found to be slightly over two percent more successful at surviving the predation trials than the first generation of the hatchery control population during 2003 and 2004 (Fritts et al. 2007). Beginning in 2005, the supplementation population has generally exhibited an equal to a slight survival advantage over the hatchery control population (Fritts and Stockton 2010).

We speculate that it is possible to detect differences in survival between the hatchery, supplementation, and wild Naches origin fry in some years and not to detect differences in other years due to changes in selection pressures between years. For example, assume that the numbers of adults used for broodstock at the CESRF were to remain relatively constant and the numbers of adults spawning naturally fluctuated by several orders of magnitude. It is theoretically possible for the supplementation and Naches populations to express varying degrees of predation vulnerability from year to year due to density dependent selection pressures in the river environment. Offspring from an abundant run of adults may experience less predation pressure per capita from a constant level of predation, thus more juveniles could survive that do not express traits that are advantageous to avoid predation. If these fish survive to spawn, they could produce more offspring that inherit those traits, which may limit our ability to detect a difference between the two origins. Supplementation may initially decrease the per capita predation pressure on fry because it increases the abundance of fry relative to predators. However, it is likely that the predator population will eventually increase in abundance if more prey continues to be available during the "building stage" of supplementation (Pearsons 2002). The opposite would be true for the offspring of a weaker run of adults and there could be greater differences in the two origins that we would be able to detect. Thus, in some years the per capita predation selection could be very similar in natural and hatchery environments (no selection) and in other years the selection differential could be large. In addition, because we do not want to adversely impact the Naches population, we use far fewer adults as broodstock for the study fry than is used for the hatchery and supplementation fry. This greatly increases the chances that individual differences in the Naches adults that we collect will influence the results of the study and therefore may not be representative of the Naches population in some years.

Steps were taken to ensure any differences that are detected in survival can be attributed to genetic differences. The great care that is taken to size match the fry is important to ensure the results are not affected by size-influenced predation. Smaller fish may be more vulnerable to predators because of slower swimming speed (Taylor and McPhail 1985) or less likely to be gape limiting to a predator (Pearsons and Fritts 1999). Studies have shown that smaller salmonids are more vulnerable to predators than larger salmonids (Patten 1977; Hargreaves and LeBrasseur 1986), such as was evident all but one year (2012) in the small and large fry that were individually marked during the trials. The sizes of the predators in each net pen were similar in order to decrease the chances of differential size selective predation. Alternating the mark type each origin of fish received between net pens ensured that any marking effect would not influence our
conclusions. Although, it is unlikely, we cannot exclude the possibility that these findings were influenced by a maternal effect (Heath and Blouw 1998). However, if maternal effects were occurring one would expect to see significant changes in survival as fish get older because it is believed that maternal effects are most pronounced in young fish (Heath et al. 1999). We did not detect changes in survival through time suggesting that maternal effects were not prevalent in our experiment. Finally, we found very small to no difference in the background mortality of the three groups.

The results of this experiment are also more likely to be representative of the whole population than other studies because we tested the offspring of far more families than any other study of predation and domestication that we are aware of. Only testing a few families increases the chances that any differences would be due to a single adult that had genetic attributes that made them exceptionally good or poor at avoiding predators. Using two types of predators also ensured that the fry would require a more complete suite of predator avoidance tactics. During short observations immediately after introduction of the fry into to net pens, the fry were observed to form a single school and swim along the bottom of the net pens where two or three predatory attacks by the sculpins would be witnessed within the first five minutes. When the fry were recovered on the last day of the trials, they were generally higher in the water column beneath the overhead cover where they were safe from the sculpin but still vulnerable to the trout. Qualitative observations of the stage of decomposition of fry in the stomach contents of the predators showed that both species consumed several fry and that the sculpins consumed most of the fry early during the trial while the trout consumed fry throughout the duration of the trial.

Because the prey fish were treated identically, any differences found should be due to genetic differences and not abnormal behavior that is learned in the hatchery environment. This means that any differences that we find could be expressed in the natural environment. However, because the experiments were conducted in an artificial environment, we do not know how differences will be manifested in the natural environment. For example, in years of low predation pressure, no differences in survival of the offspring may occur..

This study that has shown a diversity of results thus far. Of the peer-reviewed literature that have found predation differences due to origin, those studies have only lasted one or two years and have generally represented a smaller number of families (Table 17). It is important to evaluate behavioral studies for multiple years using high numbers of families because of the annual differences in selection pressures and variability between individuals within populations.

Table 17. A comparison of studies that have tested the effects of domestication on predation vulnerability. Species tested, origins compared, number of generations under hatchery culture, founding stock, rearing environment, years tested, number of families tested, and the metric used to asses vulnerability are compared.

Study	Species	Comparison	$\begin{gathered} \mathrm{H} \\ \text { gen } \end{gathered}$	Stock ${ }^{\text {a }}$	Rearing ${ }^{\text {b }}$	Yrs	Families	Metric ${ }^{\text {c }}$
1	Brown trout	wild vs. hatchery	1-2	S?	D	1	5-7	B
2	Steelhead	wild vs. hatchery	1-7	S	S	1	7-10	M
3	Brown trout	wild vs. hatchery	5	S	S	1	9	B
4	Atlantic salmon	wild vs. farmed	7	S	S	1	8	B
5	Steelhead rainbow trout	wild vs. wild/farmed hybrid	5+	D	S	1	11	B
6	Brown trout	wild vs. hatchery/wild hybrid	5	S	S	1	Up to 64 (mixture)	B
7	Atlantic salmon	wild vs. farmed	7	S	S	2	?	B
8	Masu salmon	wild vs. hatchery vs. farmed	7+	D	D	1	?	B
This study	Chinook salmon	Supplemented vs. hatchery w/ wild control	1-2	S	S	8	12-59	M

${ }^{1}$ Alvarez and Nicieza (2003); ${ }^{2}$ Berejikian (1995); ${ }^{3}$ Ferno and Jarvi (1998); ${ }^{4}$ Fleming and Einum (1997); ${ }^{5}$ Johnsson and Abrahams (1991); ${ }^{6}$ Johnsson et al. (1996); ${ }^{7}$ Johnsson et al. (2001);
${ }^{8}$ Yamamoto and Reinhardt (2003); *Present study
${ }^{\text {a }}$ Same (S) or different (D) founder stock.
${ }^{\text {b }}$ Same (S) or different (D) rearing environment.
${ }^{\mathrm{c}}$ Behavior (B) or mortality (M).

The first two years of the study (2003-2004) were the last two years where we had the opportunity to use offspring of truly wild spring Chinook from the upper Yakima River because the first adult returns from the Cle Elum Hatchery spawned naturally in 2001. There was a slight chance that a naturally produced jack used for 2003 brood (2004 study population) could have been sired by a hatchery jack in 2000 but we consider that unlikely given the small proportion of hatchery jacks in 2000 relative to the wild population. The hatchery control population began with the spawning of returning hatchery origin fish in 2002, our 2003 study population. Brood year 2013 completed the third generation of the hatchery control population and the final year of this study. We will perform a comprehensive analysis of the three generations of data and produce a final report of this work to be included in the next annual report.

Competitive dominance

We have observed the full range of possible outcomes in dominance between supplementation and hatchery fish. Supplementation fish dominated hatchery fish in 2005, opposite results were found in 2006, 2008 and 2013, and neither was dominant in 2007, 2009, 2010, 20112012 or 2014. At this time we cannot think of any compelling reason why offspring of wild (2003-2004, Pearsons et al. 2007) and the early supplementation population (2005, with minimal natural spawning first generation hatchery influence) appeared to dominate the hatchery population during the first three years of this study. Since that time, there has been no obvious trend of one group becoming more dominant. Lynch and O’Hely (2001) predict that it typically takes 10 to 20 generations for a supplemented population to reach 50% equilibrium in terms of the genetic load from captive breeding depending on strengths of selection in the hatchery and natural environments and proportion of hatchery fish spawning in the wild. If this is the case, then it seems reasonable that the hatchery and supplementation fish could exhibit this flip-flopping of dominance between years for quite some time as deleterious alleles are expressed at different rates depending on environmental pressures and the proportion of hatchery fish on the spawning grounds until they begin reaching equilibrium.

The differences in dominance and aggression that we have observed were likely due to an interaction between genetic changes that occurred from fish culture, differences in stocks, and a year effect. However, we cannot exclude the possibility that changes were caused by a maternal rearing environment effect (e.g., not a genetic effect). This might occur if hatchery rearing caused phenotypic differences in females that were passed on to progeny. We believe that this was unlikely to have had much of an effect on our experiments because 1) egg sizes of hatchery and wild fish were not significantly different (Knudsen 2005), and 2) fish were tested approximately 4 months after hatching. Most studies that have reported maternal effects in fish have documented relationships between female size and progeny size (Heath and Blouw 1998). We attempted to control for size effects by size matching our fish. Maternal effects are more likely to occur when fish are very young. In a review of maternal effects in fish, Heath and Blouw (1998) concluded "maternal effects in fishes are usually negligible beyond the early juvenile life stages."

With the exception of this study, annual differences in competitive dominance associated with domestication have generally not been evaluated. Most studies that have evaluated this topic are based on one year of study and none have been longer than two years (Table 18). The study presented in this report combined with the work presented in Pearsons et al. (2007) represent twelve years of study. We have seen considerable annual differences in our results. If we had restricted our study to a single year, then we may have concluded that domestication positively, negatively, or neutrally influenced competitive dominance. This finding suggests that we should use caution when interpreting dominance results that do not evaluate multiple years of study.

In comparison to our observations, juvenile coho salmon reared in hatcheries have been documented to be more aggressive than wild fish (Swain and Riddell 1990; Berejikian et al. 1999) or less aggressive (Berejikian et al. 1996). Furthermore, Einum
and Fleming's (2001) meta-analysis of aggression revealed that hatchery fish were more aggressive than wild fish. We suspect that the differences in findings are caused by 1) the duration and type of hatchery practices, and 2) differences in the rearing environment of the fish tested. Most, if not all, of the studies that have previously been conducted outside of the Yakima Basin have used hatchery fish that have been under culture for several generations and frequently these are of non-local origin (Table 21). If genetic changes or maternal effects are additive, then it is likely that larger differences in aggression will be detected with each additional generation of fish culture. Furthermore, fish that are collected from natural environments and compared to fish reared in hatchery environments are likely to produce differences because of the differences in rearing conditions. For example, in another study, we found that spring Chinook smolts reared in the hatchery dominated salmon smolts that were reared in the Yakima River. Larger fish generally dominated smaller fish, but the size difference did not have to be as great for hatchery fish to dominate as wild fish (Pearsons et al.,WDFW, unpublished data). In short, hatchery fish were dominant over wild fish in contest competition experiments unless wild fish were sufficiently larger than hatchery fish. In a study of coho salmon, Rhodes and Quinn (1998) reported similar findings.

Table 18. Comparison of dominance studies that relate to domestication selection of salmonids of varying origins.

Study	Species	Comparison ${ }^{\text {a }}$	Hatch. gener.	Stock	Yrs	Number of families	Trial $\text { type }^{\text {b }}$	Replicates	Metric ${ }^{\text {c }}$
1	Steelhead	W vs. H	4-7	Same	1	$13 \mathrm{~W} ; 18 \mathrm{H}$	C	16	A, P, C
2	Coho	W vs. C	1	Different	1	15	C	44	A, P
$3{ }^{\text {e }}$	Atlantic	W vs. F	6-10	Different	1	?	C	218	P
4	Grayling	W vs. W H vs. H	2	Same	2	?	?	30 ?	A
5	Coho	$\begin{aligned} & \text { W vs. W } \\ & \text { H vs. H } \end{aligned}$	5	Different	1	$\begin{aligned} & 10 \& 13 \mathrm{~W} \\ & 11 \& 191 \mathrm{H} \end{aligned}$	M	21?	A
$6^{\text {f }}$	Chinook	H vs. H	1 vs. 5	Same	1	5	C	40	P, F, A
7^{8}	Chinook	W vs. H	1	Same	1	6	C	89	P, F, A
8	Chinook	W vs. H	1	Same	2	54-59	C, S	229, 276	P, F, A
9	Atlantic	W vs. F	7	Different ${ }^{\text {d }}$	1	$6+\mathrm{W}, 8 \mathrm{~F}$	C	30 stream	P, F, A
9	Atlantic	W vs. F	7	Different ${ }^{\text {d }}$	1	$6+\mathrm{W}, 8 \mathrm{~F}$	C	15 tank	A
10	Brown trout	W vs. H	10	Same	1	Up to 64 (mixture)	C	12	A
This study	Chinook	S vs. H w/ W control	1-2	Same	8	23-52	C, S	157-299	P, F, A

${ }^{1}$ Berejikian et al. (1996); ${ }^{2}$ Berejikian et al. (1999); ${ }^{3}$ Metcalfe et al. (2003); ${ }^{4}$ Salonen and Peuhkuri (2004); ${ }^{5}$ Swain and Riddell (1990); ${ }^{6}$ Wessel et al. (2006); ${ }^{7}$ Farrell et al. (2003); ${ }^{8}$ Pearsons et al. (2007); ${ }^{9}$ Fleming and Einum (1997); ${ }^{10}$ Johnsson et al. 1996; *Present study.
${ }^{\text {a }}$ Offspring of wild (W), supplementation (S), hatchery or sea-ranched (H), farmed (F), and captive brood (C).
${ }^{\mathrm{b}}$ Contest (C), mirror image (M), and Scramble (S).
${ }^{\mathrm{c}}$ Metrics used to assess dominance are aggression (A), position (P), color (C), and food (F).
${ }^{\mathrm{d}}$ Farmed population founded, in part, from wild population.
${ }^{\text {e}}$ Subjects were not size matched.
${ }^{\mathrm{f}}$ Subjects were within $\pm 3 \mathrm{~mm}$ FL.
${ }^{\text {g }}$ Subjects were within 4\% FL.
The results presented in this chapter are part of a long-term study that attempts to evaluate if hatchery supplementation alters competitive dominance relative to an unsupplemented reference population and a hatchery population. Now that the third
generation of the hatchery control population is complete, we will perform an analysis of the entire dataset and produce a final report on this work.

Spring Chinook reproductive success/spawning channel

Approximately 93 percent successes were achieved at inferring parent-offspring relationships. Examination of Table 4 reveals a very uneven pattern of reproductive success among the candidate parents. Based on the subsample of 2,545 fry that were successfully assigned parents, the range of inferred reproductive output among males was $0-370$ fry; the range for the same period in reproductive output among females was 0 197 fry. Some of the dam-sire matings we inferred are well supported (there were a lot of fry assigned to them) and some are weakly supported (not many fry were assigned to them). Caution should be used when interpreting dam-sire-fry combinations that were inferred rarely. Future integration of fecundity estimates for spawners will enrich the interpretation of these estimates of reproductive output.

Interpretation of the inferred parental reproductive output based on parentage assignments by genetic analysis requires the consideration and analysis of individual fish attributes, including fecundity and body size, the closed nature of the experimental environment in which sub-dominant males had a more limited number of alternative females to court than they might have had in an open system, and relative stocking levels and synchronicity of spawning.

Spring Chinook Genetic stock separation-juveniles

Collection of smolts at the Chandler Trap in 2013 utilized a sampling design intended to yield a sample that was proportional to the number of smolts passing the Chandler Trap. Sampling a proportional number of smolts was important to determine an accurate percentage of smolts from each stock that were outmigrating from the basin. Developing the sampling strategy for identifying a "standard" versus "peak" day of smolts that were in the trap and applying a sampling goal for those days allowed for a proportional sample. Subsampling the smolts collected for genetic analysis provided a best fit to the actual passage of smolts for a given day.

Monitoring the relative abundances of Chinook smolts in the Yakima River from the three different populations of spring Chinook (upper Yakima River, American River, and Naches River) and the two populations of fall Chinook (Marion Drain and lower Yakima River) requires the ability to estimate population composition of smolts outmigrating past Chandler trap. Because all five Chinook populations are intermingled when they pass Chandler trap, and the vast majority are unmarked and untagged, the only way to determine population-of-origin is by genetic analysis. This method requires that sufficient genetic differences exist among these populations in the Yakima River basin.

A baseline of 19 individual collections from the five populations in the Yakima River basin was used for the population-of-origin assignments of the outmigrating smolts. The baseline collections as a whole had higher genotyping failure compared to the Chandler smolt samples. Scales were taken from carcasses on spawning grounds for
most baseline collections; therefore, DNA quality was presumably poorer than the Chandler smolt collection where tissue was collected from live fish. The upper Yakima River tissue collections were also taken from live fish at the hatchery and, therefore, genotyping success was higher for this collection than the other baseline collections.

Assessment of spring or fall smolts by morphological and genetic analysis revealed agreement with 55 individuals being identified differently between the two methods. Identification as a spring or fall smolt was the same for 1,125 smolts collected during the January - February, March, April, May, and June - July time strata.

The majority of the assignments between January and May were from the three spring stocks. The upper Yakima River spring stock accounted for the highest average percentage (76.2%) of smolts present in that period. Rank in abundance of the three spring stocks was the same in the three time strata (January-February, March, April, and May) with upper Yakima River spring stock having the most. The June-July time stratum was predominately composed of the fall Chinook stocks, accounting for over 70.6% of the total number of smolts.

Assessment of DNA Mixture Assignments from 2000-2013

Mixed stock analysis has been conducted on Chandler smolts since 2000 (Young 2004, Kassler et al. 2005, Kassler 2006, Kassler and VonBargen 2007, 2008, 2009 and 2010, Kassler and Peterson 2011, Kassler and Bell 2012, Kassler and Bowman 2013); however the sampling design for samples collected in 2000-2003 was not proportionalized during the run. The yearly assignments are therefore not comparable from those years. Beginning in 2004, staff at the Chandler trap utilized a sampling protocol to provide a number of smolts that was relative to the percentage of smolts passing that day. Samples were then subsampled at WDFW to provide a proportional number of samples that would represent the overall passage to be analyzed.

b. Hatchery RM\&E

The performance of the YKFP spring Chinook supplementation program has been documented relative to the project quantitative objectives and has been presented annually in the YKFP M\&E project overview (Fritts 2012). Briefly, the project appears to be meeting or is making progress towards achieving the project's objectives (Appendix C).

6. References

Alvarez, D., and A. G. Nicieza. 2003. Predator avoidance behavior in wild and hatchery-reared brown trout: the role of experience and domestication. Journal of Fish Biology:63:1565-1577.

Beckman, B. R., and D. A. Larsen. 2005. Upstream migration of minijack (age-2) Chinook salmon in the Columbia River: behavior, abundance, distribution, and origin. Transactions of the American Fisheries Society 134:1520-1541.

Berejikian, B. A. 1995. The effects of hatchery and wild ancestry and experience on the relative ability of steelhead trout fry (Oncorhynchus mykiss) to avoid a benthic predator. Canadian Journal of Fisheries and Aquatic Sciences 52:2476-2482.

Berejikian, B. A., S. B. Mathews, and T. P. Quinn. 1996. Effects of hatchery and wild ancestry and rearing environments on the development of agonistic behavior in steelhead trout (Oncorhynchus mykiss) fry. Canadian Journal of Fisheries and Aquatic Sciences 53:2004-2014.

Berejikian, B. A., E. P. Tezak, S. L. Schroder, T. A. Flagg, and C. M. Knudsen. 1999. Competitive differences between newly emerged offspring of captive-reared and wild coho salmon. Transactions of the American Fisheries Society 128:832-839.

Bisson, P. A., K. Sullivan, and J. L. Nielsen. 1988. Channel hydraulics, habitat use, and body form of juvenile coho salmon, steelhead, and cutthroat trout in streams. Transactions of the American Fisheries Society 117:262-273.

Bohlin, T., S. Hamrin, T. G. Heggberget, G. Rasmussen, and S., J. Saltveit. 1989. Electrofishing - Theory and practice with special emphasis on salmonids. Hydrobiologia 173:9-43.

BPA (Bonneville Power Administration). 1996. Yakima Fisheries Project. Final Environmental Impact Statement. Bonneville Power Administration. Washington Department of Fish and Wildlife. Yakama Indian Nation. January, 1996. DOE/EIS-0169. DOE/BP-2784. Portland, OR.

Busack, C.A., and K.P. Currens. 1995. Genetic risks and hazards in hatchery operations: Fundamental concepts and issues. American Fisheries Society Symposium 15: 7180.

Busack, C., B. Watson, T. Pearsons, C. Knudsen, S. Phelps, M. Johnston. 1997. Yakima Fisheries Project Spring Chinook Supplementation Monitoring Plan. Report, DOE/BP-64878-1. Bonneville Power Administration, Portland, OR.

Busack, C., and four coauthors. 2006. Natural production and domestication monitoring of the Yakima spring Chinook supplementation program: December 2005 revision. Pages 148-196 in Busack, C. and seven coauthors. 2006.

Yakima/Klickitat Fisheries Project Genetic Studies, Annual Report 2005. Bonneville Power Administration, Portland, Oregon. (DOE/BP-00022370-5).

Dunham, J. B., and B. E. Rieman. 1999. Metapopulation structure of bull trout: influences of physical, biotic, and geometrical landscape characteristics. Ecological Applications 9(2):642-655.

Einum, S. and I. A. Fleming. 2001. Implications of stocking: Ecological interactions between wild and released salmonids. Nordic Journal of Freshwater Research 75:56-70.

Farrell, M. H. 2003. Growth, dominance and precocity in juveniles of first generation hatchery and wild Chinook salmon (Oncorhynchus tshawytscha). M.Sc. thesis, Department of Biology, Central Washington University, Ellensburg, WA.

Fernö, A., and T. Järvi. 1998. Domestication genetically alters the anti-predator behavior of anadromous brown trout (Salmo trutta) - a dummy predator experiment. Nordic Journal of Freshwater Research 74:95-100.

Fleming, I. A., and S. Einum. 1997. Experimental tests of genetic divergence of farmed from wild Atlantic salmon due to domestication. ICES Journal of Marine Science 54:1051-1063.

Fritts, A. L., and C. A. Stockton. 2010. The effects of domestication on predation mortality and competitive dominance; Yakima/Klickitat Fisheries Project monitoring and evaluation, Annual Report 2007. Bonneville Power Administration, Portland, Oregon.

Fritts, A. L., J. L. Scott, and T. N. Pearsons. 2007. The effects of domestication on the relative vulnerability of hatchery and wild origin spring Chinook salmon to predation. Canadian Journal of Fisheries and Aquatic Sciences 64:813-818.

Fritts, A. L., and C. A. Stockton. 2010. The effects of domestication on predation mortality and competitive dominance; Yakima/Klickitat Fisheries Project monitoring and evaluation, Annual Report 2009. Bonneville Power Administration, Portland, Oregon.

Fritts, A. L. 2012. Spring Chinook salmon supplementation in the upper Yakima Basin: Yakima/Klickitat Fisheries Project overview, Annual Report 2011-2012. Bonneville Power Administration, Portland, Oregon.

Garant, D., I. A. Fleming, S. Einum, and L. Bernatchez. 2003. Alternative male life-history tactics as potential vehicles for speeding introgression of farm salmon traits into wild populations. Ecology Letters (2003) 6:541-549.

Gebhards, S. V. 1960. Biological notes on precocious male chinook salmon parr in the Salmon river drainage, Idaho. The Progressive Fish-Culturist 22:121-123.

Glova, G. J. 1984. Management implications of the distribution and diet of sympatric populations of juvenile coho salmon and coastal cutthroat trout in small streams in British Columbia, Canada. Progressive Fish-Culturist 46:269-277.

Glova, G. J. 1987. Comparison of allopatric cutthroat trout stocks with those sympatric with coho salmon and sculpins in small streams. Environmental Biology of Fishes 20:275-284.

Grant, J. W., and D. L. Kramer. 1990. Territory size as a predictor of the upper limit to population density of juvenile salmonids in streams. Canadian Journal of Fisheries and Aquatic Sciences 47:1724-1737.

Ham, K. D., and T. N. Pearsons. 2000. Can reduced salmonid population abundance be detected in time to limit management impacts? Canadian Journal of Fisheries and Aquatic Sciences 57:17-24.

Hargreaves, N. B., and R. J. LeBrasseur. 1986. Size selectivity of coho (Oncorhynchus kisutch) preying on juvenile chum salmon (O. keta). Canadian Journal of Fisheries and Aquatic Sciences 43:581-586.

Healey, M. C. 1983. Coastwide distribution and ocean migration patterns of stream-and ocean-type Chinook salmon, Oncorhynchus tshawytscha. Canadian FieldNaturalist 97:427-433.

Heath, D. D., R. H. Devlin, J. W. Heath, and G. K. Iwama. 1994. Genetic, environmental and interaction effects on the incidence of jacking in Oncorhynchus tshawytscha (chinook salmon). Heredity 72:146-154.

Heath, D. D., and D. M. Blouw. 1998. Maternal effects in fish: are they adaptive or merely physiological side-effects? Pages 178-201 in T. A. Mousseau and C. W. Fox, editors. Adaptive maternal effects. Oxford University Press, Oxford.

Heath, D. D., Fox, C. W., and Heath, J. W. 1999. Maternal effects on offspring size: variation through early development of chinook salmon. Evolution 53:16051611.

Johnson, C.L., T.N. Pearsons, and G. M. Temple. 2009. Spring Chinook Salmon Interactions Indices and Residual/Precocious Male Monitoring in the Upper Yakima Basin; Yakima/Klickitat Fisheries Project Monitoring and Evaluation. Annual Report 2008.

Johnsson, J. I., and M. V. Abrahams. 1991. Interbreeding with domestic strain increases foraging under threat of predation in juvenile steelhead trout (Oncorhynchus mykiss): an experimental study. Canadian Journal of Fisheries and Aquatic Sciences 48:243-247.

Johnsson, J. I., E. Petersson, E. Jonsson, B. T. Bjornsson, and T. Jarvi. 1996. Domestication and growth hormone alter antipredator behaviour and growth
patterns on juvenile brown trout, (Salmo trutta). Canadian Journal of Fisheries and Aquatic Sciences 53:1546-1554.

Johnsson, J. I., J. Hojesjo, and I. A. Fleming. 2001. Behavioural and heart rate responses to predation risk in wild and domesticated Atlantic salmon. Canadian Journal of Fisheries and Aquatic Sciences 58:788-794.

Johnson, C. L, P. Roni, and G. R. Pess. 2012. Parental effect as a primary factor limiting egg-to-fry survival of spring Chinook salmon in the upper Yakima River basin. Transactions of the American Fisheries Society 141(5): 1295-1309.

Kassler, T.W. 2005. DNA Based Parentage Assignments of Chinook Salmon from the Cle Elum Spawning Channel in 2004. Yakima/Klickitat Fisheries Project Genetic Studies. Annual Report 2005. Portland, OR, Bonneville Power Administration 20-40.

Kassler, T.W. 2006. DNA Based Parentage Assignments of Chinook Salmon from the Cle Elum Spawning Channel in 2005. Yakima/Klickitat Fisheries Project Genetic Studies. Annual Report 2006. Portland, OR, Bonneville Power Administration 20-37.

Kassler, T. W., D. K. Hawkins, and J. M. Tipping. 2008. Summer-Run Hatchery Steelhead Have Naturalized in the South Fork Skykomish River, Washington. Transactions of the American Fisheries Society 137:763-771.

Kassler, T.W. and S. Bell. 2012. DNA based stock-of-origin assignments of Chinook salmon smolts outmigrating past Chandler Trap (Yakima River) in 2011. Yakima/Klickitat Fisheries Project Genetic Studies. Annual Report 2011. Portland, OR, Bonneville Power Administration.

Kassler, T.W. and S. Peterson. 2011. DNA based stock-of-origin assignments of Chinook salmon smolts outmigrating past Chandler Trap (Yakima River) in 2010. Yakima/Klickitat Fisheries Project Genetic Studies. Annual Report 2011. Portland, OR, Bonneville Power Administration.

Kassler, T.W. and S. Peterson. 2012. DNA Based Parentage Assignments of ChinookSalmon from the Cle Elum Spawning Channel in 2011. Yakima/Klickitat Fisheries Project Genetic Studies. Annual Report 2011. Portland, OR, Bonneville Power Administration.

Kassler, T.W. and J.F. VonBargen. 2007. DNA Based Parentage Assignments of Chinook Salmon from the Cle Elum Spawning Channel in 2006. Yakima/Klickitat Fisheries Project Genetic Studies. Annual Report 2007. Portland, OR, Bonneville Power Administration.

Kassler, T.W. and J.F. VonBargen. 2008. DNA Based Parentage Assignments of Chinook Salmon from the Cle Elum Spawning Channel in 2007. Yakima/Klickitat

Fisheries Project Genetic Studies. Annual Report 2008. Portland, OR, Bonneville Power Administration.

Kassler, T.W. and J.F. VonBargen. 2008. DNA Based Parentage Assignments of Chinook Salmon from the Cle Elum Spawning Channel in 2007. Yakima/Klickitat Fisheries Project Genetic Studies. Annual Report 2008. Portland, OR, Bonneville Power Administration.

Kassler, T.W. and J.F. VonBargen. 2010. DNA Based Parentage Assignments of Chinook Salmon from the Cle Elum Spawning Channel in 2009. Yakima/Klickitat Fisheries Project Genetic Studies. Annual Report 2010. Portland, OR, Bonneville Power Administration.

Kassler, T.W., M. Johnston, S.F. Young, and J.B. Shaklee. 2005. DNA based stock-oforigin assignments of Chinook salmon smolts outmigrating past Chandler Trap (Yakima River) in 2004. Yakima/Klickitat Fisheries Project Genetic Studies. Annual Report 2005. Portland, OR, Bonneville Power Administration 41-77.

Kassler, T.W., J.F. VonBargen, C.A. Dean, and C.M. Bowman. 2011. DNA Based Parentage Assignments of Chinook Salmon from the Cle Elum Spawning Channel in 2010. Yakima/Klickitat Fisheries Project Genetic Studies. Annual Report 2011. Portland, OR, Bonneville Power Administration.

Keeley, E. R., and Grant, J. W. A. 1995. Allometric and environmental correlates of territory size in juvenile Atlantic salmon (Salmo salar). Canadian Journal of Fisheries and Aquatic Sciences 52:186-196.

Knudsen, C. M. 2005. Reproductive ecology of Yakima River hatchery and wild spring chinook. Annual Report FY 2004-2005 submitted to Bonneville Power Administration, Portland, Oregon. DOE/BP-00017478-4.

Knudsen, C. M., S. L. Schroder, C. A. Busack, M. V. Johnston, T. N. Pearsons, W. J. Bosch, and D. E. Fast. 2006. Comparison of life history traits between firstgeneration hatchery and wild upper Yakima river spring Chinook salmon. Transactions of the American Fisheries Society 135:1130-1144.

Larsen, D. A., B. R. Beckman, K.A. Cooper, D. Barrett, M. Johnston, P. Swanson, and W. W. Dickoff. 2004. Assessment of high rates of precocious male maturation in a spring Chinook salmon supplementation hatchery program. Transactions of the American Fisheries Society 133:98-120.

Larsen, D. A., B. R. Beckman, C. R. Strom, P. J. Parkins, K. A. Cooper, D. E. Fast, and W. W. Dickhoff. 2006. Growth modulation alters the incidence of early male maturation and physiological development of hatchery-reared spring Chinook salmon: A comparison with wild fish. Transactions of the American Fisheries Society 135:1017-1032.

Larsen, D. A., B. R. Beckman, C. R. Strom, P. J. Parkins, K. A. Cooper, M. Johnston, D. E. Fast, and W. W. Dickhoff. 2007. Growth rate modulation in Spring Chinook salmon
supplementation. Annual Report 2006-2007. Report to Bonneville Power Administration, publication DOE/BP-104644, Portland, Oregon.

Lynch, M. and M. O’Hely. 2001. Captive breeding and the genetic fitness of natural populations. Conservation Genetics 2:363-378.

McMichael, G. A., and T. N. Pearsons. 1998. Effects of wild juvenile spring chinook salmon on growth and abundance of wild rainbow trout. Transactions of the American Fisheries Society 127:261-274.

McMichael, G. A. and T. N. Pearsons. 2001. Upstream movement of residual hatchery steelhead into areas containing bull trout and cutthroat trout. North American Journal of Fisheries Management 21:517-520.

McMichael, G. A., C. S. Sharpe, and T. N. Pearsons. 1997. Effects of residual hatcheryreared steelhead on growth of wild rainbow trout and spring chinook salmon. Transactions of the American Fisheries Society 126:230-239.

McMichael, G. A., T. N. Pearsons, and S. A. Leider. 1999. Behavioral interactions among hatchery-reared steelhead smolts and wild Oncorhynchus mykiss in natural streams. North American Journal of Fisheries Management 19:948-956.

Metcalfe, N. B., S. K. Valdimarsson, and I. J. Morgan. 2003. The relative roles of domestication, rearing environment, prior residence and body size in deciding territorial contests between hatchery and wild juvenile salmon. Journal of Applied Ecology 40:535-544.

Mobrand, L. E., J. A. Lichatowich, L. C. Lestelle, and T. S. Vogel. 1997. An approach to describing ecosystem performance "through the eyes of salmon". Canadian Journal of Fisheries and Aquatic Sciences 54: 2964-2973

Mobrand, L. E., J. Barr, L. Blankenship, D. E. Campton, T. T. P. Evelyn, T. A. Flagg, C. V. W. Mahnken, L. W. Seeb, P. R. Seidel, and W. W. Smoker. 2005. Hatchery reform in Washington State: Principles and emerging issues. Fisheries 30(6):1123.

Murdoch, A. R., T. N. Pearsons, T. W. Maitland, C. L. Deason, M. Ford, and K. Williamson. 2007. Monitoring the reproductive success of naturally spawning hatchery and natural spring Chinook salmon in the Wenatchee River. Annual Report 2006-2007. Report to Bonneville Power Administration, publication DOE/BP-102540, Portland, Oregon.

Nakano, S., and M. Kaeriyama. 1995. Summer microhabitat use and diet of four sympatric stream-dwelling salmonids in a Kamchatkan stream. Fisheries Science 61(6):926-930.

Patten, B. G. 1977. Body size and learned avoidance as factors affecting predation on coho salmon fry by torrent sculpin (Cottus rhotheus). Fishery Bulletin 75:451459.

Pearsons, T.N. 2002. Chronology of ecological interactions associated with the life-span of salmon supplementation programs. Fisheries 27(12):10-15.

Pearsons, T. N., and A. L. Fritts. 1999. Maximum size of chinook salmon consumed by juvenile coho salmon. North American Journal of Fisheries Management 19:165170.

Pearsons, T. N., and C. W. Hopley. 1999. A practical approach for assessing ecological risks associated with fish stocking programs. Fisheries 24(9):16-23.

Pearsons, T. N., S. R. Phelps, S. W. Martin, E. L. Bartrand, and G. A. McMichael. 2007. Gene flow between resident and anadromous rainbow trout in the Yakima Basin: Ecological and genetic evidence. Pages 56-64 in R. K. Schroeder and J. D. Hall, editors. Redband trout: resilience and challenge in a changing landscape. Oregon Chapter, American Fisheries Society, Corvallis, Oregon.

Pearsons, T. N., and G. M. Temple. 2007. Impacts of early stages of salmon supplementation and reintroduction programs on three trout species. North American Journal of Fisheries Management 27:1-20.

Pearsons, T. N., and G. M. Temple. 2010. Changes to rainbow trout abundance and salmonid biomass in a Washington watershed as related to hatchery salmon supplementation. Transactions of the American Fisheries Society 139:502-520.

Pearsons, T. N., C. L. Johnson, and G. M.Temple. 2008. Spring Chinook Salmon Interactions Indices and Residual/Precocious Male Monitoring in the Upper Yakima Basin; Yakima/Klickitat Fisheries Project Monitoring and Evaluation. Annual Report 2008. DOE/BP-00034450.

Quinn. T. P. 2005. The behavior and ecology of Pacific salmon and trout. University of Washington Press, Seattle Washington.

Reisenbichler, R. R., and S. P. Rubin. 1999. Genetic changes from artificial propagation of Pacific salmon affect the productivity and viability of supplemented populations. ICES Journal of Marine Science 56:459-466.

Rhodes, J. S., and T. P. Quinn. 1998. Factors affecting the outcome of territorial contests between hatchery and naturally reared coho salmon parr in the laboratory. Journal of Fish Biology 53:1220-1230.

Salonen, A., and N. Peuhkuri. 2004. A short hatchery history: does it make a difference to aggressiveness in European grayling? Journal of Fish Biology 65:231-239.

Sampson, M. R., D. E. Fast, and W. J. Bosch (eds). 2013. Yakima/Klickitat Fisheries Project monitoring and evaluation: Yakima Subbasin. Final Report for the performance period May/2012-April/2013. Bonneville Power Administration, Portland, Oregon. Document ID \# P133528.

Schroder, S. L., C. M. Knudsen, T. N. Pearsons, S. F. Young, T. W. Kassler, D. E. Fast and B. D. Watson. 2006. Comparing the reproductive success of Yakima River hatchery and wild-origin spring Chinook. Annual Report 2005-2006. Report to Bonneville Power Administration, publication DOE/BP-00022370-3, Portland, Oregon.

Swain, D. P., and B. E. Riddell. 1990. Genetic variation in agonistic behavior of juveniles between hatchery and wild stocks of coho salmon (Oncorhynchus kisutch). Canadian Journal of Fisheries and Aquatic Sciences 47:566-573.

Taylor, E. B., and J. D. McPhail. 1985. Burst swimming and size-related predation on newly emerged coho salmon Oncorhynchus kisutch. Transactions of the American Fisheries Society 114:546-551.

Temple, G. M., and T. N. Pearsons. 2012. Risk management of non-target fish taxa in the Yakima River watershed associated with hatchery salmon supplementation. Environmental Biology of Fishes 94:67-86.

Thurow, R.F., D.C. Lee, and B.E. Rieman. 1997. Distribution and status of seven native salmonids in the interior Columbia River basin and portions of the Klamath River and Great basins. North American Journal of Fisheries Management 17:10941110.

Unwin, M. J., M. T. Kinnison, and T. P. Quinn. 1999. Exceptions to semelparity: postmaturation survival, morphology, and energetics of male chinook salmon (Oncorhynchus tshawytscha). Canadian Journal of Fisheries and Aquatic Sciences 56:1172-1181.

Weber, E. D., and K. D. Fausch. 2003. Interactions between hatchery and wild salmonids in streams: differences in biology and evidence for competition. Canadian Journal of Fisheries and Aquatic Sciences 60:1018-1036.

White, R. J., J. R. Karr, and W. Nehlsen. 1995. Better roles for fish stocking in aquatic resource management. American Fisheries Society Symposium 15:527-550.

Wessel, M. L., W. W. Smoker, R. M. Fagen, and J. Joyce. 2006. Variation of agonistic behavior among juvenile Chinook salmon (Oncorhynchus tshawytscha) of hatchery, hybrid, and wild origin. Canadian Journal of Fisheries and Aquatic Sciences 63:438-447.

Yamamoto, T., and U. G. Reinhardt. 2003. Dominance and predator avoidance in domesticated and wild masu salmon Oncorhynchus masou. Fisheries Science 69:88-94.

Young, S.F. 2004. Year 2003 Chandler Chinook Smolt Stock-of-Origin Assignments. WDFW Genetics Laboratory unpublished report (Washington Department of Fish and Wildlife) Olympia, WA.

Young, S.F. and T.W. Kassler. 2005. Parentage Assignments of Chinook Salmon fromthe Cle Elum Spawning Channel in 2002 and 2003. Unpublished WDFW

Genetics Laboratory Report Washington Department of Fish and Wildlife, Olympia, WA.

Zimmerman, C. E., R. W. Stonecypher, Jr., and M. C. Hayes. 2003. Migration of precocious male hatchery chinook salmon in the Umatilla River, Oregon. North American Journal of Fisheries Management 23:1006-1014.

Appendix A: M\&E Project Publication List

The following publication list includes technical reports and peer reviewed publications that have been produced from the work under the Yakima/Klickitat Fisheries Project's monitoring and evaluation program.

Amaral, S. V., F. C. Winchell, and T. N. Pearsons. 2001. Reaction of Chinook salmon, northern pikeminnow, and smallmouth bass to behavioral guidance stimuli. Pages 125-144 in C. C. Coutant, editor. Behavioral technologies for fish guidance. American Fisheries Society, Symposium 26, Bethesda, Maryland.

Busack, C., C. Knudsen, and T. Pearsons. 1999. Risks to natural populations from hatchery operations: Genetic, demographic and ecological concerns. In RussianAmerican Conference on Salmon Conservation, Kamchatka, Russia. Pg. 15-16.

Busack, C., C. M. Knudsen, G. Hart, and P. Huffman. 2007. Differences in Body Shape Between First-Generation Hatchery and Wild Upper Yakima River Spring Chinook Salmon. Transactions of the American Fisheries Society.136(4): 10761087.

Busack, C. and C. M. Knudsen. 2007. Using Factorial Mating Designs to Increase the Effective Number of Breeders in Fish Hatcheries: 153-176.

Busack, C., and C. M. Knudsen. 2007. Using factorial mating designs to increase effective number of breeders in fish hatcheries. Aquaculture 273(1): 24-32.

Busack, C., C. Knudsen, S. Schroder, T. Pearsons, A. Fritts, D. Fast, W. Bosch, M. Johnston and D. Lind. 2008. Natural Production and Domestication Monitoring of the Yakima Spring Chinook Supplementation Program, Yakima/Klickitat Fisheries Project (Revised May 1, 2008). Yakima/Klickitat Fisheries Project Genetic Studies, Yakima/Klickitat Fisheries Project Monitoring and Evaluation, Annual Report 2007. Portland, OR 97283-3621, Bonneville Power Administration: 1-42.

Busack, C., A. Fritts, T. Kassler, J. Loxterman, T. Pearsons, S. Schroder, M. Small, S. Young, C. M. Knudsen, G. Hart and P. Huffman. 2006. Yakima/Klickitat Fisheries Project Genetic Studies. Yakima/Klickitat Fisheries Project Genetic Studies. C. A. Busack: 1-202.

Fritts, A. L., and T. N. Pearsons. 2004. Smallmouth bass predation on hatchery and wild salmonids in the Yakima River, Washington. Transactions of the American Fisheries Society 133:878-893.

Fritts, A. L., and T. N. Pearsons. 2006. Effects of Predation by Nonnative Smallmouth Bass on Native Salmonid Prey: the Role of Predator and Prey Size. Transactions of the American Fisheries Society 135:853-860.

Fritts, A. L., and T.N. Pearsons. 2008. Can non-native smallmouth bass, Micropterus dolomieu, be swamped by hatchery fish releases to increase juvenile Chinook salmon, Oncorhynchus tshawytscha, survival? Environmental Biology of Fishes 83:499-508.

Ham, K. D., and T. N. Pearsons. 2000. Can reduced salmonid population abundance be detected in time to limit management impacts? Canadian Journal of Fisheries and Aquatic Sciences 57:1-8.

Ham, K. D., and T. N. Pearsons. 2001. A practical approach for containing ecological risks associated with fish stocking programs. Fisheries 26(4):15-23.

Hindman, J. N., G. A. McMichael, J. P. Olson, and S. A. Leider. 1991. Yakima River Species Interactions Studies. Annual Report FY 1990 submitted to Bonneville Power Administration, Portland, Oregon. DOE/BP-01483-1. 75 pp.

Johnson, C. L., G. M. Temple, T. N. Pearsons, and T. D. Webster. 2009. An Evaluation of Data Entry Error and Proofing Methods for Fisheries Data. Transactions of the American Fisheries Society 138:593-601.

Knudsen, C., S. Schroder, M. Johnston, C. Busack, T. Pearsons, D. Fast, A. Marshall, C. Strom and B. James. 2005. Reproductive Ecology of Yakima River Hatchery and Wild Spring Chinook; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2004-2005 Annual Report, Project No. 199506325, 89 electronic pages, (BPA Report DOE/BP-00017478-4). Annual Report. C. Knudsen. Portland, Oregon, Bonneville Power Administration: 1-90.

Knudsen, C., S. Schroder, M. Johnston, C. Busack, T. Pearsons, D. Fast and C. Strom. 2006. Reproductive Ecology of Yakima River Hatchery and Wild Spring Chinook; Yakima/Klickitat Fisheries Project Monitoring and Evaluation. Yakima/Klickitat Fisheries Project Monitoring and Evaluation Annual Report Annual Report 2005-2006. C. M. Knudsen: 57 electronic pages.

Knudsen, C. M., S. L. Schroder, C. Busack, T. N. Pearsons, M. V. Johnston, D. E. Fast, W. J. Bosch and C. R. Strom. 2007. Reproductive Ecology of Yakima River Hatchery and Wild Spring Chinook, Yakima/Klickitat Fisheries Project Monitoring and Evaluation, Annual Report 2006. Document ID \#P102834, Project Number 1995-063-25, Contract 00027871, 00027798. Annual Report 2006.

Knudsen, C. M., S. L. Schroder, C. Busack, T. N. Pearsons, M. V. Johnston, D. E. Fast and C. R. Strom. 2008. Reproductive Ecology of Yakima River Hatchery and Wild Spring Chinook. Yakima/Klickitat Fisheries Project Monitoring and Evaluation Annual Report 2007. Document ID \#P107132, Contract No. 00022449, Project Number 1995-063-25: 39.

Knudsen, C. M., S. L. Schroder, M. V. Johnston, D. E. Fast, A. L. Fritts and C. R. Strom. 2009. Reproductive Ecology of Yakima River Hatchery and Wild Spring

Chinook. Yakima/Klickitat Fisheries Project Monitoring and Evaluation Annual Report 2008. Document ID \#P113504, Contract No. 00037649, Project Number 1995-063-25: 62.

Knudsen, C. M., S. L. Schroder, M. V. Johnston, D. E. Fast, A. L. Fritts and C. R. Strom. 2010. Reproductive Ecology of Yakima River Hatchery and Wild Spring Chinook. Yakima/Klickitat Fisheries Project Monitoring and Evaluation Annual Report 2009. Document ID \#P118211, Contract No. 00022449, Project Number 1995-063-25.

Knudsen, C. M., S. L. Schroder, M. V. Johnston, D. E. Fast, A. L. Fritts, D. Larsen, B. R. Beckman and C. R. Strom. 2011. Reproductive Ecology of Yakima River Hatchery and Wild Spring Chinook. Yakima/Klickitat Fisheries Project Monitoring and Evaluation. Annual Report 2010. Document ID \#P123144, BPA contracts \#42861 and \#53279, Project Number 1995-063-25.

Knudsen, C. M., S. L. Schroder, C. A. Busack, M. V. Johnston, T. N. Pearsons, W. J. Bosch, and D. E. Fast. 2006. A Comparison of Life-History Traits in FirstGeneration Hatchery- and Wild-origin Upper Yakima River Spring Chinook Salmon. Transactions of the American Fisheries Society.135:1130-1144.

Knudsen, C. M., S. L. Schroder, M. V. Johnston, T. N. Pearsons, and C. R. Strom. 2008. Comparison of gametic traits of first generation hatchery and wild Upper Yakima River spring Chinook salmon. Transactions of the American Fisheries Society.137: 1433-1445.

Knudsen, C. M., M. V. Johnston, S. L. Schroder, W. J. Bosch, D. E. Fast, and C. R. Strom. 2009. Effects of passive integrated transponder tags on smolt-to-adult recruit survival, growth, and behavior of hatchery spring Chinook salmon. North American Journal of Fisheries Management 29: 658-669.

Larsen, D. A., D. L. Harstad, C. R. Strom, M. V. Johnston, C. M. Knudsen, D. E. Fast, T. N. Pearsons and B. R. Beckman. 2013. Early life history variation in hatchery and natural origin spring Chinook salmon in the Yakima River, Washington. Transaction of the American Fisheries Society 142(2):540-555.

Major, W. M.III, J. M. Grassley, K. E. Ryding, T. N. Pearsons, A. E. Stephenson, and C. E. Grue. 2005. Abundance and consumption of fish by California and Ringbilled gulls at artificial structures within the Yakima River, Washington. Waterbirds 28:366-377.

Martin, S. W., J. A. Long, and T. N. Pearsons. 1995. Comparison of survival, gonad development, and growth between rainbow trout with and without surgically implanted dummy radio transmitters. North American Journal of Fisheries Management 15:494-498.

McMichael, G. A., J. P. Olson, E. L. Bartrand, M. Fischer, J. N. Hindman, and S. A. Leider. 1992. Yakima River Species Interactions Studies. Annual Report FY

1991 submitted to Bonneville Power Administration, Portland, Oregon. DOE/BP-01483-2. 177 pp.

McMichael, G. A. 1993. Examination of electrofishing injury and short-term mortality in hatchery rainbow trout. North American Journal of Fisheries Management 13:229-233.

McMichael, G. A., C. S. Sharpe, and T. N. Pearsons. 1997. Effects of residual hatcheryreared steelhead on growth of wild rainbow trout and spring Chinook salmon. Transactions of the American Fisheries Society 126:230-239.

McMichael, G. A., and T. N. Pearsons. 1998. Effects of wild juvenile spring Chinook salmon on growth and abundance of wild rainbow trout. Transactions of the American Fisheries Society 127:261-274.

McMichael, G. A., A. L. Fritts, and T. N. Pearsons. 1998. Electrofishing injury to stream salmonids; injury assessment at the sample, reach, and stream scales. North American Journal of Fisheries Management 18:894-904.

McMichael, G. A., T. N. Pearsons, and S. A. Leider. 1999a. Minimizing ecological impacts of hatchery-reared juvenile steelhead on wild salmonids in a Yakima basin tributary. Pages 365-380 in Eric Knudson et al. editors. Sustainable fisheries management: Pacific salmon. CRC Press, Boca Raton, FL.

McMichael, G. A., T. N. Pearsons, and S. A. Leider. 1999b. Behavioral interactions among hatchery-reared steelhead smolts and wild Oncorhynchus mykiss in natural streams. North American Journal of Fisheries Management 19:948-956.

McMichael, G. A. and T. N. Pearsons. 2001. Upstream movement of residual hatchery steelhead into areas containing bull trout and cutthroat trout. North American Journal of Fisheries Management 21:517-520.

Pearsons, T. N., G. A. McMichael, E. L. Bartrand, M. Fischer, J. T. Monahan, and S. A. Leider. 1993. Yakima Species Interactions Study. Annual Report FY 1992 submitted to Bonneville Power Administration, Portland, Oregon. DOE/BP-01483-3. 98 pp.

Pearsons, T. N., G. A. McMichael, S. W. Martin, E. L. Bartrand, M. Fischer, and S. A. Leider. 1994. Yakima River Species Interactions Studies. Annual Report FY 1993 submitted to Bonneville Power Administration, Portland, Oregon. DOE/BP-99852-2. 247 pp.

Pearsons, T. N., G. A. McMichael, S. W. Martin, E. L. Bartrand, J. A. Long, and S. A. Leider. 1996. Yakima River Species Interactions Studies. Annual Report FY 1994 submitted to Bonneville Power Administration, Portland, Oregon. DOE/BP-99852-3. 150 pp.

Pearsons, T. N., G. A. McMichael, K. D. Ham, E. L. Bartrand, A. L. Fritts, and C. W. Hopley. 1998. Yakima River Species Interactions Studies. Progress Report FY 1995-1997 submitted to Bonneville Power Administration, Portland, Oregon. DOE/BP-64878-6.

Pearsons, T. N., K. D. Ham, G. A. McMichael, E. L. Bartrand, A. L. Fritts, and C. W. Hopley. 1999. Yakima River Species Interactions Studies. Annual Report FY 1998 submitted to Bonneville Power Administration, Portland, Oregon. DOE/BP-64878-5.

Pearsons, T. N., and A. L. Fritts. 1999. Maximum size of Chinook salmon consumed by juvenile coho salmon. North American Journal of Fisheries Management 19:165170.

Pearsons, T. N., and C. W. Hopley. 1999. A practical approach for assessing ecological risks associated with fish stocking programs. Fisheries 24(9):16-23.

Pearsons, T. N., A. L. Fritts, K. D. Ham, G. A. McMichael, E. L. Bartrand, G. M. Temple, and C. W. Hopley. 2001a. Yakima River Species Interactions Studies. Annual Report FY 1999 submitted to Bonneville Power Administration, Portland, Oregon. DOE/BP-64878-7.

Pearsons, T. N., A. L. Fritts, G. M. Temple, N. S. Burres, M. R. Schmuck, and C. W. Hopley. 2001b. Yakima River Species Interactions Studies. Annual Report FY 2000 submitted to Bonneville Power Administration, Portland, Oregon. DOE/BP-00004666-1.

Pearsons, T. N., A. L. Fritts, G. M. Temple, M. R. Schmuck, and C. L. Johnson. 2002. Yakima River Species Interactions Studies. Annual Report FY 2001 submitted to Bonneville Power Administration, Portland, Oregon. DOE/BP-00004666-9.

Pearsons, T. N., A. L. Fritts, G. M. Temple, C. L. Johnson, and M. R. Schmuck. 2003. Yakima River Species Interactions Studies. Annual Report FY 2002 submitted to Bonneville Power Administration, Portland, Oregon. DOE/BP-00004666-10.

Pearsons, T. N., A. L. Fritts, G. M. Temple, C. L. Johnson, T. D. Webster, and N. H. Pitts. 2004. Yakima River species interactions studies. Annual Report FY 2003 submitted to Bonneville Power Administration, Portland, Oregon. DOE/BP-00013756-7.

Pearsons, T. N., G. M. Temple, A. L. Fritts, C. L. Johnson, T. D. Webster, and N. H. Pitts. 2005. Yakima River species interactions studies. Annual Report FY 2004 submitted to Bonneville Power Administration, Portland, Oregon. DOE/BP-00017478-3.

Pearsons, T. N., G. M. Temple, A. L. Fritts, C. L. Johnson, and T. D. Webster. 2006. Ecological Interactions between Non-target Taxa of Concern and Hatchery

Supplemented Salmon. Annual Report FY 2005-2006. Report to Bonneville Power Administration, Portland, Oregon. DOE/BP-00022370-1.

Pearsons, T. N., G. M. Temple, A. L. Fritts, C. L. Johnson, and T. D. Webster. 2007. Ecological interactions between non-target taxa of concern and hatchery supplemented salmon. Annual Report 2006-2007. Report to Bonneville Power Administration, publication DOE/BP-102831, Portland, Oregon.

Pearsons, T. N., G. M. Temple, A. L. Fritts, C. L. Johnson, and T. D. Webster. 2008. Ecological interactions between non-target taxa of concern and hatchery supplemented salmon. Annual Report 2007-2008. Report to Bonneville Power Administration, document ID \#P106758, Portland, Oregon.

Pearsons, T. N. 2002. Chronology of ecological interactions associated with the lifespan of salmon supplementation programs. Fisheries 27(12):10-15.

Pearsons, T. N., S. R. Phelps, S. W. Martin, E. L. Bartrand, and G. A. McMichael. 2007a. Gene flow between resident and anadromous rainbow trout in the Yakima Basin: Ecological and genetic evidence. Pages 56-64 in R. K. Schroeder and J. D. Hall, editors. Redband trout: resilience and challenge in a changing landscape. Oregon Chapter, American Fisheries Society, Corvallis, Oregon.

Pearsons, T. N., D. L. Roley, and C. L. Johnson. 2007b. Development of a carcass analog for nutrient restoration in streams. Fisheries 32:114-124.

Pearsons, T. N., and G. M. Temple. 2007. Impacts of early stages of salmon supplementation and reintroduction programs on three trout species. North American Journal of Fisheries Management 27:1-20.

Pearsons, T. N., and G. M. Temple. 2010. Changes to rainbow trout abundance and salmonid biomass in a Washington watershed as related to hatchery salmon supplementation. Transactions of the American Fisheries Society 139:502-520.

Schroder, S. L., C. M. Knudsen and E. C. Volk. 1995. Marking salmon fry with strontium chloride solutions. Canadian Journal of Fisheries and Aquatic Sciences 52: 11411149.

Schroder, S. L., C. M. Knudsen, B. Watson, T. Pearsons, D. Fast, S. Young and J. Rau. 2004. Comparing the Reproductive Success of Yakima River Hatchery and WildOrigin Spring Chinook. Yakima/Klickitat Fisheries Project Monitoring and Evaluation Report 4 of 7. Annual Report 2003. Portland, OR, Bonneville Power Administration.

Schroder, S. L., C. M. Knudsen, T. N. Pearsons, D. E. Fast and B. D. Watson. 2005. Comparing the Reproductive Success of Yakima River Hatchery and Wild-Origin Spring Chinook. 2004 Annual Report, Bonneville Power Administration.

Schroder, S. L., C. M. Knudsen, T. N. Pearsons, S. F. Young, T. W. Kassler, D. E. Fast and B. D. Watson. 2006. Comparing the reproductive success of Yakima River hatchery and wild-origin spring Chinook. Annual Report 2005-2006. Report to Bonneville Power Administration, publication DOE/BP-00022370-3, Portland, Oregon.

Schroder, S. L., C. M. Knudsen, T. N. Pearsons, T. W. Kassler, S. F. Young, C. Busack and D. E. Fast. 2007. Breeding success of wild and first generation hatchery female spring Chinook spawning in an artificial stream. Annual Report 20062007. Report to Bonneville Power Administration, publication DOE/BP-102832, Portland, Oregon.

Schroder, S. L., C. M. Knudsen, T. N. Pearsons, S. F. Young, T. W. Kassler, D. E. Fast, and B. D. Watson. 2008. Breeding success of wild and first-generation hatchery female spring Chinook salmon spawning in an artificial stream. Transaction of the American Fisheries Society 137: 1475-1489.

Schroder, S. L., C. M. Kundsen, T. N. Pearsons, T. W. Kassler, S. F. Young, E. P. Beall and D. E. Fast. 2009. Breeding Success of Four Male Life History Types in Spring Chinook Salmon Spawning Under Quasi-Natural Conditions. Annual Report 2006-2007. Document \#P113529. Report to Bonneville Power Administration, publication DOE/BP-102832, Portland, Oregon.

Schroder, S. L., C. M. Knudsen, T. N. Pearsons, T. W. Kassler, S. F. Young, C. A. Busack, and D. E. Fast. 2010. Behavior and breeding success of wild and first generation hatchery male spring Chinook salmon spawning in an artificial stream. Transactions of the American Fisheries Society 139(4):989-1003.

Schroder, S. L., C. M. Knudsen, T. N. Pearsons, T. W. Kassler, S. F. Young, E. P. Beall, and D. E. Fast. 2011. Breeding Success of Four Male Life History Types of Spring Chinook Salmon Spawning in an Artificial Stream. Environmental Biology of Fishes 94(1):231-248.

Schroder, S. L., C. M. Knudsen, T. W. Kassler, E. P. Beall and C. A. Stockton. 2012. The Breeding Success of First- and Third-Generation Hatchery Spring Chinook Salmon Spawning in an Artificial Stream. Annual Report 2011, Performance Period: May 1, 2011-April 30, 2012. Document ID \#P127347. Project Number 1995-063-25, Contract 00053279.

Temple, G. M., and T. N. Pearsons. 2006. Evaluation of the recovery period in markrecapture population estimates of rainbow trout in small streams. North American Journal of Fisheries Management 26:941-948.

Temple, G. M., and T. N. Pearsons. 2007. Electrofishing: backpack and driftboat. Pages 95-132 in D. H. Johnson and six co-editors. Salmonid protocols handbook: techniques for assessing status and trends in salmon and trout populations. American Fisheries Society, Bethesda, Maryland.

Temple, G. M., and T. N. Pearsons. 2012. Risk management of non-target fish taxa in the Yakima River watershed associated with hatchery salmon supplementation. Environmental Biology of Fishes 94:67-86.

Temple, G. M., T. N. Pearsons, A. L. Fritts, C. L. Johnson, T. D. Webster, Z. Mays, and G. Stotz. 2009. Ecological interactions between non-target taxa of concern and hatchery supplemented salmon. Annual Report 2008-2009. Report to Bonneville Power Administration, document ID \#P113503, Portland, Oregon.

Temple, G. M., A. L. Fritts, C. L. Johnson, T. D. Webster, Z. Mays, and G. Stotz. 2010. Ecological interactions between non-target taxa of concern and hatchery supplemented salmon. Annual Report 2009-2010. Report to Bonneville Power Administration, document ID \#P118216 Portland, Oregon.

Temple, G. M., T. D. Webster, Z. Mays, T. D. De Boer, and N. D. Mankus. 2011. Ecological interactions between non-target taxa of concern and hatchery supplemented salmon. Annual Report 2010-2011. Report to Bonneville Power Administration, document ID \#P123141, Portland, Oregon.

Temple, G. M., T. D. Webster, N. D. Mankus, S. W. Coil, and T. Newsome, contributor. 2012. Ecological interactions between non-target taxa of concern and hatchery supplemented salmon. Annual Report 2011-2012. Report to Bonneville Power Administration, document ID \#P128686, Portland, Oregon.

Appendix B: Use of Data \& Products

Raw electronic data files (Database) are secured on the WDFW Corporate server in Olympia, WA, as well as on WDFW district 8 field office personal computers. Data housed on personal computers are duplicated on the local office server which is in turn backed up on the WDFW corporate server in Olympia, WA nightly.

Appendix C. Performance measures relative to project quantitative objectives

Performance Measure	Goal	Performance	Comments
Natural Production of Target Species	Increase while maintaining the longterm fitness of the target population (see quantitative objectives; Pearsons et al. 2006)	Quantitative objectives for adults and smolts are being achieved. Differences in traits of hatchery and natural origin fish are a concern	- Too early to evaluate conclusively, but strategies to reduce genetic risk are being implemented. - Hatchery has increased the number and distribution of adult spawners on the spawning grounds. Quantitative management objectives for natural production of upper Yakima and basin total spring Chinook adults and smolts are being achieved. - Significant but small changes in many demographic and reproductive success traits indicate cause for concern. - Predation and competition may be limiting natural production objectives and may constrain the benefits of supplementation.
Harvest	Increase (see quantitative objectives; Pearsons et al. 2006)	Increased, and objectives are being met	- Tribal subsistence fisheries occurred on both hatchery and naturally produced fish in all years. Sport fisheries on hatchery fish have also occurred in the Yakima River in 10 of the 14 years since 2001. - Quantitative harvest objectives for the upper Yakima stock and all Yakima basin stocks combined are

			being met for the Columbia or Yakima Rivers
Genetics	Minimize genetic impacts to non-target taxa	Achieved to date	Stray rates are very low
Ecology	Keep impacts to non- target taxa within containment objectives	Achieved for most taxa to date	Impacts for most species are within containment objectives or are currently not attributable to supplementation.
Habitat	Protect the most productive stream reaches and increase productivity/capacity of freshwater environment so that quantitative objectives can be achieved.	Progress	Habitat protection, restoration, and tributary passage efforts are ongoing, with incremental progress each year.
Science	Disseminate important findings for use throughout the Yakima Basin, Columbia Basin, and world	Achieved to date the benefits of supplementation, especially over the long-term.	

Appendix D. DNA-Based Parentage Assignments of Chinook Salmon from the Cle Elum Spawning Channel in 2013

Todd W. Kassler
Vanessa Smilansky

Washington Department of Fish and Wildlife
Molecular Genetics Laboratory
600 Capitol Way N.
Olympia, WA 98501-1091

Abstract

We used a maximum likelihood parentage assignment procedure to estimate the reproductive output of Chinook salmon spawners from the hatchery-control line (two generations of hatchery influence) and the supplementation hatchery line (SH - one generation of hatchery influence) in the Cle Elum experimental spawning channel for the 2012 brood year. The assignments were based on offspring genotypes at 14 microsatellite loci. The probabilities of exclusion (inferring non-parentage by randomly picked adults) assuming neither parent was known were estimated to be 0.999999 . Two thousand five hundred and forty-eight of 2,741 fry from the 2012 brood that were genotyped at nine or more loci were assigned to a parental pair with 95% confidence. The number of progeny attributed to individual potential parents was quite variable, ranging from 0 to 370 for all males and from 0 to 197 for females. The sum of progeny attributed to the hatchery-control line males and females was 766, while the sum of progeny attributed to supplementation hatchery line males and females was 1,779.

Introduction

Although hatcheries have been extensively utilized in Chinook salmon management for over 100 years, only recently have rigorous experiments been developed to measure the relative reproductive success of hatchery- and natural-origin spawners in a shared natural setting. Some of the difficulty in designing informative studies has stemmed from the challenges of controlling entry to natural spawning areas and collecting representative samples of recently hatched fry. Furthermore, if control could be established over the potential spawners in the spawning area, the measurement of individual reproductive output still would require a means of associating individual fish captured in one year with individuals that spawned in a previous year. The spawning behavior of Chinook salmon adds to the complexity of quantifying individual reproductive output through behavioral observations: at a redd site, a female might be courted by several males that compete for access to the female, providing opportunities for multiple paternity in a single redd. In areas with moderate to high spawning densities, males might attend females on several adjacent redds. Microsatellites, a class of highly polymorphic, codominant DNA markers, provide a means to quantify individual spawners' reproductive output. A suite of 10 to 15 highly variable microsatellites can resolve individual identity in a moderate to large population, and through a simple inheritance model, can illuminate parent-offspring relationships.

Washington Department of Fish and Wildlife (WDFW) and the Yakama Nation (YN) are cooperating on a study of Chinook salmon reproductive success in a presumably closed access spawning observation channel at the Cle Elum Hatchery. Viewing blinds line the channel, allowing researchers to observe spawning activities.

Chinook salmon carrying visible external marks were released into the spawning channel in September 2012. Hatchery-control line (two generations of hatchery influence) males and females were released into three of six shared spawning areas and supplementation hatchery line (one generation of hatchery influence) males and females were released into the other three shared spawning areas to select and compete for mates. Prior to the release of the potential spawners, researchers collected and preserved samples of fin tissue to enable genetic characterization of the potential spawners and to allow subsequent inference of parent/offspring relationships after juveniles were collected and genotyped. One group of researchers examined morphological characteristics of these potential parents and observed and recorded spawning area behaviors and interactions. The results of the morphological and behavioral work are described in a separate report.

The potential parents' fin tissue samples and the collected progeny (fry) were delivered to the WDFW Molecular Genetics Laboratory in Olympia, Washington for genetic screening and parentage analysis following the same protocols that have been used from 2002 - 2007, 2009 - 2013 (Young and Kassler 2005, Kassler 2005, Kassler 2006, Kassler and Von Bargen 2007, 2008, and 2010, Kassler et al. 2011; Kassler and Peterson 2012, 2013). The genetic analyses provide direct, quantitative estimates of fry production by individual spawning Chinook salmon. This report presents the parentage results for the 2012 - 2013 Cle Elum spawning channel experiments.

Materials and Methods

Collection of potential spawners - 2012
Fin tissue was collected from a total of 48 adult females and 48 adult males (Table 1) prior to their release into each of six sections in the spawning channel during September 2012. The genetic analysis program CERVUS (version 3.0; Marshall et al. 1998) was used to check for identical multilocus genotypes among the potential parents. Data recorded for each released fish included gender, and whether it was of hatchery-control line origin or supplementation hatchery line origin (Table 1).

Collection of Fry

Fry collections occurred from November 30, 2012 to April 25, 2013. Fry samples were collected from each section daily when fry were present. During that period a total of 2,979 fry were collected.

DNA Extraction Methods

Genomic DNA was extracted by digesting a small piece of fin tissue using the nucleospin tissue kits obtained from Macherey-Nagel following the recommended conditions in the user manual. Extracted DNA was eluted with a final volume of $100 \mu \mathrm{~L}$.

PCR Methods

Potential spawners and offspring from 2013 were genotyped at 14 loci (Table 2).
Potential spawners were screened twice and scored independently at all 14 loci by two biologists to minimize potential genotyping error of the parents.

The polymerase chain reaction mixture contained the following for a $10 \mu \mathrm{l}$ reaction: approximately 25 ng template DNA, 1X Promega buffer, $1.5 \mathrm{mM} \mathrm{MgCl} 2,200 \mu \mathrm{M}$ each of dATP, dCTP, dGTP, and dTTP, approx. $0.1 \mu \mathrm{M}$ of each oligonucleotide primer, and 0.05 units GoTaq Flexi DNA polymerase (Promega). Amplification was performed using MJ Research PTC-200 and AB 9700 thermocyclers. The thermal profile was as follows: an initial denaturation step of 2 minutes at $94^{\circ} \mathrm{C} ; 40$ cycles of 15 seconds at $94^{\circ} \mathrm{C}, 30$ seconds at $49-58^{\circ} \mathrm{C}$, and 1 minute at 72 oC ; plus a final extension step at $72^{\circ} \mathrm{C}$ for 10 minutes, followed by a final indefinite holding step at $4^{\circ} \mathrm{C}$.

Microsatellite DNA loci (Table 2) were amplified via the polymerase chain reaction (PCR) using fluorescently labeled primers (obtained from Applied Biosystems or Integrated DNA Technologies). Loci were combined into multiplexes to increase efficiency and decrease costs.

Data were collected using an AB-3730 Genetic Analyzer. Applied Biosystems GENEMAPPER v.3.7 software was used to collect and analyze the raw data and to determine genotypes at each locus (based on estimated allele sizes in base pairs using an internal size standard). Alleles were binned in GENEMAPPER using the standardized allele sizes established for the Chinook coastwide standardization efforts (Seeb et. al. 2007).

Parentage Assignments

The dataset included 37,716 single-locus genotypes. A genotyping error rate in that dataset of 1.0% would result in 377 incorrect single-locus genotypes. Our error rate is unknown, but possibly greater than 1%. Since parentage analyses involve comparing genotypes of candidate parental pairs with offspring genotypes, genotyping errors can produce parent-offspring genotype mismatches and suggest exclusion of true parentoffspring pairings from consideration. Alternatively, genotyping errors can lead to failure to exclude parent-offspring pairings that are incorrect. We used a maximum likelihood procedure, implemented in CERVUS (version 3.0; Marshall et al. 1998) to infer parent-offspring relationships. The procedure uses allele frequency data to assign likelihoods to parent-offspring combinations, and allows mismatching genotypic data to be evaluated concurrently with matching genotype data.

Genotyping error is not the only potential source of mismatches between the genotypes of fry and their putative parents. We would expect allele misidentification to be randomly distributed throughout the genotype dataset and not to occur in clusters. Parent-offspring mismatches can result also from germ-line mutation in which a parent passes a changed allele to its offspring or from the inadvertent exclusion of one or more contributing parents from the parental dataset. These mismatches are due to correctly assigned but unexpected genotypes, and we expect that those genotypes should cluster in families. Distinguishing between mutation-based mismatches and mismatches that result from reproductive participation by un-genotyped parents is difficult. Assuming that all dams in the experimental channel are represented in the parental data set, we might suspect reproductive participation by one or more unrepresented sires if groups of fry that are assigned to a dam-offspring relationship with no mismatching loci, have multiple locus mismatches with all candidate sires, and no more than four alleles at a locus within the group. The data set was carefully examined for evidence of reproductive contributions by such un-genotyped parents (because evidence of ungenotyped parents had been observed in previous years).

Results

Parents

Genetic analysis revealed that all 96 fish released or found in the spawning channel had unique genotypes. There were a total of 24 hatchery control line (HC) adult males, 24 HC adult females, 24 supplementation hatchery line (SH) adult males, and 24 SH adult females. Four HC males and four HC females were released into three of the six sections and four SH males and four SH females were released into the other three sections (Table 1).

Loci Screened

A total of 14 loci were screened and all 14 were used in the analysis (Table 2). Number of alleles ranged from 4-30 (Ots-9 and Omm-1080 respectively) and observed heterozygosity ranged from $0.448-0.958$ (Ots-G474 and Ots-201b respectively). Individual exclusionary power was below 45.4\% for five loci (Ogo-2, Ogo-4, Ots-G474, Ots-3M, and Ots-9) and above 61.6% for the remaining loci when neither parent was known. Exclusionary power was below 42.1\% for three loci (Ots-G474, Ots-3M and Ots9) and above 60.2% for the remaining loci when one parent was known. Cumulative exclusionary power was 1.000000 for analysis using all loci when one parent was known.

Parentage Assignments

Parentage assignments were made when genotype data was available for nine or more loci. All 96 parents were genotyped at 10 or more loci while 2,741 of the 2,784 offspring were successfully genotyped at nine or more loci (Table 3).

Parentage analysis was conducted independently for each of the six sections using all 96 adults as possible parents. Each fry was assigned a dam-sire-fry combinations (trios) based on the most likely candidate male parents (sires) and female parents (dams). Those assignments yielded possible. Any fry-sire assignments with more than two mismatching loci were excluded from further consideration.

Of the total 2,741 fry included in the analysis a total of 2,545 , fry were assigned to a single male and female parent (2,545/2,741 = 92.8\%).

Discussion

Approximately 93 percent successes were achieved at inferring parent-offspring relationships. Examination of Table 4 reveals a very uneven pattern of reproductive success among the candidate parents. Based on the subsample of 2,545 fry that were successfully assigned parents, the range of inferred reproductive output among males was $0-370$ fry; the range for the same period in reproductive output among females was 0 197 fry. Some of the dam-sire matings we inferred are well supported (there were a lot of fry assigned to them) and some are weakly supported (not many fry were assigned to them). Caution should be used when interpreting dam-sire-fry combinations that were inferred rarely. Future integration of fecundity estimates for spawners will enrich the interpretation of these estimates of reproductive output.

Interpretation of the inferred parental reproductive output based on parentage assignments by genetic analysis requires the consideration and analysis of individual fish attributes, including fecundity and body size, the closed nature of the experimental environment in which sub-dominant males had a more limited number of alternative females to court than they might have had in an open system, and relative stocking levels and synchronicity of spawning.

Acknowledgements

Funding for this study was provided by the Bonneville Power Administration (BPA) and by the WA State General Funds to WDFW. The Cle Elum experimental spawning channel study was designed by Steve Schroder (WDFW) and Curt Knudsen (Oncor Consulting). Steve, Curt, and Yakama Nation staff collected the samples that were analyzed.

Literature Cited

Banks, M.A., M.S. Blouin, B.A. Baldwin, V.K. Rashbrook, H.A. Fitzgerald, S.M. Blankenship, and D. Hedgecock. 1999. Isolation and inheritance of novel microsatellites in chinook salmon. Journal of Heredity 90: 281-288.

Cairney, M., J.B. Taggart, and B. Hoyheim. 2000. Atlantic salmon (Salmo salar L.) and cross-species amplification in other salmonids. Mol. Ecol. 9: 2175-2178.

Greig, C., J.P. Jacobson, and M.A. Banks. 2003. New tetranucleotide microsatellites for fine-scale discrimination among endangered Chinook salmon (Oncorhynchus tshawytscha). Mol. Ecol. Notes 3:376-379.

Kassler, T.W. 2005. DNA Based Parentage Assignments of Chinook Salmon from the Cle Elum Spawning Channel in 2004. Yakima/Klickitat Fisheries Project Genetic Studies. Annual Report 2005. Portland, OR, Bonneville Power Administration 20-40.

Kassler, T.W. 2006. DNA Based Parentage Assignments of Chinook Salmon from the Cle Elum Spawning Channel in 2005. Yakima/Klickitat Fisheries Project Genetic Studies. Annual Report 2006. Portland, OR, Bonneville Power Administration 20-37.

Kassler, T.W. and J.F. VonBargen. 2007. DNA Based Parentage Assignments of Chinook Salmon from the Cle Elum Spawning Channel in 2006. Yakima/Klickitat Fisheries Project Genetic Studies. Annual Report 2007. Portland, OR, Bonneville Power Administration.

Kassler, T.W. and J.F. VonBargen. 2008. DNA Based Parentage Assignments of Chinook Salmon from the Cle Elum Spawning Channel in 2007. Yakima/Klickitat Fisheries Project Genetic Studies. Annual Report 2008. Portland, OR, Bonneville Power Administration.

Kassler, T.W. and J.F. VonBargen. 2010. DNA Based Parentage Assignments of Chinook Salmon from the Cle Elum Spawning Channel in 2009.
Yakima/Klickitat Fisheries Project Genetic Studies. Annual Report 2010. Portland, OR, Bonneville Power Administration.

Kassler, T.W., J.F. VonBargen, C.A. Dean, and C.M. Bowman. 2011. DNA Based Parentage Assignments of Chinook Salmon from the Cle Elum Spawning Channel in 2010. Yakima/Klickitat Fisheries Project Genetic Studies. Annual Report 2011. Portland, OR, Bonneville Power Administration.

Kassler, T.W. and S. Peterson. 2012. DNA Based Parentage Assignments of Chinook Salmon from the Cle Elum Spawning Channel in 2011. Yakima/Klickitat Fisheries Project Genetic Studies. Annual Report 2011. Portland, OR, Bonneville Power Administration.

Kassler, T.W. and S. Peterson. 2013. DNA Based Parentage Assignments of Chinook Salmon from the Cle Elum Spawning Channel in 2012. Yakima/Klickitat Fisheries Project Genetic Studies. Annual Report 2012. Portland, OR, Bonneville Power Administration.

Marshall, T.C. J. Slate, L. Kruuk, and J.M. Pemberton. 1998. Statistical confidence for likelihood-based paternity inference in natural populations. Mol. Ecol. 7: 639655.

Olsen, J.B., P.B. Bentzen, and J.E. Seeb. 1998. Characterization of seven microsatellite loci derived from pink salmon. Mol. Ecol. 7:1083-1090.

Rexroad, C.E., III, R.L. Coleman, A.M. Martin, W.K. Hershberger, and J. Killefer. 2001. Thirty-five polymorphic microsatellite markers for rainbow trout (Oncorhynchus mykiss). Anim. Genet. 32:317-319.

Seeb, L.W., A. Antonovich, M.A. Banks, et al. 2007. Development of a standardized DNA database for Chinook Salmon. Fisheries 32:11.

Williamson, K.S., J.F. Cordes, and B.P. May. 2002. Characterization of microsatellite loci in chinook salmon (Oncorhynchus tshawytscha) and cross-species amplification in other salmonids. Mol. Ecol. Notes 2:17-19.

Young, S.F. and T.W. Kassler. 2005. Parentage Assignments of Chinook Salmon from the Cle Elum Spawning Channel in 2002 and 2003. Unpublished WDFW Genetics Laboratory Report Washington Department of Fish and Wildlife, Olympia, WA.

Table 1. Potential Chinook salmon spawners in the six section of the Cle Elum experimental spawning channel in 2012. Origin is identified as hatchery-control (HC) or supplementation hatchery (SH).

Origin	Section $1-1 \mathrm{~A}$ Females	Section $1-2 \mathrm{~A}$ Females	Section 1 - 3A Females	Section $2-1 \mathrm{~A}$ Females	Section $2-2 \mathrm{~A}$ Females	Section 2 - 3A Females
SH	4	--	4	--	4	--
HC	--	4	--	4	--	4
	Males	Males	Males	Males	Males	Males
SH	4	--	4	--	4	--
HC	--	4	--	4	--	4
	Section 1-1B	Section 1-2B	Section 1-3B	Section 2-1B	Section 2-2B	Section $2-3 B$
Origin	Females	Females	Females	Females	Females	Females
SH	4	--	4	--	4	--
HC	--	4	--	4	--	4
	Males	Males	Males	Males	Males	Males
SH	4	--	4	--	4	--
HC	--	4	--	4	--	4

Table 2. Locus summary.
Exclusionary power

Locus	\# alleles	\# parents genotyped	H_{O} (observed)	HE (expected)	neither parent	one parent
Oki-100	19	95	0.926	0.904	0.669	0.802
Ots-201b	21	95	0.905	0.901	0.657	0.793
Ots-208b	25	95	0.958	0.944	0.780	0.876
Ssa-408	17	95	0.726	0.900	0.652	0.790
Ogo-2	7	96	0.865	0.795	0.423	0.602
Ssa-197	21	96	0.927	0.915	0.694	0.819
Ogo-4	10	96	0.760	0.815	0.454	0.629
Ots-213	21	96	0.917	0.927	0.728	0.843
Ots-G474	8	96	0.448	0.443	0.108	0.263
Omm-1080	30	96	0.938	0.944	0.782	0.877
Ots-3M	7	96	0.667	0.658	0.249	0.421
Ots-211	23	86	0.977	0.924	0.721	0.838
Ots-212	20	92	0.891	0.887	0.616	0.763
Ots-9	4	92	0.696	0.661	0.233	0.389

Table 3. Summary of genotyping efficiency in potential parents and offspring.

Loci genotyped	Parents (12IQ)	Offspring (13MO)
14	82	1,879
13	9	322
12	3	199
11	1	180
10	1	85
9	0	76
8	0	3
7	0	8
6	0	6
5	0	2
4	0	1
3	0	1
2	0	0
1	0	1
0	0	21

Table 4. Total number of offspring assigned to females and males from each of the six sections in the spawning channel and the life stage (HC - hatchery control line; SH - supplementation hatchery line) for each fish.

Females	Section	HC or SH	Total Offspring	Males	Section	HC or SH	Total Offspring
12IQ0003	1-1A	SH	18	12IQ0001	1-1A	SH	4
12IQ0004	1-1A	SH	30	12IQ0002	1-1A	SH	144
12IQ0005	1-1A	SH	56	12IQ0006	1-1A	SH	33
12IQ0008	1-1A	SH	77	121Q0007	1-1A	SH	0
12IQ0009	1-2A	HC	14	12IQ0011	1-2A	HC	34
12IQ0010	1-2A	HC	42	12IQ0012	1-2A	HC	5
12IQ0013	1-2A	HC	103	12IQ0015	1-2A	HC	0
12IQ0014	1-2A	HC	0	12IQ0016	1-2A	HC	118
12IQ0017	1-3A	SH	72	12IQ0021	1-3A	SH	289
12IQ0018	1-3A	SH	197	12IQ0022	1-3A	SH	0
12IQ0019	1-3A	SH	93	12IQ0023	1-3A	SH	59
12IQ0020	1-3A	SH	11	12IQ0024	1-3A	SH	25
12IQ0025	2-1A	HC	56	12IQ0026	2-1A	HC	86
12IQ0027	2-1A	HC	0	12IQ0028	2-1A	HC	73
12IQ0029	2-1A	HC	60	12IQ0030	2-1A	HC	0
12IQ0031	2-1A	HC	43	12IQ0032	2-1A	HC	0
12IQ0033	2-2A	SH	0	121Q0037	2-2A	SH	0
12IQ0034	2-2A	SH	10	12IQ0038	2-2A	SH	145
12IQ0035	2-2A	SH	17	12IQ0039	2-2A	SH	0
12IQ0036	2-2A	SH	118	12IQ0040	2-2A	SH	0
12IQ0045	2-3A	HC	0	12IQ0041	2-3A	HC	0
12IQ0046	2-3A	HC	4	12IQ0042	2-3A	HC	0
12IQ0047	2-3A	HC	92	12IQ0043	2-3A	HC	101
12IQ0048	2-3A	HC	5	12IQ0044	2-3A	HC	0
12IQ0049	1-1B	SH	0	12IQ0053	1-1B	SH	118
12IQ0050	1-1B	SH	6	12IQ0054	1-1B	SH	83
12IQ0051	1-1B	SH	108	12IQ0055	1-1B	SH	0
12IQ0052	1-1B	SH	87	12IQ0056	1-1B	SH	0
12IQ0061	1-2B	HC	64	12IQ0057	1-2B	HC	0
12IQ0062	1-2B	HC	0	12IQ0058	1-2B	HC	0
12IQ0063	1-2B	HC	0	12IQ0059	1-2B	HC	0
12IQ0064	1-2B	HC	0	12IQ0060	1-2B	HC	64
12IQ0066	1-3B	SH	56	12IQ0065	1-3B	SH	9
12IQ0067	1-3B	SH	87	12IQ0068	1-3B	SH	0
12IQ0069	1-3B	SH	105	121Q0070	1-3B	SH	14
12IQ0071	1-3B	SH	43	12IQ0072	1-3B	SH	268
12IQ0077	2-1B	HC	86	12IQ0073	2-1B	HC	0
121Q0078	2-1B	HC	0	12IQ0074	2-1B	HC	0
12IQ0079	2-1B	HC	52	12IQ0075	2-1B	HC	174
12IQ0080	2-1B	HC	36	12IQ0076	2-1B	HC	0
12IQ0085	2-2B	SH	89	12IQ0081	2-2B	SH	90
12IQ0086	2-2B	SH	141	12IQ0082	2-2B	SH	370
12IQ0087	2-2B	SH	168	12IQ0083	2-2B	SH	0
12IQ0088	2-2B	SH	190	12IQ0084	2-2B	SH	127
12IQ0093	2-3B	HC	17	12IQ0089	2-3B	HC	92
12IQ0094	2-3B	HC	0	12IQ0090	2-3B	HC	1
12IQ0095	2-3B	HC	36	12IQ0091	2-3B	HC	0
12IQ0096	2-3B	HC	56	12IQ0092	2-3B	HC	19
			2545				2545

Appendix E.

DNA-Based Population-of-Origin Assignments of Chinook Salmon Smolts Outmigrating Past Chandler Trap at Prosser Dam (Yakima River) in 2013

Todd W. Kassler

Cherril M. Bowman

Molecular Genetics Laboratory
600 Capitol Way N.
Olympia, WA 98501-1091

Abstract

A population-of-origin assignment procedure was used to estimate the percentages of unknownorigin smolts from each of five stock groups outmigrating past Chandler Trap (Yakima River) from December 2012 - July 2013. Mixture analysis was conducted on a proportional subsample of 1,200 smolts collected during the outmigration at Chandler Trap. Assignment of each individual to a population-of-origin was determined if the posterior probability of the assignment was greater than 90.0%. The largest percentage of outmigrating smolts in the January/February, March, April, and May time strata was from the upper Yakima River stock while the June - July time stratum was dominated by the fall stocks with 70.6% of the total assignments. Comparison of morphological assessment and genetic assignment as a spring or fall Chinook smolt conducted for all time strata indicated agreement for 1,125/1,180 (95.3\%) of the smolts.

Introduction

Production and survival of the Yakima River basin spring Chinook stocks (American River, Naches River, and upper Yakima River) are monitored, as part of the Yakima/Klickitat Fishery Project supplementation evaluation program. However, in the lower Yakima River, where the best facilities to collect samples exist, the three spring Chinook stocks are mixed with one another and with the Marion Drain and Yakima River fall Chinook stocks, during downstream juvenile migration. Thus, methodologies for discriminating stocks in an admixture are vital for development of stock-specific estimates. Domestication monitoring plans require discrimination of the three spring Chinook salmon stocks in the basin, and a complete analysis of migration timing and stock abundance for all Chinook requires discrimination of the two fall stocks as well. Accurate assignments of Chinook smolts captured at the Chandler fish passage facility to population-of-origin will allow researchers and managers to estimate production by the three spring Chinook stocks, assess smolt-to-smolt survival of the three spring Chinook stocks, and could be utilized to evaluate stock-specific environmental condition factors.

The methodology used in this study to estimate the population-of-origin for individual fish in a mixture followed a Bayesian approach by Rannala and Mountain (1997). This approach assumes linkage equilibrium among loci and uses the multilocus genotype of an individual to compute the probability of that genotype belonging to a population in the baseline. Others have used the methodology developed by Rannala and Mountain (1997) to provide robust population-of-origin assignments of unknown individuals (Hauser et al. 2006, Taylor and Costello 2006, and Waples and Gaggiotti 2006).

Calculation of population-of-origin for Chinook smolts trapped at Chandler trap throughout the entire outmigration (January through July) was hindered in the first few years of analysis for several reasons: non-representative temporal sampling of the downstream migration, past omission of the Marion Drain fall and lower Yakima River mainstem fall Chinook stocks from the DNA baseline, and by maintenance and other shutdowns of trap operations in December and January in many years. In the analyses of samples from 2004-2010, attempts were made to eliminate the problems present in previous analyses. A new sampling design was initiated to provide a proportional sample of smolts outmigrating past Chandler trap and a larger number of smolts were analyzed. Repeated multi-year samples of all five baseline stocks were used to characterize the potential sources of smolts in the Yakima River basin.

This report presents the population-of-origin assignments for outmigrating smolts collected at the Chandler trap during 2013.

Materials and Methods

Collections

There were no collections added to the Yakima River baseline this year. Since 1989, sampling crews from the Yakama Nation and WDFW have collected adult spawning ground tissue samples to be included in the baseline. The tissue samples consisted of dry-mounted scales or fin tissue preserved in 100\% ethanol from five baseline stocks collected across multiple years (American River spring, Naches River spring, upper Yakima River spring, Marion Drain fall, and lower Yakima River fall; Table 1 and Figure 1).

An estimated total of 818,968 smolts passed the lower Yakima River at Chandler from January 2 - July 12, 2013. This estimate was based on expansion of the total number of smolts counted at the Chandler trap $(87,988)$ to account for trap efficiency, etc. Unknown-origin smolts were collected at Prosser Dam (Chandler Trap) following a sampling design that would identify a proportional number of smolt samples that represents the entire smolt outmigration. The following five time strata (January - February, March, April, May, and June - July) were used for analysis. Samples were collected from January 2 - July 13, 2013. These samples were genetically analyzed to get reliable estimates of population proportions. Each day, the total number of smolts at the trap was visually estimated before any processing occurred. If that number was below a predetermined threshold then a "standard" day's sample was taken (e.g. 10 fish). If the number of smolts was above the threshold then a "peak" day's sample was taken (e.g. 30 fish). The threshold for "standard" and "peak" days and the numbers of samples to be taken on each day varied for each of the time strata. These values were determined by analyzing the number of "peak" and "standard" days counted during four years of smolt outmigration monitoring. Based on this sampling design, 2,679 Chinook smolt samples were collected for genetic analysis.

The total estimated numbers of smolts passing the Chandler Trap each day were plotted with the total number of genetic samples that had been collected. A process was then employed to proportionalize the available genetic samples with the daily counts to provide a representative number of smolts that were outmigrating from January - July. A total of 1,200 smolts were identified for analysis.

DNA Extraction Methods

Genomic DNA was extracted by digesting a small piece of fin tissue (all smolt and some adult baseline collections) or scales (most adult baseline collections) using the nucleospin tissue kits obtained from Macherey-Nagel following the recommended conditions in the user manual. Extracted DNA was eluted with a final volume of $100 \mu \mathrm{~L}$.

PCR Methods

The polymerase chain reaction mixture contained the following for a $10 \mu \mathrm{~L}$ reaction: approximately 25 ng template DNA, 1X Promega buffer, $1.5 \mathrm{mM} \mathrm{MgCl}_{2}, 200 \mu \mathrm{M}$ each of dATP, dCTP, dGTP, and dTTP, approx. $0.1 \mu \mathrm{M}$ of each oligonucleotide primer, and 0.05 units GoTaq Flexi DNA polymerase (Promega). Amplification was performed using MJ Research PTC-200 and Applied Biosystems 9700 thermocyclers. The thermal profile was as follows: an initial denaturation step of 2 minutes at $94^{\circ} \mathrm{C} ; 40$ cycles of 15 seconds at $94^{\circ} \mathrm{C}, 30$ seconds at $50-60^{\circ} \mathrm{C}$, and 1 minute at $72^{\circ} \mathrm{C}$; plus a final extension step at $72^{\circ} \mathrm{C}$ for 10 minutes, followed by a final indefinite holding step at $10^{\circ} \mathrm{C}$.

Eleven microsatellite DNA loci (Table 2) were amplified via the polymerase chain reaction (PCR) using fluorescently labeled primers (obtained from Applied Biosystems or Integrated DNA Technologies). Loci were combined in multiplexes to increase efficiency and decrease costs.

Data were collected using an AB-3730 Genetic Analyzer. Applied Biosystems GENEMAPPER v.3.7 software was used to collect and analyze the raw data and to determine genotypes at each locus (based on estimated allele sizes in base pairs using an internal size standard). Alleles were binned in GENEMAPPER using the standardized allele sizes established for the Chinook coastwide standardization efforts (Seeb et. al., 2007).

Population-of-origin Analysis

The program ONCOR (Kalinowski et al. 2008) was used to assign each individual to one of the baseline collections. ONCOR uses conditional maximum likelihood to estimate mixture proportions (Millar 1987) and genotype probabilities are calculated using a partial Bayesian procedure method of Rannala and Mountain (1997). This Rannala and Mountain (1997) method uses the expectation-maximization (EM) algorithm to calculate the population-source probabilities (posterior probabilities) for each sample. All assignments with a posterior probability greater than or equal to 90% were accepted.

Comparison of Morphological ID and Genetic Assignment

Smolts were categorized as spring or fall Chinook when they were intercepted at the Chandler Trap based on morphological characteristics. Three morphological features (length, size of the eye, and snout shape) were used to identify smolts as spring or fall (Mark Johnston, Yakama Nation; pers. comm.).

Results

Collections

A total of 1,200 unknown Chinook smolts were selected and analyzed from those collected at Chandler Trap. Smolt samples that had data for 10 or more loci were included for analysis. A total of 20 individuals were dropped from statistical analyses.

Population-of-origin Analysis

The mixture composition estimates for the entire 2013 smolt outmigration indicated that the largest overall percentage of spring smolts was from the upper Yakima River followed by the Naches River and American River in the first four strata. During the migration from January May, the proportion of the upper Yakima River stocks was between 66.7 and 76.2% while the American River and Naches River spring stocks was between 3.3 and 27.5\%. The proportion of the two fall stocks was between $0.0-22.3 \%$ for the first four time strata and 70.6% in the June July time stratum (Table 3).

Comparison of Morphological ID and Genetic Assignment

A comparison of the morphological assessment to genetic assignment was conducted for all five time strata. A total of 39 smolts in January/February, 82 smolts in March, 724 smolts in April, 140 smolts in May, and 195 in the June/July time strata were scored, and therefore included in the analysis. Results for the time strata were as follows: January/February time stratum - all 39 smolts were assigned identically using morphological and genetic methods (39 spring); March stratum - 81 out of 82 smolts were assigned identically using morphological and genetic methods (81 spring) the one discrepancy was identified as a fall by the genetic analysis and spring with morphological identification; April time stratum - 724 smolts were assigned identically using morphological and genetic methods (724 spring); May time stratum - 136 out of 140 smolts were assigned identically using morphological and genetic methods (100 spring 36 fall), all four of the discrepancies were identified as a spring by the genetic analysis and fall with morphological identification; June/July time stratum - 145 out of 195 smolts were assigned
identically using morphological and genetic methods (12 spring and 133 fall), 4 discrepancies were assigned as fall by the genetic analyses while morphological identification was spring, the remaining 46 discrepancies were identified as a spring by the genetic analysis and fall with morphological identification.

Discussion

Collection of smolts at the Chandler Trap in 2013 utilized a sampling design intended to yield a sample that was proportional to the number of smolts passing the Chandler Trap. Sampling a proportional number of smolts was important to determine an accurate percentage of smolts from each stock that were outmigrating from the basin. Developing the sampling strategy for identifying a "standard" versus "peak" day of smolts that were in the trap and applying a sampling goal for those days allowed for a proportional sample. Subsampling the smolts collected for genetic analysis provided a best fit to the actual passage of smolts for a given day.

Monitoring the relative abundances of Chinook smolts in the Yakima River from the three different populations of spring Chinook (upper Yakima River, American River, and Naches River) and the two populations of fall Chinook (Marion Drain and lower Yakima River) requires the ability to estimate population composition of smolts outmigrating past Chandler trap. Because all five Chinook populations are intermingled when they pass Chandler trap, and the vast majority are unmarked and untagged, the only way to determine population-of-origin is by genetic analysis. This method requires that sufficient genetic differences exist among these populations in the Yakima River basin.

A baseline of 19 individual collections from the five populations in the Yakima River basin was used for the population-of-origin assignments of the outmigrating smolts. The baseline collections as a whole had higher genotyping failure compared to the Chandler smolt samples. Scales were taken from carcasses on spawning grounds for most baseline collections; therefore, DNA quality was presumably poorer than the Chandler smolt collection where tissue was collected from live fish. The upper Yakima River tissue collections were also taken from live fish at the hatchery and, therefore, genotyping success was higher for this collection than the other baseline collections.

Assessment of spring or fall smolts by morphological and genetic analysis revealed agreement with 55 individuals being identified differently between the two methods. Identification as a
spring or fall smolt was the same for 1,125 smolts collected during the January - February, March, April, May, and June - July time strata.

The majority of the assignments between January and May were from the three spring stocks. The upper Yakima River spring stock accounted for the highest average percentage (76.2\%) of smolts present in that period. Rank in abundance of the three spring stocks was the same in the three time strata (January-February, March, April, and May) with upper Yakima River spring stock having the most. The June-July time stratum was predominately composed of the fall Chinook stocks, accounting for over 70.6% of the total number of smolts.

Assessment of DNA Mixture Assignments from 2000-2013
Mixed stock analysis has been conducted on Chandler smolts since 2000 (Young 2004, Kassler et al. 2005, Kassler 2006, Kassler and VonBargen 2007, 2008, 2009 and 2010, Kassler and Peterson 2011, Kassler and Bell 2012, Kassler and Bowman 2013); however the sampling design for samples collected in 2000 - 2003 was not proportionalized during the run. The yearly assignments are therefore not comparable from those years. Beginning in 2004, staff at the Chandler trap utilized a sampling protocol to provide a number of smolts that was relative to the percentage of smolts passing that day. Samples were then subsampled at WDFW to provide a proportional number of samples that would represent the overall passage to be analyzed.

Acknowledgements

Funding for this study was provided by the Bonneville Power Administration (BPA) and by the WA State General Funds to WDFW. We would like to thank Mark Johnston and the Yakama Nation Chandler trap crew for collecting all the unknown smolts at Chandler Trap and the Yakama Nation and WDFW field sampling crews for the baseline stock collections. Doug Neeley, Dave Lind, Bill Bosch (Yakama Nation) provided Chandler Trap Chinook count and passage data.

Literature cited

Banks, M.A., M.S. Blouin, B.A. Baldwin, V.K. Rashbrook, H.A. Fitzgerald, S.M. Blankenship, and D. Hedgecock. 1999. Isolation and inheritance of novel microsatellites in chinook salmon. Journal of Heredity 90: 281-288.

Belkhir, K., P. Borsa, L. Chikhi, N. Raufaste, and F. Bonhomme. 2001. Genetix, logiciel sous Windows TM pour la genetique des populations. Laboratoire Genome, Populations, Interactions: CNRS UMR 5000, Universite de Montpellier II, Montpellier, France.

Cairney, M., J.B. Taggart, and B. Hoyheim. 2000. Atlantic salmon (Salmo salar L.) and crossspecies amplification in other salmonids. Molecular Ecology 9: 2175-2178.

Cavalli-Sforza, L.L. and A.W.F. Edwards. 1967. Phylogenetic analysis: models and estimation procedures. Evolution 32:550-570.

Felsenstein, J. 1993. PHYLIP (Phylogeny Inference Package) version 3.5c. Distributed by the author. Department of Genetics, University of Washington, Seattle, WA.

Greig, C., J.P. Jacobson, and M.A. Banks. 2003. New tetranucleotide microsatellites for finescale discrimination among endangered Chinook salmon (Oncorhynchus tshawytscha). Molecular Ecology Notes 3:376-379.

Hauser, L., T.R. Seamons, M. Dauer, K.A. Naish, and T.P. Quinn. 2006. An empirical verification of population assignment methods by marking and parentage data: hatchery and wild steelhead (Oncorhynchus mykiss) in Forks Creek, Washington, USA. Molecular Ecology 15(11): 3157-3173.

Kalinowki, S.T., K.R. Manlove, and M.L. Taper. 2008. ONCOR. A computer program for genetic stock identification. http://www.montana.edu/kalinowski/Software/ONCOR.htm

Kassler, T.W., M. Johnston, S.F. Young, and J.B. Shaklee. 2005. DNA based stock-of-origin assignments of Chinook salmon smolts outmigrating past Chandler Trap (Yakima River) in 2004. Yakima/Klickitat Fisheries Project Genetic Studies. Annual Report 2005. Portland, OR, Bonneville Power Administration 41-77.

Kassler, T.W. 2006. DNA based stock-of-origin assignments of Chinook salmon smolts outmigrating past Chandler Trap (Yakima River) in 2005. Yakima/Klickitat Fisheries Project Genetic Studies. Annual Report 2006. Portland, OR, Bonneville Power Administration 138-181.

Kassler, T.W. and J. Von Bargen. 2007. DNA based stock-of-origin assignments of Chinook salmon smolts outmigrating past Chandler Trap (Yakima River) in 2006.
Yakima/Klickitat Fisheries Project Genetic Studies. Annual Report 2007. Portland, OR, Bonneville Power Administration.

Kassler, T.W. and J. Von Bargen. 2008. DNA based stock-of-origin assignments of Chinook salmon smolts outmigrating past Chandler Trap (Yakima River) in 2007.
Yakima/Klickitat Fisheries Project Genetic Studies. Annual Report 2008. Portland, OR, Bonneville Power Administration.

Kassler, T.W. and J. Von Bargen. 2009. DNA based stock-of-origin assignments of Chinook salmon smolts outmigrating past Chandler Trap (Yakima River) in 2008.
Yakima/Klickitat Fisheries Project Genetic Studies. Annual Report 2009. Portland, OR, Bonneville Power Administration.

Kassler, T.W. and J. Von Bargen. 2010. DNA based stock-of-origin assignments of Chinook salmon smolts outmigrating past Chandler Trap (Yakima River) in 2009.
Yakima/Klickitat Fisheries Project Genetic Studies. Annual Report 2010. Portland, OR, Bonneville Power Administration.

Kassler, T.W. and S. Peterson. 2011. DNA based stock-of-origin assignments of Chinook salmon smolts outmigrating past Chandler Trap (Yakima River) in 2010. Yakima/Klickitat Fisheries Project Genetic Studies. Annual Report 2011. Portland, OR, Bonneville Power Administration.

Kassler, T.W. and S. Bell. 2012. DNA based stock-of-origin assignments of Chinook salmon smolts outmigrating past Chandler Trap (Yakima River) in 2011. Yakima/Klickitat Fisheries Project Genetic Studies. Annual Report 2011. Portland, OR, Bonneville Power Administration.

Kassler, T.W. and C.M. Bowman. 2013. DNA based stock-of-origin assignments of Chinook salmon smolts outmigrating past Chandler Trap (Yakima River) in 2012. Yakima/Klickitat Fisheries Project Genetic Studies. Annual Report 2012. Portland, OR, Bonneville Power Administration.

Millar, R.B. 1987. Maximum likelihood estimation of mixed stock fishery composition. Canadian Journal of Fisheries and Aquatic Sciences 44: 583-590.

Olsen, J.B., P.B. Bentzen, and J.E. Seeb. 1998. Characterization of seven microsatellite loci derived from pink salmon. Molecular Ecology 7:1083-1090.

O'Reilly, P.T., L.C. Hamilton, S.K. McConnell, and J.M. Wright. 1996. Rapid analysis of genetic variation in Atlantic salmon (Salmo salar) by PCR multiplexing of dinucleotideand tertanucleotide microsatellites. Canadian Journal of Fisheries and Aquatic Sciences 53:2292-2298.

Page, R.D.M. 1996. TREEVIEW: an application to display phylogenetic trees on personal computers. Computer Application Biosciences 12:351-358.

Rannala, B. and J.L. Mountain. 1997. Detecting immigration by using multilocus genotypes. Proceedings of the National Academy of Sciences USA 94, 9197-9201.

Raymond, M. and F. Rousset. 1995. GENEPOP (ver. 1.2): A population genetics software for exact test and ecumenicism. Journal of Heredity 86:248-249.

Rice, W.R. 1989. Analyzing tables of statistical tests. Evolution 43:223-225.
Saitou, N. and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4:406-425.

Seeb, L.W., A. Antonovich, M.A. Banks, et al. 2007. Development of a Standardized DNA Database for Chinook Salmon. Fisheries 32:11.

Taylor, E.B. and A.B. Costello. 2006. Microsatellite DNA analysis of coastal populations of bull trout (Salvelinus confluentus) in British Columbia: zoogeographic implications and its application to recreational fishery management. Canadian Journal of Fisheries and Aquatic Sciences 63(5):1157-1171.

Waples, R.S. and O. Gaggiotti. 2006. What is a population? An empirical evaluation of some genetic methods for identifying the number of gene pools and their degree of connectivity. Molecular Ecology 15(6):1419-1439(21).

Williamson, K.S., J.F. Cordes, and B.P. May. 2002. Characterization of microsatellite loci in chinook salmon (Oncorhynchus tshawytscha) and cross-species amplification in other salmonids. Molecular Ecology Notes 2:17-19.

Young, S.F. 2004. Year 2003 Chandler Chinook Smolt Stock-of-Origin Assignments. WDFW Genetics Laboratory unpublished report (Washington Department of Fish and Wildlife) Olympia, WA.

Table 1. Nineteen Chinook salmon collections assembled into a baseline and used for the analysis of the known-origin and unknown-origin smolts. "*" the 05LU collection from Marion Drain was not used in the baseline, but is listed here as a collection from Marion Drain. The percentage of single locus genotypes missing are shown for each collection.

Baseline Collections	Collection Code	\# Processed	\# Analyzed	\% Single Locus Genotypes Missing
American River - spring	89AG	80	77	10.4\%
	91DQ	102	87	9.8\%
	93DO	18	17	3.2\%
	03EH	100	70	6.6\%
		300	251	8.6\%
ches River	89AC	76	74	11.4\%
	89AI	26	22	7.0\%
	93DQ	50	45	6.3\%
	93DR	32	25	7.3\%
little Naches River - spring	04BI	42	41	2.2\%
	04EM	56	45	9.9\%
		282	252	7.9\%
upper Yakima River - spring	92DN	24	23	5.9\%
	97DA	123	115	3.9\%
	03GO	99	99	1.4\%
		246	237	3.0\%
Marion Drain - fall	89BX	100	92	8.3\%
	92FQ	92	92	5.4\%
	93DY	8	8	8.0\%
	05LU*	65	47	15.3\%
		265	239	8.6\%
lower Yakima River - fall	90DF	109	104	12.6\%
	93DW	82	80	9.8\%
	98FB	61	50	8.7\%
		252	234	10.8\%
Chandler Trap Smolts - 2013	13AP	1,200	1,180	0.7\%

Table 2. Microsatellite locus information (number alleles/locus and allele size range) for multiplexed loci used in the analysis of Chinook from five stocks in the Yakima River Basin. Also included are the percent missing genotypes for both the baseline and smolt collections and heterozygosity (observed $\left(\mathrm{H}_{0}\right)$ and expected $\left(\mathrm{H}_{\mathrm{e}}\right)$) for each locus.

expected (H_{e})) for each locus								
							Heterozygosity	
Multiplex	Locus	Annealing temp ${ }^{\circ} \mathrm{C}$	\# Alleles/ Locus	Allele Size Range (bp)	\% missing genotypes baseline $N=1,166$	\% missing genotypes smolts $\mathrm{N}=1,180$	H_{0}	H_{e}
Ots-M	Oki-100 ${ }^{\text {a }}$	50	41	164-365	11.6\%	0.5\%	0.913	0.940
	Ots-201b ${ }^{\text {a }}$	50	42	137-310	7.1\%	0.4\%	0.916	0.936
	Ots-208b ${ }^{\text {b }}$	50	52	158-342	9.7\%	0.6\%	0.943	0.954
	Ssa-408 ${ }^{\text {c }}$	50	32	184-308	3.5\%	1.5\%	0.827	0.934
Ots-N	Ogo-2 ${ }^{\text {d }}$	60	19	202-256	3.7\%	0.8\%	0.756	0.854
	Ssa-197 ${ }^{\text {e }}$	60	38	181-318	11.8\%	0.3\%	0.915	0.940
Ots-O	Ogo-4 ${ }^{\text {d }}$	56	17	132-164	15.2\%	0.5\%	0.776	0.884
	Ots-213 ${ }^{\text {b }}$	56	40	182-362	9.3\%	0.6\%	0.908	0.940
	Ots-G474 ${ }^{\text {f }}$	56	15	152-212	3.0\%	1.2\%	0.507	0.697
Ots-R	Ots-3M ${ }^{g}$	53	15	128-158	2.5\%	0.3\%	0.601	0.672
Ots-S	Ots-9 ${ }^{g}$	60	8	99-113	5.1\%	1.4\%	0.668	0.709
${ }^{\mathrm{a}}=$ Unpublished								
${ }^{\mathrm{b}}=$ Greig et al. 2003								
${ }^{\text {c }}$ = Cairney et al. 2000								
d $=$ Olsen et al. 1998								
${ }^{\text {e }}=$ Oreilly et al. 1996								
${ }^{\mathrm{f}}=$ Williamson et al. 2002								
${ }^{\mathrm{g}}=$ Banks et al. 1999								

Table 3. Stock-of-origin assignments for five stocks of Chinook in the Yakima River Basin using ONCOR.

Figure 1. Geographic location of the Chandler trap on the Yakima River, Washington and the primary streams in the basin.

