Genetic and Phenotypic Risks of Inbreeding in Chinook Salmon Across Two Hatchery Management Regimes

Charles Waters¹, Jeffrey Hard², David Fast³, Kenneth Warheit⁴, Curtis Knudsen⁵, William Bosch³, and Kerry Naish¹

¹School of Aquatic and Fishery Sciences, University of Washington
²Northwest Fisheries Science Center, NOAA
³Yakama Nation
⁴Washington Department of Fish and Wildlife
⁵Oncorh Consulting

Effectiveness of managed gene flow to reduce genetic and phenotypic risks associated with captive breeding of Chinook salmon

1: Effectiveness of managed gene flow in reducing genetic divergence associated with captive breeding

2: Evaluate effects of managed gene flow on trait-linked loci

3: Genetic and phenotypic risks of inbreeding in hatchery and wild populations of Chinook salmon

4: Characterize genetic and phenotypic differences in disease resistance between integrated and segregated populations of Chinook salmon

Effectiveness of managed gene flow to reduce genetic and phenotypic risks associated with captive breeding of Chinook salmon

1: Effectiveness of managed gene flow in reducing genetic divergence associated with captive breeding

2: Evaluate effects of managed gene flow on trait-linked loci

3: Genetic and phenotypic risks of inbreeding in hatchery and wild populations of Chinook salmon

4: Characterize genetic and phenotypic differences in disease resistance between integrated and segregated populations of Chinook salmon

Inbreeding

- The mating of related individuals
- F "the probability that both alleles at a locus are identical by descent"
- More likely to occur in small populations

Inbreeding depression (IBD)

• A reduction in fitness due to inbreeding

Inbred steelhead and rainbow trout had 71% and 89% reduced marine survival compared to controls (Thrower and Hard 2009)

Aim: To quantify genetic, phenotypic, and demographic effects of inbreeding in hatchery and supplemented wild populations of Chinook salmon

Objectives:

- 1. Estimate inbreeding coefficients in the wild founders and four generations of the segregated and integrated hatchery lines
- 2. Quantify the effect of inbreeding on fitness traits
- 3. Build an Integral Projection Model (IPM) to determine how inbreeding depression affects productivity in supplemented wild populations

Inbreeding coefficients using 5,328 loci

Effective number of breeders, N_b

Generational Lag of Inbreeding Coefficients

Generational Lag of Inbreeding Coefficients

Effects of Inbreeding on Fitness

Effects of Inbreeding on Fitness

No correlation of inbreeding with:

- Return time to Roza
- Spawn time
- Forklength
- Weight
- Condition factor
- Fecundity
- Reproductive effort

Quantifying Risks to Productivity

Aim: To understand how inbreeding affects the fitness and productivity of supplemented wild populations

Objectives:

- 1. Build an Integral Projection Model (IPM) using four functions to link genetics and phenotypic variability to demographic processes:
 - Survival S(t,z,f) = probability that an individual with trait value *z* and inbreeding coefficient *f* at time *t* survives to *t*+1
 - Growth G(t,z'|z,f) = probability that individual with z and f at time t will shift to any z' at time t+1
 - Recruitment R(t,z,f) = number of offspring that an individual with z and f produces from time t to time t+1
 - Inheritance I(t,z',f'|z,f) = probability that an individual with z and f at time t produces an offspring of trait value z' and inbreeding coefficient f' at time t+1
- 2. Conduct sensitivity analyses to quantify the importance of each parameter and function to population growth rate.

Acknowledgments

Experimental lines:

Levi George, Melvin Sampson, Steve Schroder, Craig Busack, Past and present members of the Independent Scientific Review Panel, and the Yakama Nation

Data Collection:

Yakama Nation and Washington Department of Fish and Wildlife personnel at Roza Dam and CESRF

Funding: Washington Sea Grant, NMFS/Sea Grant Population and Ecosystem Dynamics Graduate Fellowship, and UW Hall Conservation Genetics Research Award

Questions: cwaters8@uw.edu

