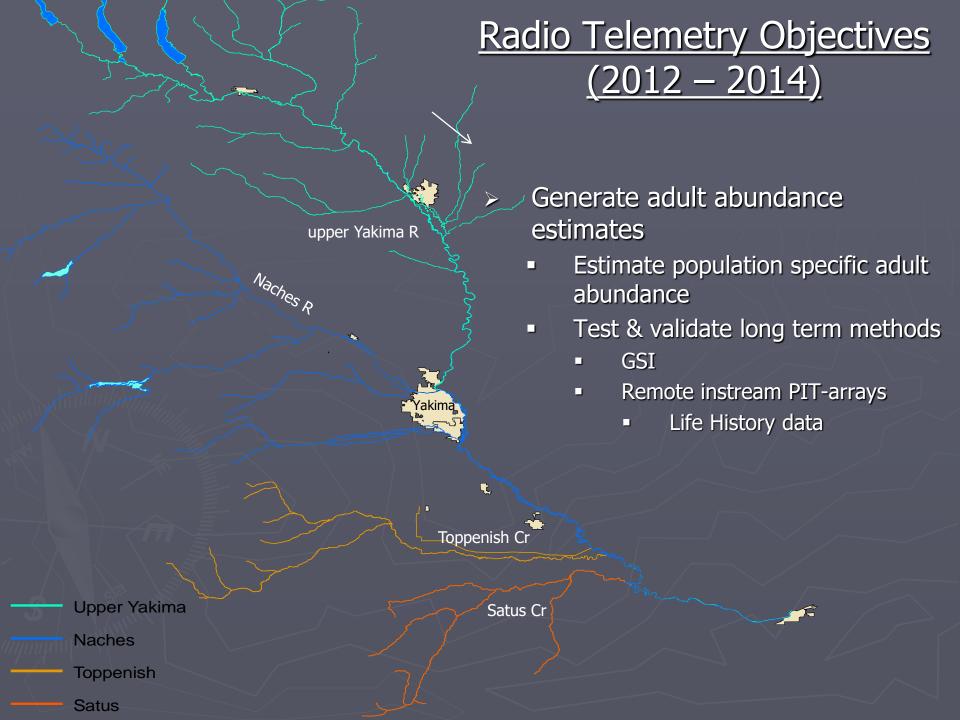


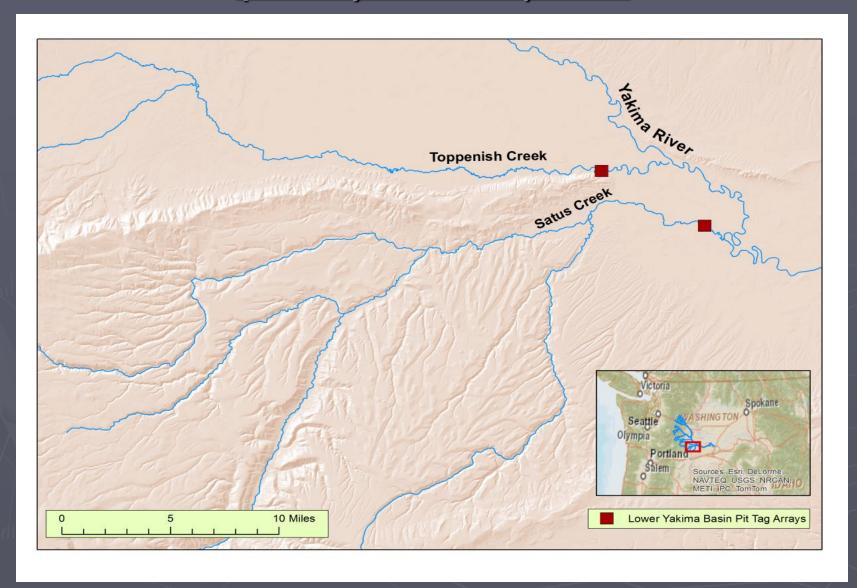
¹Yakama Nation Fisheries - YKFP ²Washington Department of Fish and Wildlife

Basis of Project Development (Circa 2010)

(2010) Expand RM&E activities to fill monitoring gaps for Yakima River Steelhead identified in:


- 1. Yakima River Steelhead Recovery Plan
- 2. FCRPS Biological Opinion RPA review
- 3. 2009 Columbia Basin monitoring strategy Review

Steelhead RM&E Project Goals & Obectives


- Collect biological data for status and trends monitoring
 - 1. Data includes but not limited to: Spawner abundance, juvenile abundance, life history & demographic information, spatial distribution
 - 2. Inform local adaptive management actions and guide recovery efforts based on population performance
 - Habitat restoration/protection
 - Yakima River flow management
 - ESA listing status (NOAA Fisheries)

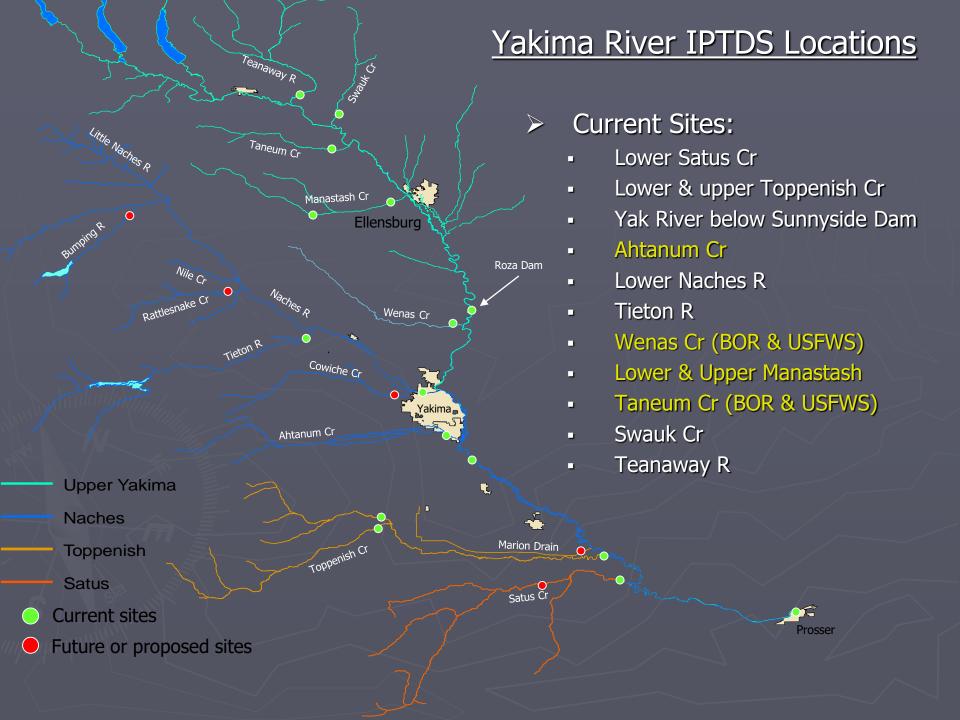
Steelhead RM&E Project Goals & Obectives

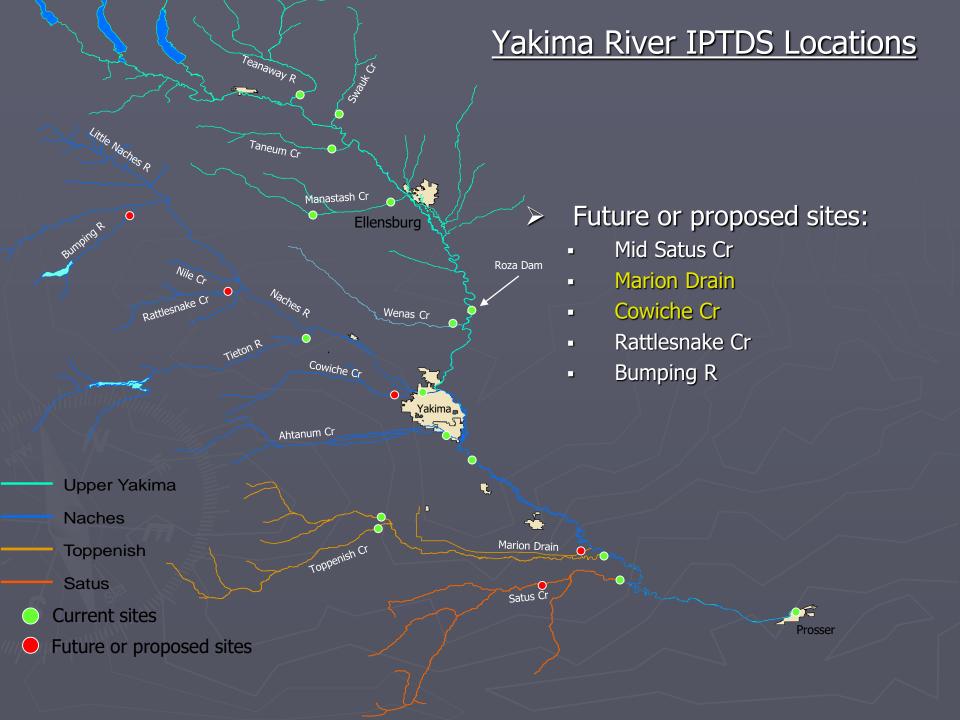
- Collect biological data for status and trends monitoring
 - 1. Data includes but not limited to: Spawner abundance, juvenile abundance, life history & demographic information, spatial distribution
 - 2. Inform local adaptive management actions and guide recovery efforts based on population performance
 - Habitat restoration/protection
 - Yakima River flow management
 - ESA listing status (NOAA Fisheries)

Yakima River Instream PIT-Tag Detection Sytem (IPTDS) Feasibility Sites

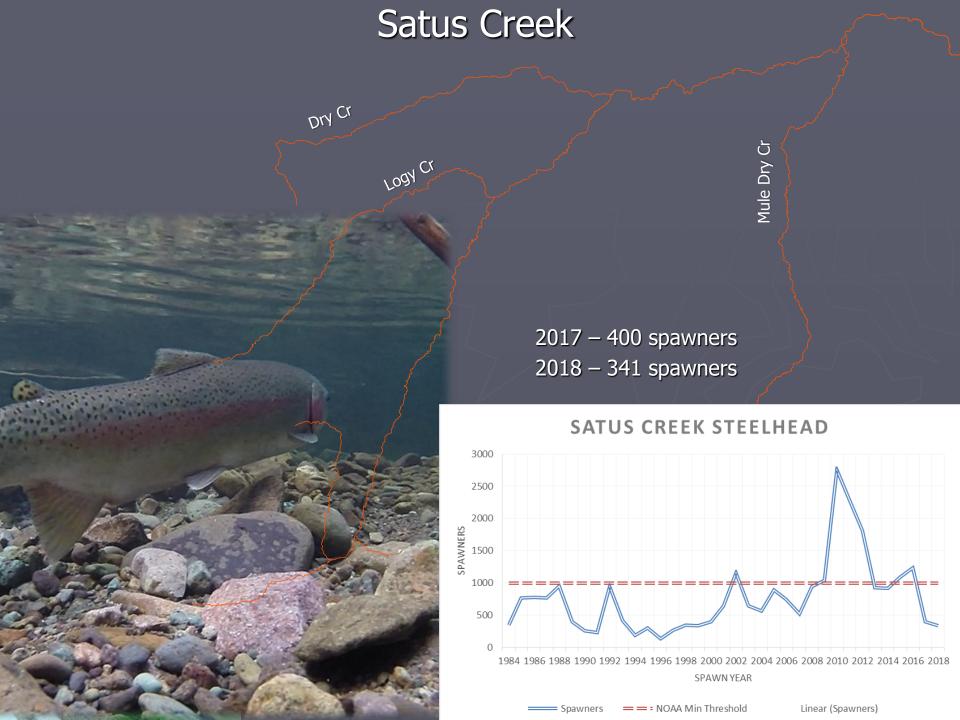
Satus & Toppenish Cr IPTDS: 2012-2014 Detection Efficiencies

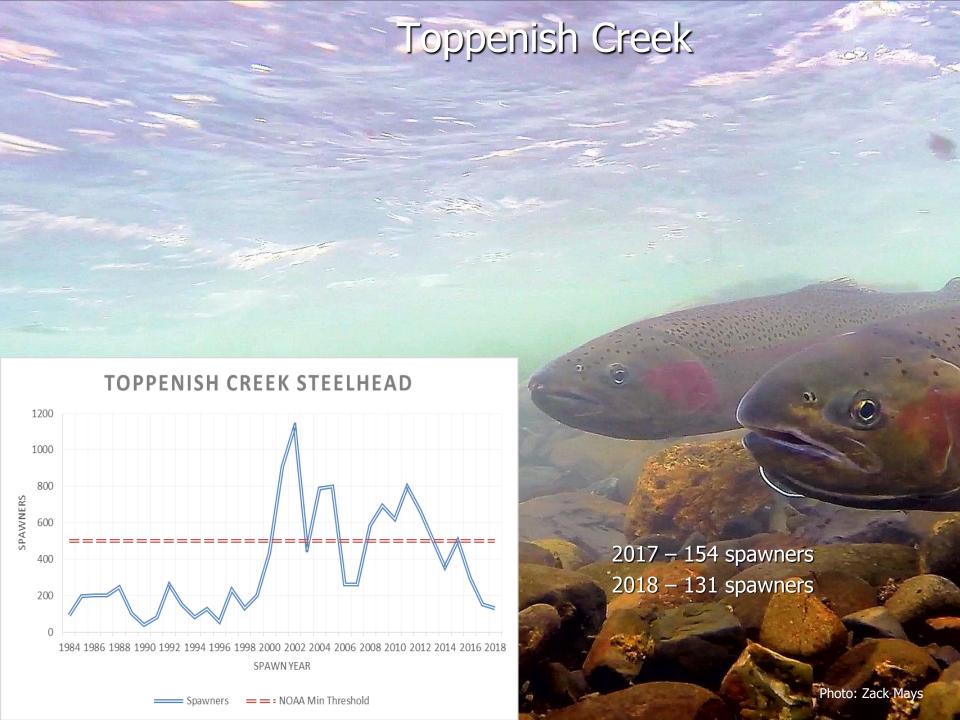
	Satus Cr Inst	ream PIT-tag Det	ection Array						
Year	Total # of double tagged sthd detected	# of Detected PIT-tags	Instream Array detection efficiency						
2012	159	154	96.86%						
2013	102	101	99.02%						
2014	113	105	92.92%						
AVG			96.27%						


/ //	Toppenish Cr Ir	nstream PIT-tag D	etection Array
Year	Total # of double tagged sthd detected	# of Detected PIT-tags	Instream Array detection efficiency
2012	48	48	100.00%
2013	46	45	97.83%
2014	34	31	91.18%
AVG			96.33%


Yakima River IPTDS: Trials and Tribulations!

Yakima River IPTDS:





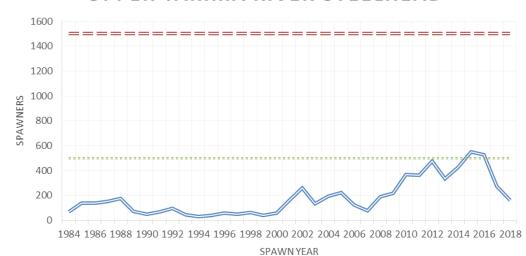
Yakima River Summer Run Steelhead

Naches River **NACHES RIVER STEELHEAD** 2500 2000 SPAWNERS 1000 500 2017 – 577 spawners

2018 – 492 spawners

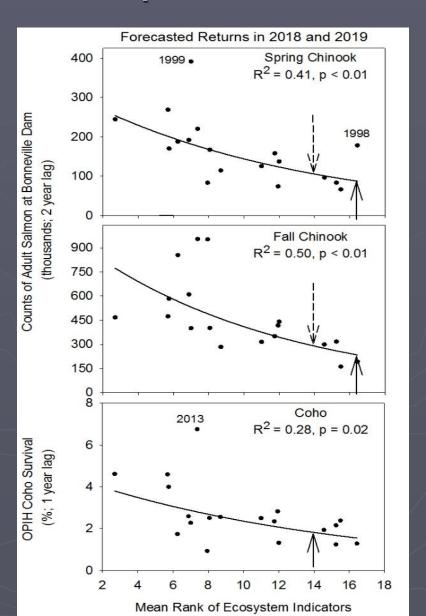
Spawners == NOAA Min Threshold

1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 SPAWN YEAR


Upper Yakima River

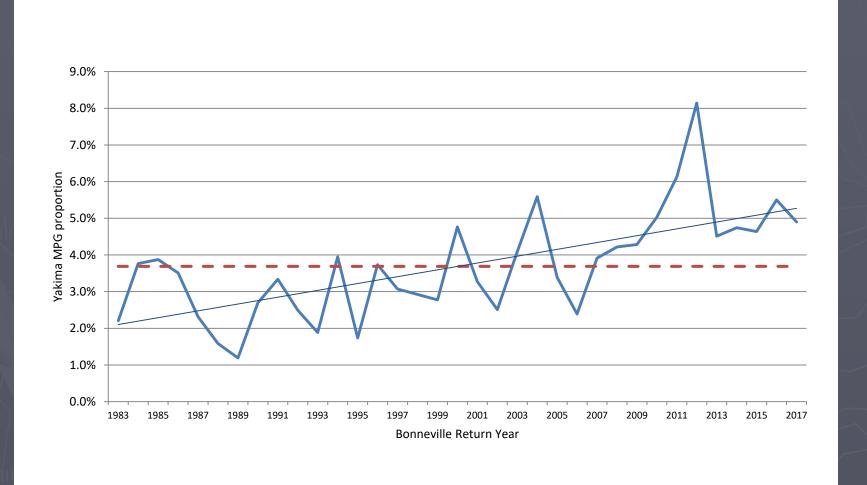
2018 – 160 spawners

UPPER YAKIMA RIVER STEELHEAD



Spawners == NOAA Min Threshold Maintenance

NOAA Fisheries Ocean Ecosystem Indicators "Stoplight Chart"


	V																			
-	Year 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016													2047						
Ecosystem Indicators	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
PDO (Sum Dec-March)	17	6	3	12	7	19	11	15	13	9	5	1	14	4	2	8	10	20	18	16
PDO (Sum May-Sept)	10	4	6	5	11	16	15	17	12	13	2	9	7	3	1	8	18	20	19	14
ONI (Average Jan-June)	19	1	1	6	13	15	14	16	8	11	3	10	17	4	5	7	9	18	20	12
46050 SST (°C; May-Sept)	16	9	3	4	1	8	20	15	5	17	2	10	7	11	12	13	14	19	18	6
Upper 20 m T (°C; Nov-Mar)	19	11	8	10	6	14	15	12	13	5	1	9	16	4	3	7	2	20	18	17
Upper 20 m T (°C; May-Sept)	16	12	14	4	1	3	20	18	7	8	2	5	13	10	6	17	19	9	15	11
Deep temperature (°C; May-Sept)	20	6	8	4	1	10	12	16	11	5	2	7	14	9	3	15	19	18	13	17
Deep salinity (May-Sept)	19	3	9	4	5	16	17	10	7	1	2	14	18	13	12	11	20	15	8	6
Copepod richness anom. (no. species; May-Sept)	18	2	1	7	6	13	12	17	15	10	8	9	16	4	5	3	11	19	20	14
N. copepod biomass anom. (mg C m ⁻³ ; May-Sept)	18	13	9	10	3	15	12	19	14	11	6	8	7	1	2	4	5	16	20	17
S. copepod biomass anom. (mg C m ⁻³ ; May-Sept)	20	2	5	4	3	13	14	19	12	10	1	7	15	9	8	6	11	17	18	16
Biological transition (day of year)	17	8	5	7	9	14	13	18	12	2	1	3	15	6	10	4	11	20	20	16
Ichthyoplankton biomass (log (mg C 1000 m ⁻³); Jan-Mar)	20	11	3	7	9	18	17	13	16	15	2	12	4	14	10	8	19	5	6	1
Ichthyoplankton community index (PCO axis 1 scores; Jan-Mar)	9	13	1	6	4	10	18	16	3	12	2	14	15	11	5	7	8	17	20	19
Chinook salmon juvenile catches (no. km ⁻¹ ; June)	18	4	5	15	8	12	16	19	11	9	1	6	7	14	3	2	10	13	17	20
Coho salmon juvenile catches (no. km ⁻¹ ; June)	18	7	12	5	6	2	15	19	16	4	3	9	10	14	17	1	11	8	13	20
Mean of ranks	17.1	7.0	5.8	6.9	5.8	12.4	15.1	16.2	10.9	8.9	2.7	8.3	12.2	8.2	6.5	7.6	12.3	15.9	16.4	13.9
Rank of the mean rank	20	6	2	5	2	14	16	18	11	10	1	9	12	8	4	7	13	17	19	15
-																				
Ecosystem Indicators not include Physical Spring Trans.	d in the	mean o	of rank	s or sta	tistical 4	analyses 12	14	20	12	1	6	2	8	11	17	9	18	10	5	15
UI based (day of year) Physical Spring Trans. Hydrographic (day of year)	19	3	13	8	5	12	14	20	6	9	1	9	17	3	11	2	15	7	16	18
Upwelling Anomaly (April-May)	9	3	16	5	8	13	12	20	9	4	6	7	14	16	14	11	18	1	2	19
Length of Upwelling Season UI based (days)	6	2	18	11	1	13	9	20	5	3	8	3	15	17	15	14	19	10	7	12
SST NH-5 (°C; May-Sept)	9	6	5	4	1	3	20	16	10	18	2	19	11	7	14	13	15	12	17	8
Copepod Community Index (MDS axis 1 scores)	19	3	5	7	1	13	14	17	15	10	2	6	12	9	8	4	11	18	20	16
Coho Juv Catches (no. fish km ⁻¹ ; Sept)	11	2	1	4	3	6	12	14	8	9	7	15	13	5	10	NA	NA	NA	NA	NA

Salmon Returns Versus Mean Rank of Ecosystem Indicators (NOAA Fisheries 2018)

Yakima River Steelhead MPG: Proportion of Bonneville Group A wild

