Life-cycle models for Yakima River
 O. mykiss: a tool for evaluating environmental influence on life history
 strategy and abundance

Neala Kendall* and Chris Frederiksen ${ }^{\S}$

*Washington Department of Fish and Wildlife
${ }^{\text {§ Yakama Nation Fisheries }}$

Big questions-how will climate change, restoration, changes in downstream migration, and ocean conditions affect abundance and life history of Yakima River O. mykiss?

Why approach these questions from a life cycle perspective?

Current and future O. mykiss model applications in the Yakima Basin

- Climate Adaptation Plan
- Current and future life history and abundance changes due to flow and temperature changes?
- Restoration/preservation priorities under altered climate?

Model scenarios

In basin:

- Freshwater temperature and flow changes due to global warming
- Manastash habitat opening, Lake Cle Elum passage restoration
- Flow conditions affecting Roza Dam to McNary Dam survival
- Kelt reconditioning

Model scenarios

Out of basin:

- SAR variation due to ocean conditions
- SAR variation due to changes in smolt outmigration timing at Bonneville Dam
- Columbia River migration survival under different hydropower system conditions
- Avian and pinniped predation at Bonneville Dam area and lower Columbia River estuary

Existing models

1. Anadromous/resident O. mykiss abundance and reproductive success life-cycle models x 2 (developed for Yakima River by Ian Courter, Chris Frederiksen, et al.)

O. mykiss life-cycle model synopsis

1) Abundance and eggs:

2) Freshwater growth \& recruitment

2a) Resident age classes \& proportions maturing

2b) Anadromous recruitment \& smolt age
3) Anadromous survival \& adult returns

Existing models

1. Anadromous/resident O. mykiss abundance and reproductive success life-cycle models x 2 (developed for Yakima River by Ian Courter, Chris Frederiksen, et al.)
2. Anadromy/residency and smolt age decision for O. mykiss (developed for California populations based on fish condition; Satterthwaite et al. 2009, 2010)—FEMALES ONLY

Fish condition life-cycle model

- Estimate "fitness" for maturing vs. not and smolting vs. not fish based on freshwater growth, survival, and fecundity observed for fish in a given system
- Predict maturation/residency and smolt age decision

June 20-
Oct. 1
Dec. 31
emergence
Apr. 15 May 15
matur. window

Maturing and not smoltingresident rainbow trout

$\begin{aligned} & \stackrel{n}{4} \\ & \stackrel{\square}{4} \end{aligned}$	Life stages
	Predicted
	fitness
	based on
	survival
	and
	fecundity

heading to the ocean

	Life stages
	Predicted
	fitness
	based on
	survival
	and
	fecundity

Not maturing and not smolting-waiting

	Life stages
	Predicted
	fitness
	based on
	survival
	and
	fecundity

Maturing and smoltingN / A, undefined

	Life stages
	Predicted
	fitness
	based on
	survival
	and
	fecundity

Input data

- Date of emergence, resident spawning, emigration, smolt and maturation windows
- Length-specific resident fish egg production
- Resident survival through spawning
- Expected lifetime egg production of steelhead
- Length-specific marine survival
- Freshwater growth by season
- Freshwater stage-specific survival
- Breeding interactions

Freshwater survival

Marine survival

Fecundity

Freshwater growth

Freshwater survival among age classes

Potential egg deposition (PED) to age
Total number of eggs
Total number of age 1 individuals
Age 1 to age 2:
Total number of age 1 individuals
Total number of age 2 individuals

Age 2 to age 3:
Total number of age 2 individuals
Total number of age 3 individuals

Age 3 to age 4:
Total number of age 3 individuals
Total number of age 4 individuals

Average and range across years
... for other ages

Female steelhead breeding interactions

$\rightarrow 36 \%$ of female steelhead
spawned with male steelhead

- Could be as high as 50%

Male steelhead breeding interactions

Modeling steps

- Parameterize the model with as much known data as possible
- Adjust inputs, especially uncertain values, to simulate observed patterns of resident maturation age and smolt age
- Call this parameterization "baseline"
- Modify baseline parameters based on scenarios of interest to understand potential life history
- Incorporate heritability via breeding interactions between anadromous and resident individuals

Preliminary results: age-1 smolting decision

					15\% of fish smolt at age 1							
length (mm) at age-0 smolting decision window (so will smolt the following year at age 1)	40	50	60	70	80	90	100	110	120	130	140	150
baseline												

Jan. 1
Apr. 15 May 15 matur. window

Preliminary results: age-1 smolting decision

					15\% of fish smolt at age 1							
length (mm) at age-0 smolting decision window (so will smolt the following year at age 1)	40	50	60	70	80	90	100	110	120	130	140	150
baseline												
decrease fw survival 10\%												
increase fw survival 10\%												
decrease SAR 10\%												
increase SAR 10\%												
increase fw growth 5\%												
increase fw growth 10\%												
decrease fw growth 5\%												
decrease fw growth 10\%												
spawn and emigrate 10 days earlier												

Preliminary results: age-2 and 3 smolting decision

												\% of	fish s	molt	t age						11\%	f fish	smo	t at	ge 3	
length (mm) at age $1+$ smolting decision window (so will smolt the following year at age 2+)	50	60	70	80	90	100	110	120	130	140	150	160	170	180	190	200	210	220	230	240	250	260	270	280	290	300
baseline																										

Preliminary results: age-2 and 3 smolting decision

											73% of fish smolt at age 2										11% of fish smolt at age 3					
length (mm) at age $1+$ smolting decision window (so will smolt the following year at age 2+)	50	60	70	80	90	100	110	120	130	140	150	160	170	180	190	200	210	220	230	240	250	260	270	280	290	300
baseline																										
decrease fw survival 10\%																										
increase fw survival 10\%																										
decrease SAR 10\%																										
increase SAR 10\%																										
increase fw growth 5\%																										
increase fw growth 10\%																										
decrease fw growth 5\%																										
decrease fw growth 10\%																										
spawn and emigrate 10 days earlier																										

Preliminary results: age-2, 3, and 4 maturation decision

15% of fish are mature by age 2

length (mm) at age $1+$ maturation decision window (so will mature as a rainbow trout the following year at age $2+$)
$\begin{array}{lllllllll}80 & 90 & 100 & 110 & 120 & 130 & 140 & 150 & 1\end{array}$
 baseline

June 20-
Oct. 1
Dec. 31
emergence

Jan. 1 Apr. 15 May 15 matur. window

Apr. 15-resident spawning

Preliminary results: age-2, 3, and 4 maturation decision

O. mykiss life-cycle model synopsis

1) Abundance and eggs:

2) Freshwater growth \& recruitment

2a) Resident age classes \& proportions maturing

2b) Anadromous recruitment \& smolt age
3) Anadromous survival \& adult returns

Existing models

1. Anadromous/resident O. mykiss abundance and reproductive success life-cycle models x 2 (developed for Yakima River by Ian Courter, Chris Frederiksen, et al.)
2. Anadromy/residency and smolt age decision for O. mykiss (developed for California populations based on fish
condition; Satterthwaite et al. 2009, 2010)
3. Chinook and steelhead life-cycle matrix models (developed for Interior Columbia River Basin; Zabel et al. 2006; ICTRT and Zabel 2007)

O. mykiss life-cycle model synopsis

1) Abundance and eggs:

2) Freshwater growth \& recruitment

2a) Resident age classes \& proportions maturing

2b) Anadromous recruitment \& smolt age
3) Anadromous survival \& adult returns

Acknowledgements

- Yakama Nation and WDFW
- Tom Cooney, Rich Zabel, Jeff Jorgensen, and the AMIP Life-Cycle Modeling Group
- Will Satterthwaite
- Thomas Buehrens

Current and future O. mykiss model applications in the Yakima Basin

- Yakima River Basin Integrated Water Resource Management Plan
- Evaluate benefits of habitat enhancement
- Example: Lake Cle Elum fish passage-66 km of new habitat

Parts of basin are very flow regulated

- Reservoirs, water delivery for agriculture
- Strong rainbow trout population
- Flow regulation favors rainbows?
- Current Year Previous Year
Averase Averase

Development of freshwater recruitment curves

1) Upper Yakima age class abundance estimates

- WDFW data set (1991-2004)
- Index reaches (fish/km) expanded

2) Recruitment curves

- 4 age class recruitment curves constructed
- Capture density dependent effects

