Recovery, rematuration, and reproductive performance in repeat spawning reconditioned female steelhead

LE Jenkins, AP Pierce, ND Graham, LR Medeiros, R Branstetter, D Hatch, JJ Nagler Department of Biological Sciences, University of Idaho Nagler Lab

Model O. mykiss – Life History Diversity

- Freshwater residents vs. anadromous (sea run) steelhead; interbreed
- Variation in ages & sizes
 - seaward/downstream migration
 - upstream spawning migration
 - iteroparous, spawning interval: consecutive or skip
- Leads to diverse pathways in individuals... 16 (32?) theorized for anadromous

Spawning Interval Diversity

Kelt Reconditioning: Conservation

- Active conservation recovery tool in Columbia R. Basin
- Columbia River Inter-Tribal Fish Commission and local tribes
- Yakima R. largest project
- Capitalizes on
 - Repeat spawning ability
 - Natural selection
 - Availability for collection
 - >50% attempt to migrate out
 - Low occurrence of repeat spawning in current system
 - 0.5% (Keefer 2008), 1.3% last 7 years (Copeland in prep)

Kelt Reconditioning: Conservation

- Collected during downstream migration
- Transport

- Tanks with river water
- Natural photoperiod
- Fed pellets, krill satiation feeding

- Release mature fish to migrate upstream
- Hold over nonmature fish

Current Models for (Re)Maturation

Energy reserves

Commitment to spawning, egg size and egg number in *O. mykiss*

- Coincide with energy transfer to oocytes
- Signaled ~1 year prior to spawning
- Fecundity (egg #) set prior to vitellogenesis
- Energy partitioned between egg size & #

Objectives

- 1. Determine spawning interval trajectory using Estradiol-17 β
- 2. Assess changes in growth and energy reserves during:
 - a. Recovery from maiden spawning
 - b. Rematuration for repeat spawning
- 3. Quantify the potential **benefits** of kelt reconditioning
- 4. Quantify **reproductive performance** differences between maiden, consecutive, and skip spawning steelhead

Kelt Reconditioning: Reproductive Performance Assessment

- Artificial spawning channels Ryan Branstetter
- Genetic parentage analysis Jeff Stevenson
- Reproductive performance in hatchery fish

Hatchery Fish as a Research Model

- Migration/fasting/depletion similar to wild population
- Artificially spawned
- Know origin and prior life history, uniform
- Reproductive performance quantified
- Sample regularly increase resolution on patterns
- Repeat spawn in captivity

Methods

~150 females/year collected at Dworshak National Fish Hatchery

Air-spawned – non-lethal method \rightarrow

Collected eggs – number, size

Collected blood – Estradiol, triglycerides

Measured length, mass, fat

Reconditioned in tanks at Dworshak – fed, etc.

Sampled every 10 weeks

Assigned maturation status at 30 weeks

Spawned repeat spawners 1-2 years later

Results

Trajectory: E2 greater in rematuring fish at 20 weeks after maiden spawning

Asterisks - differences between rematuring and non-rematuring fish; letters - differences over time.

Recovery: Rematuring fish grew more (mass) over first 10 weeks after spawning

Rematuring Non-rematuring

Recovery: Rematuring fish had greater circulating triglycerides at 10 weeks

Rematuring Non-rematuring

Year prior to repeat spawning: Skip spawners had greater energy reserves

Consecutive 2015 n=13 Skip 2015 n=18

Performance: Repeat spawners were larger than maiden spawners

1st time spawners

Maiden 2014-2016 N=459 Consecutive 2014-2015 N = 25 Skip 2015-2016 N = 22

Jenkins et al. 2018 TAFS in press

Skip spawners had greatest reproductive performance

Jenkins et al. 2018 TAFS in press

Skip spawners had greatest mass-standardized reproductive performance

Jenkins et al. 2018 TAFS in press

Conclusions

- 1. Trajectories confirmed at 20 weeks (E2)
- 2a. Recovery: Consecutives Greater growth & lipids
 - Food consumption \leftrightarrow Maturation?
- 2b. Rematuration: Skips Much greater energy reserves
- 3. Absolute performance:
 - Skips: Larger eggs
 - Repeats: <u>1.28- and 1.52- fold increase</u> in investment

Aesop's Fables

- Reconditioned females released to spawn should be + productive than maidens
- 4. Size standardized performance:
 - [Repeats: Larger in size]
 - Consecutives: More but smaller eggs (vs. maidens)
 - Skips: Same number, larger eggs, largest investment
 - Egg number-size tradeoff in energy restricted consecutives
 - Energy investment into soma in satiation fed kelts

Acknowledgements

Columbia River Inter-Tribal Fish Commission

Andrew Pierce Neil Graham **Ryan Branstetter Doug Hatch** Jeremiah Newell Jayson FiveCrows

Nez Perce Tribe Scott Everett Joe Samuels Noah Jackson

Northwest **Fisheries** Science Center

Kelly Creek Flycasters Club

University of Idaho James Nagler Tim Cavileer Lea Medeiros **Thomas Tall Bull Brian Hoffman** Joy Goodwin

Dworshak Fish Hatchery, US Fish & Wildlife Service

Thank you! Questions?

Laura Jenkins University of Idaho Biological Science Dept. <u>Ijenkins@uidaho.edu</u>

Implications & Future Work

Skips appear to be the winners, but...

- Definitely costs and benefits to each life history
- In general, life history diversity is beneficial to populations
- Can we predict spawning interval by measuring energy reserves prior to/at maiden spawning?
- Can we influence spawning interval by manipulating energy reserves during recovery?

Aesop's Fables

Fertilization success decreased in skip spawners

Skip spawners spawned earlier

Consecutives had less energy during early oogenesis than skips – small but more eggs Stepwise increase in fish size with reproductive iteration and interval Consecutives fed to satiation during rematuration, we see decrease in egg size

- Energy reserves (ER) assessed early appear to impact egg size, not egg number
 - Consecutives assumed to be most energy restricted in early oogenesis
- ER gained later appear to contribute to somatic size, but not egg size
 - Maidens have least/no access to energy during late oogenesis/vitellogenesis

Aesop's Fables

Reproductive Physiology – Life History

How did natural selection give rise to variation in patterns of survival and reproduction?

- Age and size at maturity
- Age- and size- specific reproductive investment
- Growth patterns, reproductive life span
- Tradeoffs, such as between
 - Somatic vs. reproductive effort
 - Number vs. size of offspring
- **Spawning intervals** what factors drive variation?
- Genetically fixed strategies with multiple tactics
- Adaptations for flexible responses to environment
- Fitness needs of parent vs. offspring

Conclusions

Energy reserves during pre-vitellogenic oogenesis...

- Highly available to maidens (at sea)
- Greater in skips than in maidens during rematuration
- Appear to impact (restrict):
 - Egg size (reduced in consecutives)
 - Not egg number (increased in consecutives, maintained in skips)

Energy reserves during vitellogenic period of oogenesis...

- Restricted in maidens (fasting in river)
- Readily available to repeats (fed to satiation)
- Appear to contribute to:
 - Somatic size (increased in repeats)
 - Not egg size (increased in skips, decreased in consecutives)

Analysis

Time series:

Week 30 mat. status used to assign categories Transformations: E2 - Log10, Fat - ASIN-SQRT Calculations: SGR=100*LN(Mass₂/Mass₁)/days

 $K = W/L^3$

2-way ANOVA - time, treatment, interaction effects

1-way ANOVA with Tukey's HSD

Differences over time within groups

Between groups at each time point

Performance:

GLMs (Bonferroni-adjusted)

Size-standardization (mass):

standardized value = original value of individual –
[(somatic mass of individual – 3.847kg) * slope]

Size-Standardized Dry Egg Mass

Absolute Dry Egg Mass

Repeat spawners had greater mass per length than maiden spawners

Iconic Idaho Steelhead

- Summer steelhead enter river late summer, fast ~7-9 months
- ~800km inland, subject to:
 - recreational fisheries & commercial bi-catch
 - Changing river conditions dams, water temperatures
- Of conservation concern ESA-listed population, B-run assignment
- North fork population spawning habitat cut off by Dworshak Dam in 1969, Dworshak Hatchery mitigates for that loss

Estradiol-17B as rematuration indicator

Plasma E2 (log scale)

- Reconditioned wild kelts from Yakima R. have consecutive rematuring & skip (non-rematuring) repeat spawners
- Can be determined using **plasma E2** ~9 months prior to spawn