<u>COLUMBIA RIVER HATCHERY</u> SCIENTIFIC REFORM GROUP (HSRG) and RESEARCH IN THE YAKIMA <u>BASIN</u>

Presented by David Fast February 27, 2008

Coals of Hatchery Reform

- 1) Help to conserve the naturally spawning populations; and
- 2) Support sustainable fisheries

Hatcheries as a Tool

- Productive, natural habitat provides the greatest certainty
- Hatcheries must be designed, operated, and evaluated in an ecosystem perspective
- Successful programs provide more benefit than risk relative to the watershed
- Thoughtful selection of strategy
 - Integrated or segregated

Hatcheries as a Tool

- "Balanced portfolio" represents highest likelihood for success in watershed
- Adaptive management encourages improvement through learning by doing
- Hatchery programs managed by state, tribes, and federal government under legal framework of United States v. Washington and United States v. Oregon decisions

Hatcheries as a Tool

Economic Benefits

- Hatcheries produce between 75% (Puget Sound) and 90% (Columbia River) of total harvest.
- Fisheries provide recreational opportunities for more than one million people every year
- Anglers spend \$854 million in Washington annually
- Commercial fisheries generate \$250 million in economic benefits

Two types of hatchery programs

1. Genetically Segregated Broodstocks

2. Genetically Integrated Broodstocks

Two primary purposes of hatchery fish

9. Provide fish for harvest (most cases)

2. Natural spawning (some cases)

Gene Flow: Segregated Hatchery

Segregated Hatchery Programs: Summary

- Segregated programs create a new, hatchery-adapted population distinct genetically from natural populations
- Hatchery fish may pose significant genetic and ecological risks to naturally spawning populations

May be appropriate when:

- Very low probability of hatchery fish spawning with natural populations
- Mitigation programs where spawning habitat no longer exists (e.g. mitigation for a hydro-dam)
- Where smolt release and adult recollection facilities are physically separated from natural spawning areas

Minimum gene Flow: Integrated Hatchery

Fitness Optima in Two Environments

Trait phenotypic values

Population Parameters

- *HOS* = hatchery-origin spawners
- NOB = natural-origin broodstock
- pHOS = proportion of natural spawners composed of hatchery-origin adults (HORs)
- pNOB = proportion of hatchery broodstock composed of natural-origin adults (NORs)

Integrated Hatchery Programs: Summary

- Goal: Natural selection in the wild drives the fitness of the population as a whole
- Integrated programs are intended to artificially increase the demographic abundance of a natural population gene pool
- Requires a self-sustaining natural population to provide fish for the broodstock
- May be most appropriate for hatchery programs with (a) conservation goals or (b) when the risks of natural spawning by HORs needs to be minimized

Key Points: Integrated/Segregated

- Must be able to ID hatchery- and natural-origin fish in broodstock and on spawning grounds
- Program sizes must be matched to productivity and capacity of natural environment
- Must be able to control numbers of hatchery fish spawning naturally
- Both strategies represent trade-offs

/"

Estimates of Historical Anadromous Fish Runs in the Yakima Subbasin as Compared to Recent Run Size (5-year Average, 2001-2005)

Species/Race	Pre-1900 Run	Recent Average
Fall Chinook	132,000	4,050
Spring Chinook	200,000	13,870
Summer Chinoo	k 68,000	0
Coho	110,000	2,730
Summer Steelhe	ad 80,500	2,890
Sockeye	200,000	0

YAKIMA/KLICKITAT FISHERIES PROJECT (YKFP)

- MODELING (EDT) and AHA
- SALMON SUPPLEMENTATION AND REINTRODUCTION PROGRAMS
- INTEGRATED and SEGREGATED
 PROGRAMS
- HABITAT ACQUISITION AND ENHANCEMENT PROGRAMS

BROODSTOCK COLLECTION GENETIC GUIDELINES

- COLLECTION THROUGHOUT ADULT RUN TIMING
- RANDOM COLLECTION OF ADULTS
- TAKE NO MORE THAN 50% OF ADULTS INTO HATCHERY (HALF THE ADULTS SPAWN IN THE WILD)

Spring Chinook Run Timing at Roza, 2001

Cle Elum Supplementation & Research Facility (CESRF)

- - Sugarany

Female #1

Female #2

Male #1

Male #2

Volitional Releases and River Flows 1999

Hatchery Fish Performance will be Measured in Four Areas

Post-release Survival (smolt release to adult)

Reproductive Success (smolts/spawner)

Long Term Fitness (genetic diversity and long term stock productivity)

Ecological Interactions (population abundance, and distribution, growth rates, predation and competition)

Yakima River Spring Chinook by Stock, 1982 - Present

Upper Yakima Spring Chinook Age 4 Returns with and without Supplementation

Upper Yakima Spring Chinook Natural and Hatchery Fish on the Spawning Grounds

■ NATURAL ■ HATCHERY

Annual and Average PNI

HOMING FIDELITY

WRS

GPS Salmon Redds

Reproductive Success Comparative behavioral/reproductive fitness research

Spawning Channel

Measuring Reproductive Success

Microsatellite Pedigree Analysis

YKFP

Spring Chinook Supplementation Project

Enhanced the tribal subsistence And ceremonial fisheries & Initiated the first sport fisheries In over 50 years

Yakima Spring Chinook Harvest

