Evaluation of an Innovative Fish Passage Device to Provide Upstream Fish Passage at Cle Elum Dam, Washington, 2017

Tobias J. Kock and Russell W. Perry
2018 Yakima Basin Science \& Management Conference June 14, 2018
U.S. Department of the Interior U.S. Geological Survey

Background

- Yakima Basin Integrated Plan
- Reservoir fish passage (RFP) one of seven primary elements
- Efforts to address RFP will be expensive and take many years
- Cle Elum Dam identified as first RFP project to be addressed
- Bureau of Reclamation (USBR) and Washington State Department of Ecology (WSDOE)

Interested in innovative options to reduce cost and construction time

- Whooshh Fish Transport System (WFTS)

2. One innovative option for upstream passage of adult salmon

- Positive results from several studies

2016: Chinook salmon passed through 1,100 ft WFTS at Roza Dam

- 40 ft WFTS in operation at Roza Dam
- Selected (by USBR/WSDOE) for 2017 Cle Elum evaluation
, $1,700 \mathrm{ft}$ long, 180 ft high, adult sockeye salmon *

2017 Evaluation

- Original study design

2017 Evaluation

- Revised study design

Paired Releases

Treatment Group

Dead
(15\%)

Mortality from:
(1) Treatment
(2) Other sources

Paired Releases

Treatment Group

Alive

(85\%)

Dead
(15\%)

Control
Group

Alive
(89\%)

Dead
(11\%)

Paired release survivalestimate $=0.85 / 0.89=0.96$

Fish Tagging and Release

Tag date	WFTS	Reservoir	
July 14	25	25	
July 17	27	27	
July 18	32	30	
July 19	31	30	
Total $=$	115	112	

Detection of Tagged Fish

Mobile Tracking

ZUSES

Mobile Tracking

Behavior Patterns

Time period	Activity
July 14 to July 31	Very active (upstream and fallback)
August	Little activity
September and October	Very active (upstream)

Upstream Movement

Upstream Movements in Reservoir

Fallback

Survival Analysis

- Fallback fish removed from dataset

Survival Analysis

- Fallback fish removed from dataset
 - Mark-recapture model

- Based on fish movement

Fish Movement Among Sites

CHCOL-	RDATETIME -	RSTE -	RCVF =	DATETIME
09198A	18JUL2017:11:55:00	RESERVOIR	C10	21JUL2017:10:02:29
09198A	18JUL2017:11:55:00	RESERVOIR	C13	28JUL2017:13:31:00
09198A	18JUL2017:11:55:00	RESERVOIR	C15	30JUL2017:07:28:45
09198A	18JUL2017:11:55:00	RESERVOIR	C14	31JUL2017:04:26:47
09198A	18JUL2017:11:55:00	RESERVOIR	C15	06AUG2017:18:54:57
09198A	18JUL2017:11:55:00	RESERVOIR	C10	12AUG2017:06:57:00
09198A	18JUL2017:11:55:00	RESERVOIR	C13	30AUG2017:23:59:20
09198A	18JUL2017:11:55:00	RESERVOIR	C11	21SEP 2017:03:44:41
09198A	18JUL2017:11:55:00	RESERVOIR	C12	21SEP 2017:05:22:45
09198A	18JUL2017:11:55:00	RESERVOIR	C11	21SEP2017:00:30:09
09198A	18JUL2017:11:55:00	RESERVOIR	C10	21SEP2017:14:13:04
09198A	18JUL2017:11:55:00	RESERVOIR	C13	21SEP2017:18:27:36
09198A	18JUL2017:11:55:00	RESERVOIR	C10	22SEP2017:06:18:43
09198A	18JUL2017:11:55:00	RESERVOIR	C13	27SEP2017:23:51:36
09198A	18JUL2017:11:55:00	RESERVOIR	C10	28SEP2017:22:29:40
09198A	18JUL2017:11:55:00	RESERVOIR	C13	30SEP2017:18:13:22
09198A	18JUL2017:11:55:00	RESERVOIR	C10	010СТ2017:00:48:04
09198A	18JUL2017:11:55:00	RESERVOIR	c11	010СТ2017:01:49:48
09198A	18JUL2017:11:55:00	RESERVOIR	C13	010СТ2017:04:12:05
09198A	18JUL2017:11:55:00	RESERVOIR	C11	010СT2017:15:25:04
09198A	18JUL2017:11:55:00	RESERVOIR	C13	010CT2017:17:18:09
09198A	18JUL2017:11:55:00	RESERVOIR	C10	060CT2017:23:27:32
09198A	18JUL2017:11:55:00	RESERVOIR	C11	070СT2017:00:31:55
09198A	18JUL2017:11:55:00	RESERVOIR	C13	070СT2017:03:17:10
09198A	18JUL2017:11:55:00	RESERVOIR	C10	070СT2017:05:49:05
09198A	18JUL2017:11:55:00	RESERVOIR	c11	070СT2017:09:29:20
09198A	18JUL2017:11:55:00	RESERVOIR	C10	070CT 2017:11:50:11
09198A	18JUL2017:11:55:00	RESERVOIR	C13	070СТ2017:17:33:49
09198A	18.JUL2017:11:55:00	RESERVOIR	c11	080С72017:03:37:58
09198A	18.JUL2017:11:55:00	RESERVOIR	C10	080С72017:21:12:27

Single Release Survival Estimates

Paired Release Survival Estimates

Paired Release Survival Estimates

Effect of Fish Size

Summary

- WFTS passage survival
- 40-80\%
- Not a fully functional system
- No tube lubrication in first 3 days
- Daily system adjustments
- Some fish smaller than optimum size
- Sockeye salmon behavior
- Exploratory movements in first 20 day
i- Limited movement in August
F. Upstream movement in September and October

Population loss

- Pre-spawn mortality: 8\%

Fallback: 21\%

Acknowledgments

- USBR and WSDOE: funding
- Richard Visser, Joel Hubble and others with USBR:-logistical support and study design

Dave Fast, Mark Johnston, Brian Saluskin and others with YN: study design, fish transport and release

- Janine Bryan, Jim Otten and Dan Schneider with Whooshh Innovations: logistical support with the WFTS
- Peter Galbreath, Andrew Matala and Jeremiah Newell with CRITFC: genetic analysis and assistance with fieldwork
- USFWS and YN: deployment and operation of PIT-tag site on Cle Elum River

Questions

