Environmental DNA Applications for Fisheries Conservation and Management

K. J. Carim, M. K. Young, T. W. Franklin, K. S. McKelvey, and M. K. Schwartz

Columbia Gorge Fisheries and Watershed Science Conference April 18th, 2017

Environmental DNA

DNA released from an organism into the surrounding environment

Environmental DNA

A powerful presence/absence tool

A somewhat useful tool for abundance

A poor tool for age/size structure, genetic diversity, hybridization

Environmental DNA: Basic Research

How long does eDNA persist in the environment?

How close do you need to be to an animal to detect it?

How does eDNA detection vary between systems?

How common are false positives and false negatives?

Detection varies based on many factors...

...but eDNA still outperforms traditional sampling methods.

Photo: Aubree Benson

Environmental DNA: Applied Research

How can eDNA be used to inform fisheries conservation and management?

Environmental DNA Applications for Fisheries Conservation and Management

Reintroduction Efforts Inventory & Distribution

eDNA for Monitoring Species Reintroduction Efforts

NACIUIIAL CENUIIIGS CENCER — For Wildlife and fish conservation —

Reintroduction of Pacific Lamprey in the Wenatchee River

Reintroduction of Pacific Lamprey in the Wenatchee River

2009 electrofishing surveys by US Fish and Wildlife Service to determine distribution

No Pacific lamprey observed above Tumwater Dam

In 2016 Yakima Nation Fisheries Program began translocations

What can eDNA sampling tell us about fish movement post-translocation in a large river system?

Lamprey Reintroduction by the Numbers

March 17th, 2016: 180 PIT tagged fish in "lower" and "upper" River May 3rd, 2016 : 30 additional PIT tagged fish released in "upper" River June 7th 2016 : Single PIT tagged adult detected at White River

eDNA Sampling Post-Reintroduction

Samples collected June 13th – 21st, 2016 (pre-spawning) Locations based on ease of access (road crossings) Analyzed for presence and quantity of Pacific lamprey DNA

Results: eDNA Lamprey Detections

Conclusions and Sampling Recommendations

Sampling was effective in a large river system

Provided a non-invasive method to monitor translocated fish

Sampling at sentinel sites through time could indicate timing of migration

Sampling at tighter spatial intervals identify upper extent of occupied habitat

eDNA for Evaluating Eradication Efforts

A case study in Greenhorn Creek, MT

Background on Upper Greenhorn Basin

Treated with rotenone in 2013 and 2014 Targets: brook trout and rainbow- cutthroat hybrids Pure cutthroat present in Dark Hallow (Upper 1.4 miles not treated)

Intensive electrofishing planned for July & August 2015

Piscicide treatments are expensive; time and labor intensive

Can eDNA sampling save time and money through more effective evaluations?

Methods for Evaluating Piscicide Treatment in the Greenhorn Basin, MT

Sampled entire treated area July 12th- 15th 2015 Collected eDNA samples at 250m intervals, 122 samples total Analyzed all for brook trout, westslope (excluded Dark Hallow) Continuously electrofished entire basin following eDNA sampling

Results: Fish Detections Post-Treatment

Electrofishing recovered two fish (one of each target)

eDNA samples were run blind; detected both species in multiple locations

Locations of eDNA Detections

North Fork and Meadow Fork detections consistent with electrofishing

South Fork detection had a low level of DNA, no fish recovered

Validation of Results

Google Earth image showing barrier in Greenhorn Creek

Conclusions and Sampling Recommendations

eDNA sampling is highly efficient and sensitive for assessing eradication efforts

- eDNA is highly sensitive to contamination
- Unexpected results must be interpreted in context

Additional sampling should be used to validate results

eDNA for Inventory and Distribution

Assessing Bull Trout Occupancy in the Columbia River Basin

Climate Shields Model: Identifying Suitable Bull Trout Habitat

Pilot Study: eDNA vs. Electrofishing for Detection of Bull Trout Populations

5 drainages in southwestern Montana76 eDNA samples with 1.5 km spacing47 sites with paired electrofishing data (1999-2014)

McKelvey et al. 2016

eDNA

Conclusions and Sampling Recommendations

Faster and more sensitive than electrofishing 1km intervals good for population level detection Sampling at fixed intervals helps delineate length of occupied habitat

Bull Trout Inventory in the Columbia River Basin

Federal, State, Tribal and Non-profit Collaborative Effort

Results of 2014 and 2015 eDNA sampling for Bull Trout (~1500 locations)

Washington

Oregon

Montan

> 3,500 locations sampled since 2014

Reintroduction Efforts

Distribution

Eradication Efforts

Spread and emergence of invasive species Community composition Monitoring seasonal movements And many more...

Questions?

kelliejcarim@fs.fed.us 406-542-3252 www.fs.fed.us/research/genomics-center