STEWARDSHIP OF THE HOOD RIVER – POWERDALE CORRIDOR

Columbia Land Trust March 20, 2012

Diversion Dam Structure

Columbia Land Trust Role

- Facilitate land transfer process
- Develop ownership plan for Powerdale lands and long-term management partnerships
- Develop long-term management strategies and goals for Powerdale lands with input from Powerdale neighbors, agencies, partners, user groups, and public
- Landowner and Steward

Powerdale Ownership

- Columbia Land Trust: 263 Ac
- Hood River County: 101 Ac
- Oregon Department of Fish and Wildlife: 32 Ac

Goals of Powerdale Lands from Settlement Agreement

- 1. Protect the existing fish and wildlife habitat while allowing for habitat restoration and enhancement;
- 2. Retain existing recreational uses and allow improvements commensurate with those uses, provided such uses and improvements are consistent with Goal 1;
- 3. Allow for expanded recreational and educational opportunities, provided those are consistent with Goal 1; and
- Acknowledgement and preservation of the right of CTWS tribal members to exercise their Treaty secured off-reservation fishing rights on the Subject Lands.

Powerdale Corridor Vision

- Intact and functional habitat
- Collaboration between partners, neighbors and the local community
- Maintain public access responsibly
- 'Through' trail restoration
- Leverage conservation beyond the property boundaries

Stewardship Areas/Units

- Geographical division of conservation lands based on:
 - Ecological context
 - Socio-Jurisdictional context
 - Ecological conditions and processes
 - Practical considerations
- Each Unit is described in detail within the stewardship plan, including unit history and infrastructure
- Habitat Classification provides finer scale division of Stewardship Units

Goal 1	Protect the existing fish and wi	Idlife habitat while allowing for h	abitat res	toration an	d enhancem	ent						
Applicable Stewardship Units	Copper Dam (CD), Neal Creek (I Powerhouse (PH) Stewardship U	NC), Cedar Creek (CC), Whiskey Cre Jnits	ek (WC), I	River Mile 1	Floodplain (I	RM1) and	d		5 `	Yearl	Plan	
Objective	Strategy	Action	Lead	Action Unit(s)	Est. Action Metric	Plan Period	Effort Level	2012	2013	2014	2015	2016
	Habitat function monitoring and	Establish baseline habitat mapping and Ecological Integrity Assessment (EIA)	CLT	All	с	Ρ	М	x				
No loss of habitat functionality	evaluation	Periodically review habitat mapping and EIA to monitor stewardship effectiveness	CLT	All	с	Р	м					х
	Minimize threats to habitat function	Implement enhancement and restoration measures to address threats		All	TBD	Р	м	х	х	х	х	х
		Remove pipeline and support structure from active floodplain	CLT	PH, CC, RM1, WC	TBD	3	н			х	х	х
Functionally intact floodplain.	Remove constraints on naturally	Re-contour and remove fill material from active floodplain		PH, CC, RM1, WC	TBD	2	н			х	х	х
wetland and riparian habitat	functioning river processes to the extent practicable	Remove unnecessary shoreline armoring		PH, CC, RM1, WC	TBD	3	н			x	х	х
		Bio-engineer shoreline areas to provide habitat function and infrastructure protection		PH, CC, RM1, WC	TBD	3	н			х	х	х
Upland Habitat areas are maintained in a natural	Re-establish native vegetation communities in all non-	Restore native vegetation in disturbed areas		All	TBD	3	н		х	х	х	х
condition	developed upland areas	Control non-native vegetation		All	TBD	3	Н	Х	Х	Х	х	х
	Maintain diverse forest stand structure and composition	Monitor and evaluate forest stand structure and health		All	TBD	Р	М	x				
Forest Health is stable and	Implement thinning, planting, snag/DWD prescriptions to enhance stand structure and function	Develop prioritized forest action plan to enhance structure and function		All	с	1	М	x	x			
functional	Allow forest communities to develop naturally	No action		All	с	Р	L	-	-	-	-	-
	Manage forest fire fuel levels	Establish forest fuels baseline condition		All	с	1	м	х				
	within reasonable limits	Implement prescriptions to reduce fuel loading and ladder structure		TBD	с	3	н				х	х

Stewardship Plan Work Flow Planning Chart

				HRU, HR, MR	с	1	н	1	х х																																
			Adopt forest management plan	KC, LC	с	1	н	1	х	×		1			1							i –			i 🗆	-		1			1				1						
				DC, DR	с	1	н	1		x	x																														
	Older-growth forest stand structure	Implement sustainable silviculture	Allow stands to continue to grow and develop	HRU, HR, MR, LC, KC, DC, DR	с	Р	L	1	x x	x	x x	×	x :	x x	x	xx	x	xx	x x	x	x x	x x	x	x x	x	x x	x	x x	x	xx	×	x x	x	x x	×	x x	x	x x	×	x	< x
			Implement thinning to enhance stand development	HRU, HR, MR, LC, KC, DC, DR	TBD	TBD	н	2		x	x x																														
1 Habit			Interplant areas of low diversity	HRU, HR, MR, LC, KC, DC, DR	TBD	TBD	м	2		x	x x																												\square		
uou y			Update and submit RMAP	HR	с	1	м	1	x				-									i —			i 🕂	-			++	-			+		1						
for Sale			Ensure compliance with RMAP	HRU, HR, MR, LC, KC, DC, DR	с	2	L	1	x x	x	x x	x	x :	x x	x	x x	x 3	x x	x x	x	x x	x x	x	x x	x	x x	x :	x x	x	x x	×	x x	x	x x	x	x x	x	x x	x	x :	(x
ting Factors		Maintain or abandon forest roads	Evaluate roads for necessity, condition and cost of maintenance to determine abandonment or maintenance status	HRU, HR, MR, LC, KC, DC, DR	с	Р	L	1	x			×			,	×			×			x			×			×				×			×			×			
To Limi			Repoir, maintain or abandon roads and associated infrastructure	HRU, HR, MR, LC, KC, DC, DR	TBD	Р	н	2	x x	x	x x	×	x :	x x	x	x x	x 3	x x	××	x	x x	x x	x	x x	x	x x	x :	x	x	x x	×	x x	x	x x	×	x x	×	x x	×	×	t x
Related	Hillslope stability comparable to reference	Develop mature forest stand structure	Implement sustainable silviculture	HRU, HR, MR, LC, KC, DC, DR	TBD	Р	н	2	x x	x	x	×	x :	x x	x	x x	x	x x	x x	x	x x	x x	x	x x	x	x x	x :	x	x	x x	×	x x	x	x x	×	x x	x	x x	x	×	k x
nd Functions	Company of the	Limit unsustainable timber harvest and damaging harvest practices	Harvest only as appropriate using low- impact practices	HRU, HR, MR, LC, KC, DC, DR	с	Р	н	2	x x	x	x x	×	x :	x x	×	x x	x	x x	x x	x	x x	x x	x	x x	×	x	x :	x	x	x x	×	x x	x	x x	×	x x	×	x x	×	x	k x
V Sa					с																																				
rshed Proces		Maintain natural drainage and infiltration patterns	Reduce surface flow concentration from land alterations	HRU, HR, MR, LC, KC, DC, DR	с	Р	н	2	x x	x	x x	×	x :	x x	×	x x	x 1	x x	x x	x	x x	x x	×	x x	×	x x	x :	x	x	x x	×	x x	x	x x	x	x x	x	x x	×	×	k x
y Intact Wash		Maintain vegetation cover	Plant areas of low diversity and/or cover as appropriate	HRU, HR, MR, LC, KC, DC, DR	с	Р	L	2	x x	x	x x	×	x :	x x	×	x x	x	x x	x x	x	x x	x x	×	x x	×	x	x :	××	x	x	×	x x	x	x x	×	x x	x	x x	×	×	< x
l 6. Functional	surface runoff moderation	Maintain natural drainage and Infiltration patterns	Maintain road water conveyance infrastructure	HRU, HR, MR, LC, KC, DC, DR	с	р	м	2	x x	x	x x	x	x :	x x	×	x x	x	x x	x x	x	x x	x x	x	x x	×	x x	x :	x x	x	x x	x	x x	x	x x	x	x x	x	x x	×	x	< x
8	Sediment delivery comparable to reference conditions	Stabilize areas of erosion	Restore vegetation and implement bioengineering techniques for stabilization	HRU, HR, MR, LC, KC, DC, DR	с	р	н	1	××	x	××	×	x :	××	x	××	x	x x	x x	x	x	x x	x	××	×	××	x :	x	×	x	x	x	×	××	×	××		x x		×	×
	Habitat is appropriate for use by wildlife, including rare, threatened and endangered species	Enhance wildlife habitat for R,T,E, and priority species	Develop and implement prescriptions for species-specific habitat enhancement, as necessary	HRU, HR, MR, LC, KC, DC, DR	c c	TBD	н	3	x x	x	x x																														
sts in its		Establish reference and desired future	Define specific habitat parameters and DFC's	YW	с	1	м	1	x x																													T			
i a b			Map and classify plant communities	YW	с	Р	м	1	X X	х	X X	х	x	хх	x	хх	XJ	хх	x x	x	x x	x x	x	xx	х	х х	x	х х	X	x x	х	xx	x	X X	x	x x	x	х х	x	X >	(X
ny ke		Control invasive and non-native plant	Patrol and control noxious weeds	YW	c	Р	L	1	X X	x	X X	x	x :	x x	X	x x	X J	x x	X X	x	x x	X X	X	X X	x	x x	X :	х х	x	x x	×	X X	X	X X	×	X X	X	X X	X	X >	(X
Wood desito Idife		Maintain species dominance in	Map weed infestations	YW	с	Р	L	1	X X	x	X X	×	X	X X	X	x x	X	x x	XX	X	X X	X X	×	X X	×	x x	X	XX	X	x x	X	X X	x	X X	×	X X	X	XX	×	×)	X
4spen a Unc or Mi	Structure and function of aspen stands approximate	e overstory	Remove encroaching conifers	YW	c	1	м	1	x x	×																								4			\square	4	\square		
Nativ Nativ	reference conditions		Evaluate and reduce grazing pressure	YW	С	1	L	1	X X	X																															
With Hat			stand-replacing disturbance	YW	с	Р	н	2	x x	x	xx	×	X	хх	×	x x	x	х х	××	x	x x	x x	x	x x	x	х х	x	××	x	хх	×	x x	x	x x	×	x x	x	××	×	× ?	×
- Reg		Encourage cloning and regeneration	Monitor size and vigor of colony	YW	с	Р	м	2	хх	x	xx	х	X :	хх	x	хх	X 3	х х	хх	x	x x	x x	x	х х	х	х х	x :	х х	x	х х	х	х х	x	хх	х	х х	x	х х	X	X ?	x 1
oal 7:Sel			Minimize soil disturbance and compaction where aspen roots may be damaged	YW	c	Р	L	1	x x	x	×		-	x			x			x			×			x				x			x			×				×	

Ecological System Classification

Weed Mapping Effectiveness Monitoring & Adaptive Management

Vegetation Community Mapping

Ecological Integrity Assessment

Ecological Systems

...a group of plant communities that tend to co-occur within landscapes sharing similar ecological processes, substrates and/or environmental gradients.¹

- Mid-Scale Classification
- Terrestrial (upland & wetland)
- Temporal (10s-1,000s hectares) & Spatial (>50 years)
- Readily Mappable & Identifiable in Field
- "Natural" or "Near Natural" Conditions
- Hierarchical Framework w/USNVC
- NatureServe, Natural Heritage Program members, funding from TNC
- Classified for conterminous U.S., portions of Mexico & Canada

Ecological Systems Site-Level

- 7 Ecological System Types at Site
- Difficulties classifying due to anthropogenic influences
- Some portions unclassifiable to natural systems (ruderal)

Ecological System Types

Vegetation Community Classification

- Finer Scale Classification
- Rapid assessment of vegetation including species composition and structure
- Modified protocol based on California Native Plant Society's Rapid Assessment Protocol
- Communities often contain multiple associations (limitations: timing, effortlevel, disturbance confounding transitions)
- Hierarchical (in theory) USNVC
- Ecological Integrity Assessments at this mapping unit level

Ecological Integrity Assessment (EIA)

- Framework Ecological Systems Classification
- Based on Heritage Methodology, but incorporates elements of other assessment tools.
- Evaluates biotic and abiotic integrity of a specific ecosystem type along a range of degradation
- Provide baseline as well as long-term progress monitoring of stewardship effectiveness.
- WA Natural Heritage Developed EIA for most Ecological System Types

EIA Features

- Scalable:
 - Effort Level/depth (remote to intensive)
 - Spatially (landscape scale to site scale)
- Identifies Key Ecological Attributes representing structure and function of system
- Identifies biotic and abiotic metrics to measure integrity
- Scorecard matrix integrates ratings into overall assessment

EIA – Metric Level

Relative Cover Native Vegetation/ Native Understory Vegetation

- Finest scale for tool
- Ranks on specific metric
- 182 Acres total:
 - A Rank: 182 ac. (9)
 - B Rank: 28 ac. (3)
 - C Rank: 78 ac. (15)
 - D Rank: 45 ac. (7)
 - X: 31 ac. (5) outside NRV

EIA – Metric Level Columbia Basin Foothill Riparian Woodland & Shrubland System Relative Cover Native Vegetation

- Results: ~68 acres
 - A Rank: 11 ac. (2)
 - B Rank: 24 ac. (2)
 - C Rank: 20 ac. (5)
 - D Rank: 6 ac. (2)

Ecological System w/Relative Percent Native Cover Metric

- CB Foothill Riparian Wetland & Shrubland A
- CB Foothill Riparian Wetland & Shrubland B
- CB Foothill Riparian Wetland & Shrubland C
- CB Foothill Riparian Wetland & Shrubland D

EIA – Metric Level

(Relative Cover Native Vegetation/ Native Understory Vegetation)

- Finest scale for tool
- Ranks on specific metric
- 182 Acres total:
 - A Rank: 182 ac. (9)
 - B Rank: 28 ac. (3)
 - C Rank: 78 ac. (15)
 - D Rank: 45 ac. (7)
 - X: 31 ac. (5) outside NRV

EIA Key Ecological Attribute (Vegetation Condition)

- Needs modification
- Results:
 - A Rank: None
 - B Rank: 63 ac. (6)
 - C Rank: 199 ac. (17)
 - D Rank: 67 ac. (11)
 - Remainder out of NRV

EIA - Rollup

- Inaccurate "roll-up" for scale currently
 - Missing metrics
 - Some metrics unsuitable
- Results:
 - A Rank: None
 - B Rank: 16 ac. (3)
 - C Rank: 71 ac. (20)
 - D Rank: 74 ac. (11)
 - Remainder out of NRV

- Aggregate Rankings
 - Metric
 - Rank Factor
 - Overall Ecological Rank
- Simple weight based Will change as Heritage/NatureServe develop weights for each ecosystem type
- Flexible/adaptable
- Triggers Defined

Sample EIA Scorecard

BOLVCONUD	0004	220							
POLYGON ID	PODA	_238						1	
ECOSYSTEM	C -1		- that is not a set			oh h la sa d			
TYPE	Colum	idia Basin Fo	ootniii kipai	rian wood	land and	Shrubland			
		Assigne	Assigne		Metric	KEA		Ecologica	Ecological
KEY ECOLOGICAL		d Metric	d Metric	weight	Score	Score	KEA	I Integrity	Integrity
ATTRIBUTES (KEA	A)	Rating	Points	(vv)*	(M)	(M/W)	капк	Score	Kank (FO Baala)
Matula									(EO Rank)
INIETTIC	TEVT					2			
RufforLongth		6	2	0.20	0.60	2	U		
Buffer Width			1	0.20	0.00				
Buffer Condition		0	2	0.20	0.20				
Burrer Condition		L.	<u> </u>	0.20	0.60				
Landscape Condi	tion	Office	FALCE	0.20	0.00				
Watershed			FALSE						
Connectivity		С	2	0.20	0.60				
connectivity	-		2	5-1	5-0				
0175	2			2-1	2-2	1	D		
Deletive Cine		D	1	0.50	0.5	1	U		
Relative Size		0	1	0.50	0.5				
Absolute Size	-	U	1	0.50	0.5				
	2			2=1	2=1		_		
VEGETATION (BIC	JIA)					3.375	C		
Relative Cover Na	ative	Α	-	0.13	0.625				
Plant Species			5						
Absolute Cover o	or	В		0.13	0.5				
Invasive species	12		4						
Relative Cover Na	ative	n/a	FALCE	0.13	0				
Increasers			FALSE	0.12	0.5				
Species Composi	tion	D	4	0.15	0.5				
Canopy Structure	-	L.	3	0.15	0.375				
Regeneration wo	ooay	В		0.13	0.5				
Species			4						
Organic Matter		В		0.13	0.5				
Accumulation			4						
Patch Diversity &	ι	С	,	0.13	0.375				
connectivity	0		3	5-1	c-7				
HYDROLOCY	0			2-1	2-3	2.75	P		
HTUROLUGT			4	0.05		3.75	D		
Channel Stability		о С	- 4	0.25	0.75				
Streamback Stab	ilite.		5	0.25	1.25				
Succampany stab	nity	A	2	0.25	1.25				
Connectivity (Div	arina	С	,	0.25	0.75				
Connectivity (Riv	enner		2	5-1	0 2-7				
		·DV)	I	2-1	2-3.6	4	P		
Soil Surface Com	lition		4	0.50	2	4	D		
Soil Surface Cond	arcion	D C	4	0.50	2				
water quality		L	5	0.50	1.5				
	2			2=1	2=2		5-4-4		
							2=14	0.005	-
RA'	TING A=	=4.5-5.0, B =	= 3.5-4.4, C	=2.5-3.4, C	=1.0-2.4	4 B		2.825	C

Triggers & Level 3 EIA

Key Ecological Attribute or Metric	Trigger	Action							
Any metric (except Connectivity)	 C rank Shift from A to B rank negative trend within the B rating (Level 3) 	Level 2 triggers: conduct Level 3 assessment; make appropriate short term management changes to ensure no further degradation Level 3 triggers: make appropriate management adjustments to ensure no additional degradation occurs. Continue monitoring using Level 3.							
Any Key Ecological Attribute	 any metric has a C rank >½ of all metrics are ranked B negative trend within the B rating (Level 3) 	Level 2 triggers: conduct Level 3 assessment; make appropriate short term management changes to ensure no further degradation Level 3 triggers: make appropriate management adjustments to ensure no additional degradation occurs. Continue monitoring using Level 3.							

Example: Columbia Basin Foothill Riparian Woodland and Shrubland

Level 3 EIA

Level 3 metrics would include more quantitative measures of the metrics listed above. In addition, the following metrics should be considered in a Level 3 EIA:

 Benthic invertebrate Index of Biotic Integrity (BIBI; WADOE 2003); Statewide data are maintained by WADOE:

http://www.ecy.wa.gov/apps/watersheds/streambio/regions/state.asp?symtype=1

- Index of Hydrological Alteration (Richter et al. 1997)
- Specific water quality measures (e.g., the temperature, dissolved oxygen, pH, conductivity, turbidity of stream water
- Pool Quality Index (May (2002); may need modification for Eastside riparian systems)
- Riffle Quality Index (May (2002); may need modification for Eastside riparian systems)

Invasive Species Mapping

- Early Detection Rapid Response (EDRR) Methodology
- 30 meter hexagon grid
- Coarse Cover Classes
- Track Treatment Efforts
- Meso-scale monitoring tool

